Department of Mathematics and Computer Science December 28, 2007
University of Southern Denmark, Odense Marco Chiarandini

DMG63 - Heuristics for Combinatorial Optimization Problems
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Note 1 The project is carried out individually and it is not permitted to collaborate.

The project consists of: algorithm design, implementation, experimentation and writ-
ten report.

The evaluation of the project is based on the report. However, a program that imple-
ments the best algorithm described in the report must also be submitted. The program
will serve to verify the correctness of the results presented. The report may be written
either in English or Danish.

Note 2 Additional material to the project description is available on the web at:
http://www.imada.sdu.dk/Courses/DM63/project.php. Please take vision of this link
before starting the project.

Note 3 Corrections or updates to the project description will be announced on the
same web site above and communicated to the students who registered for the exam. The
registration is done by sending an email to the lecturer marco@imada.sdu.dk. In any case,
it remain students’ responsibility to check for updates on the web page.

Note 4 Submission. Two printed copies of the written report must be handed in at the
secretary office before 12:00 of Monday, 17 December 2007. Ask the secretary for a
receipt showing that you have handed in the report in time. Contextually, an electronic
version of the report and the program source code must be sent by email to the lecturer.
A reply will be sent as receipt.

Reports and codes handed in after the deadline will generally not be accepted. System
failures, illness, etc. will not automatically give extra time.

1 Problem Description

Hypergraphs generalize the concept of graphs by letting edges be any subset of ver-
tices [Ber73]. Let V denote a finite non-empty set and let £ denote a collection of non-
empty subsets of V', that is, E C V for each E € £. The pair H = (V, &) is a hypergraph
with the set V' of vertices and the set £ of edges or hyperedges. A hypergraph H = (V, &)
is called r-uniform if each edge E € £ has exactly r elements. A 2-uniform hypergraph is
a graph.

A subset I C V of a hypergraph H = (V,&) is called independent if I contains no
edges from H, i.e., E ¢ I for each edge E € £. A k-coloring of a hypergraph H = (V,€)
is a mapping ¢ : V — {1,...,k} and it is called proper if every edge F € £ with |E| > 1
contains two vertices with two distinct colors (or equivalently, if no edge has all vertices
of the same color). The chromatic number of H, denoted by x(H ), is the minimal number
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Figure 1: Example of 3-uniform hypergraph with vertex set V' = {a, b, c,d, e, f} and edges
Ey = {abc}, Ey = {cde}, E3 = {bdf }, Ex = {aef}. Set {acdf} is an independent set and a
proper 2-coloring is shown.

of colors for which H admits a proper coloring. An example illustrating the concepts
introduced is given in Figure 1.

The subject of the project is on the 3-UNIFORM HYPERGRAPH COLORING PROBLEM
that can be defined as follows:

Definition: 3-UNIFORM HYPERGRAPH COLORING PROBLEM
Input: A 3-uniform hypergraph H = (V,€) and a set of colors I' with |I'| = k. Task:
Find a proper k-coloring with minimal k.

Coloring 3-uniform hypergraphs is NP-hard [Lov73, Bro96, PR84]. Assuming NP #
Z PP there are no polynomial time algorithms for the chromatic number with approx-
imation ratio of n!=¢ for any ¢ > 0 [KS03, HL98]. The best results for polynomial
time approximation algorithms for r-uniform hypergraphs are the performance ratios of

O(n/(log"=" n)2)) [HLIS] and O(n(loglogn)?)/(logn)?) [KS03).

The 3-UNIFORM HYPERGRAPH COLORING PROBLEM might be useful to model real
life applications. The following is an example arising in the shunting of trains in railway
logistics.

During the low traffic hours or overnight passenger trains and trams need to be parked
in stations and depots. Similarly, incoming freight trains need to be split up and rearranged
according to their destinations in railroad shunting yards. In both these two cases, there
is an ordering of arriving units, and one has to decide for each unit on which track it will
be stored [SK04]. The choice is limited by the fixed number of available tracks and by the
accessibility of the tracks. The objective is to use the minimum number of tracks to host
all trains without additional shunting movements during input or output operations.

Let focus on the case in which each track can receive trains only from a single side while
the output can be done from both sides (single input, double output, SIDO). The opposite
case (double input, single output, DISO) is more relevant in practice, because it reflects
the need to park trains in the depot in the night in the best possible conditions so that in
the morning they can exit from the single output in the direction of the station. However,
it can be shown that the two cases are equivalent from a solution point of view [SKO04].
Let also assume that the first departure takes place after the last arrival. Under these
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conditions, the SIDO shunting problem can be modeled as a 3-UNIFORM HYPERGRAPH
COLORING PROBLEM.

