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Remark 1 The project is carried out individually and it is not allowed to collaborate.

Remark 2 The project consists of algorithm design, implementation, experimentation and written
report.

The evaluation of the project is based on the report. However, a program that implements the
best algorithm described in the report must also be submitted. The program will serve to verify
the correctness of the results presented. The report may be written in Danish or in English.

Remark 3 Corrections or updates to the project description will be published on the course web page
and will be announced by email to the addresses available in the BlackBoard system. In any case,
it remains students’ responsibility to check for updates on the web page.

Remark 4 Submission. An archive containing the electronic version of the written report and the
source code of the program must be handed in through the BlackBoard system with deadline

Friday, November 4, 2011 at 8:00 AM.

The submission procedure is the following:

- choose the course DM811 in BlackBoard,

- choose "Exam Project Hand In" in the menu on the left,

- Vll the form and conclude with submit,

- print and conserve the receipt (there will be a receipt also per email).

See Appendix D for details on how to organize the electronic archive.

In addition to the electronic submission you must deposit two printed copies of your report at
the teacher’s mailbox in the secretary oXce.

Reports and codes handed in after the deadline will generally not be accepted. System failures,
illness, etc. will not automatically give extra time.

Remark 5 Make sure you have read the whole document before you start to work.

1 The Interval Graph Coloring Problem

Several variations and generalizations of the classical graph coloring problem arise when modeling and
solving real-life problems. For example, the number of colors assigned to a vertex can be more than
one, and conditions can be imposed on the colors assigned to the vertices.

Given a graph G = (V,E) and strictly positive integer weights w : V → N, a k-interval coloring
of G is a function I that assigns an interval I(u) ⊆ {1, ..., k} of consecutive integers (called colors) to
each vertex u ∈ V such that:
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1[2]: * *
2[1]: *
3[3]: * * *
4[1]: *
5[2]: * *
6[2]: * *
7[1]: *
8[3]: * * *

Figure 1: On the left a graph with 8 vertices labeled by numbers from 1 to 8. The number within square
bracket is the weight of the vertex. On the right an interval coloring. Each vertex receives a number
of consecutive numbers equal to its weight and the intervals of adjacent vertices do not overlap. The
solution uses 7 colors and the span is 6.

(i) for every vertex u ∈ V , |I(u)| = w(u) and

(ii) for every pair of adjacent vertices u and v, I(u) ∩ I(v) = ∅.

For a Vxed integer k, the k-interval graph coloring problem (k-ICP) asks to Vnd a k-interval
coloring of G. The interval coloring problem (ICP) asks to determine the smallest integer k, called
interval chromatic number of G and denoted χint(G), such that there exists a k-interval coloring of G.

For illustration, Figure 1 on the right shows a 7-interval coloring for the graph G depicted on the
left, where the numbers between brackets correspond to weights on vertices.

The classical vertex coloring problem is a special case of the ICP and k-ICP where w(u) = 1 for all
vertices u ∈ V . Stockmeyer showed in 1976 that the interval-coloring problem is NP-complete, even
when restricted to interval graphs and vertex weights in {1, 2} (see problem SR2 in [GJ79]).

The ICP models the problem of memory allocation in compilers [Fab79]. In order to reduce the total
memory consumption of source-code objects (simple variables, arrays, and structures), the compiler can
make use of the fact that the memory regions of two objects are allowed to overlap, provided that the
objects do not “interfere” at run-time. This problem can be abstracted as the interval-coloring problem,
as follows. The source-code objects correspond to vertices of our graph, run-time interference between
pairs of source code objects is represented by edges of the graph, the amount of memory needed for
each source-code object is represented by the weight of the corresponding vertex, and the assignment
of memory regions to source code objects is represented by the assignment of intervals to vertices of
the graph. Minimizing the size of the union of intervals corresponds to minimizing the amount of
memory-allocation.

The ICP arises also in course timetabling problems where lectures of diUerent length must be
scheduled in consecutive time slots [CE83, CS91]. In this case, lectures are the vertices of a graph and
edges connect courses or exams that cannot be scheduled at the same time because they share students
or teachers. Here, time slots are the colors and weights indicate the amount of time slots to be allocated
for each lecture.