Let train units be numbered according to the departure time from the depot area. In
particular, the first train leaving the depot is numbered 1, the second 2, and so on. Then
the arriving sequence of n train units at the depot area is a permutation © = [y, ma, ..., T,
of the outgoing sequence [1,2,...,n|. For example the sequence [2, 3, 1] means that three
trains are involved, the first incoming train will be the second to go out, the second
incoming train will be the third to leave the depot and the last one will be the first to go
out.

Let also introduce a few definitions on sequences of integer numbers. Given a se-
quence S = [s1,S2,...,8,] of n distinct elements, a sub-sequence of S is a sequence
S" = [siy, Sigs- -+ 8y, such that 1 < i; < i < n for each j < k. If S and T are two
sub-sequences such that |S| = n and |T'| = m, then the sequence given by the concatena-
tion of S and T, denoted by S - T, is the sequence having S as the sub-sequence of the
first n elements and T as the sub-sequence of the last m elements, and |T' + S| = m + n.
The concatenation of two sequences, one increasing and one decreasing, is called unimodal
sequence.

In order to minimize shunting movements, in the SIDO situation, the sequence S =
[s1, 82, ..., 8m] of the trains stored in a track must form a unimodal sequence. Indeed, let
R be the side of the track used for incoming trains and let L be the opposite side. The
sequence S is such that S = S, - Sg, where St = [s1, S2, ... ¢ is the sub-sequence of trains
going out from the L side and Sg = [s¢+1, St+2, - - - Sm] is the sequence of trains going out
from the R side. The trains in S;, must form an increasing sequence s1 < so < ... < st
whereas the trains in Sy must form a decreasing sequence St > St12 > Sm, being s,, the
first train leaving the track from this side.

The SIDO shunting problem can then be reformulated as follows. Given a sequence
S of n incoming trains, find a partition of S with the minimum number of unimodal
sub-sequences.

It is interesting to note that already sequences of only three trains may require two
tracks. Let [t1,t2,t3] be a sequence of three incoming trains, and let us suppose they are
stored in a single track. If £; > to and t9 < t3 the train to must leave the depot before
the other two which is impossible without shunting operations. This last example shows
that sub-sequences of S with a “valley” shape must not be put into a single track. This
kind of “no valley in a single track” constraint can be modeled in terms of a special kind
of hypergraph.

Given a sequence S = [s1, S2,...,sy] of n distinct integers, the valley hypergraph in-
duced by S is the hypergraph Hg = (V, &) where V = {s|s € S} and {s;, sj, sx} € £ is and
only if s; > s, 55 < s, and i < j < k. Then, it is proved in [SK04] that given a sequence
S of n incoming trains, the SIDO problem is solvable using k tracks if and only if the
valley hypergraph Hg = (V, ) is colorable using k colors. See Figure 2 for an illustration
of this correspondence.

The problem of coloring “valley” hypergraphs with the minimal number of colors re-
mains NP-hard [SKLZ06].

2 Project Content

The aim of the project is to study heuristic algorithms to solve the 3-UNIFORM HYPER-
GRAPH COLORING PROBLEM in two sets of instances.
A first set of instances, called random, is made of general 3-uniform hypergraphs. These
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Figure 2:
The hypergraph generated by some of the “valley” constraints associated with the shunting
problem represented on the right. A proper 3-coloring of the hypergraph corresponds to
an allocation of trains in the track infrastructure without additional shunting movements.

hypergraphs are generated selecting randomly a fraction p of the (“;') possible distinct
edges. A second set, called shunting, is made of valley hypergraphs described above and
used to model the SIDO shunting problem.

For each of these two sets of instances, 6 benchmark instances and a random instance
generator are made available at http://www. imada.sdu.dk/Courses/DM63/project.php.
See also the Appendix of this document for details on the format of the instances.

All the four tasks below must be addressed in order to pass the exam.

Task 1 — Construction Heuristics

e Implement the two following construction heuristics:

1. A greedy heuristic similar to the one for graph coloring studied during the
lectures. The greedy algorithm takes in input a randomly ordered list of vertices
and assigns the smallest feasible color to the vertices visited in the order. The
heuristic works on both sets of instances random and shunting. Hence, it can
be used as reference heuristic.