2 Further deVnitions and known properties

This is a list of deVnitions and known properties that may be used in the design of solution algorithms.
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1. A k-interval coloring is said improper (or illegal) if two adjacent vertices u and v have common
colors, i.e. I(u)∩ I(v) 6= ∅ for an edge uv ∈ E. In this case, the edge uv is said to be conWicting.

2. The total vertex chromaticity w(G) deVned as

w(G) =
∑
u∈V

w(u)

is an upper bound to the interval chromatic number χint.

3. If G is a bipartite graph, we have χint(G) = max{w(u) + w(v) | uv ∈ E}. If G is a clique
then, χint(G) is equal to

∑
u∈V w(u). For an arbitrary graphG, any maximal complete induced

subgraphK has χint(K) ≤ χint(G), hence χint(K) is a lower bound to χint(G). The best lower
bound determined in this way, is given by max{χint(K) | K is a complete subgraph of G}.
In Figure 1 the best lower bound is 7, given by the clique {3, 4, 8}. Since the coloring presented
as solution uses 7 colors, the solution shown is optimal and 7 is the interval chromatic number
for that graph.

4. Let AV (u) be the set of vertices that are adjacent to u in the subgraph of G induced by V and
let the vertex u be itself included in AV (u). The vertex chromatic degree of a vertex u, denoted
by δχ(u), is the maximum number of diUerent colors that may be needed to color the vertices in
AV (u), that is,

δχ(u) =
∑

v∈AV (u)

w(v).

5. The span of a coloring I is deVned as span(I) = maxu∈V I(u)−minu∈V I(u)+1. The number
of colors used in a k-interval coloring corresponds to the span, i.e. k = |

⋃
v∈V I(v)| = span(I).

Thus, minimizing k for Γ = {1..k} is equivalent to minimizing the span.

6. A coloring of a vertex-weighted graphG = (V,E) determined by the partitioning of the vertices
into color classes C1, C2, . . . , Ck induces an interval-coloring of G, that can be constructed as
follows. For each i, 1 ≤ i ≤ k, let vi ∈ Ci be the vertex with maximum weight in Ci. Let
H(1) = 0, and for each i, 2 ≤ i ≤ k, let H(i) =

∑i−1
j=1w(vj). For each vertex v ∈ Ci, we set

I(v) = {H(i)..H(i)+w(v)}. Clearly, no two vertices in distinct color classes have overlapping
intervals and, therefore, this is a valid interval-coloring of G. The span of this interval-coloring
is
∑k

i=1w(vi).

7. Another generalization of the classical vertex coloring problem is the Bandwidth Coloring
Problem (BCP).1 Given a graphG and strictly positive integer weights δ : V → E, a bandwidth
coloring of G is a function c that assigns an integer (called a color) to each vertex u ∈ V so that
|c(i)− c(j)| ≥ δuv for all edges uv ∈ E. The BCP asks to determine a bandwidth coloring with
minimum span. The graph coloring problem is a special case of the bandwidth coloring problem
with δuv = 1 for all edges uv ∈ E.

8. In [BČH10] it is shown that an optimal solution of the ICP can be obtained by solving a series of
BCPs. The proposed algorithm is presented in Figure 2. It consists in Vrst transforming the given
weighted graph G = (V,E,w) in a graph G′ with even weights, i.e. G′ = (V,E, 2w); then,
determining optimal bandwidth colorings c∆k

in graphs G∆k
, deVned below, for various values

of k. Finally, transforming the bandwidth coloring for the graph G∆k
to an interval coloring for

the graph G′ as indicated in Line 10 of EvenReduction and the interval coloring for graph G′

to one for G as indicated in Line 6 of GeneralReduction.
1BCP is a special case of the T-coloring problem and it is also known as distance coloring problem
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function GeneralReduction;1

input A graph G = (V,E) with weights w(u) on the vertices u ∈ V ;2

output An optimal interval coloring I of G;3

Construct G′ from G by multiplying every weight w(u) by 2;4

Determine a compact optimal interval coloring I ′ of G′ using EvenReduction;5

Set I(i) = {dmin I′(i)
2 e, . . . , dmin I′(i)