2. The longest unimodal sub-sequence heuristic described in [SK04, pp. 26-27].
This heuristic works only on the shunting instances and colors the hypergraph
by iteratively removing the longest unimodal sub-sequence.

e Undertake a computational study to determine the most convenient order of vertices
to pass to the greedy heuristic.

e Design and implement at least one more construction heuristic which can solve both
instances of type random and shunting. Inspiration can be taken from the graph
coloring problem treated in detail during the lectures.

e For each construction heuristic in the previous points of these task provide a com-
plexity analysis.
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e Undertake a computational study to compare the heuristics implemented and report
in a table the numerical results (time and quality) for the 6 benchmark instances
per class.

Task 2 — Construction Heuristics

In the report address the following issues:

e How could the longest unimodal sub-sequence heuristic be modified in order to work
also with general 3-uniform graphs? In other terms, on which principle this heuristic
for coloring hypergraphs is based?

e [s there for any hypergraph a permutation of vertices for which the greedy algorithm
will produce an optimal coloring? Motivate the answer.

e Is it still valid the following assertion:
“If we take a proper coloring and any permutation of vertices in which the vertices
of each color class are maintained adjacent, then applying the greedy coloring will
produce a proper coloring at least as good”?

e Provide an example where the longest unimodal heuristic does not find the optimal
coloring.

Task 3 — Local Search

e Design and implement at least two local search schemes with natural termination
criterion (e.g., in a local optimum). Describe the solution representation, the ini-
tial solutions, the evaluation function, the neighborhood structures and the search
strategy.

e Provide details on the data structures used in the implementation and on the com-
putational complexity of the evaluation function computation, in the initialization
and in the update consequent to a move.

e Compare experimentally the local search algorithms, also in combination with dif-
ferent construction heuristics and within a variable neighborhood descent procedure.

Task 4 — Metaheuristics

e Devise, implement and describe at least two metaheuristic (or hybridization thereof)
algorithms (check the course content on the web-page for the list of methods de-
scribed in the course). One of the two metaheuristics must be a population based
method.

e Address the problem of configuring and tuning the components and the parameters
inherent the metaheuristics chosen.

e Undertake an experimental comparison to decide the best algorithm. In order to
address this question you may take into consideration the following issues:

— different time limits;
— scaling;

— change in performance with respect to instance features.
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e Report in a table the numerical results of your best algorithms on the 6 benchmark
instances per class. Use 360 seconds as time limit on these instances.

3 Remarks

Remark 1 Beside the precise request for tables there is absolute freedom to add other
graphics or table that might facilitate the presentation in the report.

Remark 2 The good performance of the algorithms presented, the study of a num-
ber of algorithms above the minimal number requested and the use of very large scale
neighborhood techniques will contribute to achieve a higher mark.

Remark 3 The total length of the report should not be less than 10 pages and not
be more than 16 pages, appendix included (lengths apply to font size of 11pt and 3cm
margins). Although these bounds are not strict, their violation is highly discouraged. In
the description of algorithms, it is allowed to use short algorithmic sketches but not to
include program codes.

Remark 4 This is a list of further factors that will be taken into account in the evalu-
ation:

e level of detail of the study;

e complexity and originality of the approaches chosen;

e originality of the experimental questions;

e organization of experiments which guarantee reproducibility and correctness of the
conclusions;

e quality of the final results (however, showing that a promising approach does not
work well in practice will also be considered equally well if there is the attempt to
explain why);

o effective use of graphics in the presentation of experimental results;

e clarity of the report.

Appendix A Instance Format

The instance format is an extension of the DIMACS format used for the instances of graph
coloring. FEach line of the file begins with a letter that defines the rest of the line. The
legal lines are:

e ¢ Comment: remainder of line ignored.

e p edge n m where n is the number of nodes (to be numbered 1,...n) and m the
number of edges.

e s Incoming sequence: this is present only in the shunting instances and serves to
apply the longest unimodal heuristic.

e Edge: is of the form e v1 v2 v3 where v1, v2, v3 are the vertices that compose
the edge.
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Appendix B Instance Generator

Two scripts to generate instances random and instances shunting are made available. The
generators are two R functions and should be launched within R as follows:

> source("random.R")

> generate(30,0.5,1,1)
> source("shunting.R")
> generate(30,1,1)

Read the comments on the two scripts for an explanation of the arguments of the
functions.

Appendix C Solution Format

In order to check the validity of the results claimed the program submitted must output
the solution in a file when finishing. The syntax remains the same as for the graph coloring;:
a column of numbers corresponding to the colors assigned to vertices. After each entry
the character "\n’ (new line) has to be printed. Colors start from 1 and the first color in
the column represents the color assigned to vertex 1.
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