2 e+ w(u)− 1} for all vertices u ∈ V .6

function EvenReduction;1

input A graph G = (V,E) with weights w(u) on the vertices u ∈ V ;2

output An optimal interval coloring I of G;3

Set k := 1 and ∆1 := 0;4

Determine an optimal bandwidth coloring c∆k
of G∆k

;5

Set ∆k+1 := span(c∆k
)− 1;6

if |c∆k
(β)− c∆k

(α)| < ∆k+1 then7

set k := k + 1 and goto line 5;8

else9

set I(i) = {c∆k
(u)− w(u)

2 , . . . , c∆k
(u) + w(v)

2 − 1} for all u ∈ V .10

Figure 2: The algorithm for obtaining optimal interval coloring by solving series of bandwidth
coloring problems

For a graph G = (V,E) with even weights w(u) on the vertices u ∈ V and any positive integer
∆ the edge-weighted graph G∆ input to the BCP is constructed as follows. Include all vertices
V and edges E and add two vertices α and β linked to all other vertices in V . Set the weights:

- δuv = w(u)+w(v)
2 for all uv ∈ E

- δαu = δβu = w(u)
2 for all u ∈ V

- δαβ = ∆

The number h∗ indicates the number of bandwidth problems for G′ that have to be solved. To
reduce this number of iterations, instead of starting from ∆1 = 0, one could start from a lower
bound to the interval chromatic number, for example the one provided by a clique of the graphG
multiplied by 2. With heuristics the increasing procedure is not appropriate because they cannot
provide a proof of non-existence in Line 5 of EvenReduction. One could however start from an
upper bound and decrease ∆k until no solution to the BCP can be found.

9. An Integer Programming model for the ICP is the following. Let xuk be a binary variable that is
1 if the color interval of the vertex u starts at k, i.e. min I(u) = k, and zero otherwise; and let
yk be an auxiliary variable indicating whether the color k is used. Further, let C be a collection
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60 120 240
T-G.5.5-60.0.5.1.col T-G.5.5-120.0.5.1.col T-G.5.5-240.0.5.1.col
T-G.5.5-60.0.5.2.col T-G.5.5-120.0.5.2.col T-G.5.5-240.0.5.2.col
T-G.5.5-60.0.5.3.col T-G.5.5-120.0.5.3.col T-G.5.5-240.0.5.3.col
T-G.5.5-60.0.5.4.col T-G.5.5-120.0.5.4.col T-G.5.5-240.0.5.4.col
T-G.5.5-60.0.5.5.col T-G.5.5-120.0.5.5.col T-G.5.5-240.0.5.5.col
T-G.5.5-60.0.5.6.col T-G.5.5-120.0.5.6.col T-G.5.5-240.0.5.6.col
T-G.5.5-60.0.5.7.col T-G.5.5-120.0.5.7.col T-G.5.5-240.0.5.7.col
T-G.5.5-60.0.5.8.col T-G.5.5-120.0.5.8.col T-G.5.5-240.0.5.8.col
T-G.5.5-60.0.5.9.col T-G.5.5-120.0.5.9.col T-G.5.5-240.0.5.9.col
T-G.5.5-60.0.5.10.col T-G.5.5-120.0.5.10.col T-G.5.5-240.0.5.10.col

Table 1: The set of test instances grouped into diUerent vertex set size.

of cliques of G such that each edge uv ∈ E belongs to some clique C of C (for example C = E).

min z (1)∑
k∈Γ

xuk = 1 ∀u ∈ V (2)

∑
u∈C

k∑
l=max{0,k−w(u)}

xul ≤ yk ∀C ∈ C, k ∈ Γ (3)

kyk ≤ z ∀k ∈ Γ (4)

xuk ∈ {0, 1} ∀u ∈ V, k ∈ Γ (5)

yk ∈ {0, 1} ∀k ∈ Γ (6)

The set of colors Γ is made of all consecutive integers from 1 to an upper bound. Constraints (2)
ensure that each vertex has assigned an interval of colors by imposing that the interval starts at
some color. Constraints (3) ensure that the intervals assigned to vertices that belong to a clique
do not overlap. Constraints (4) together with the objective (1) minimize the largest color used.

Using a MIP solver like gurobi this model yields very fast solutions to instances of 30 vertices
but is unable to Vnd a feasible solution after one hour on the instances that are the object of this
project (see next section).

3 Project Requirements

The aim of the project is to study heuristic algorithms for Vnding the interval chromatic number of
arbitrary random graphs and compare the heuristics on the test instances of Table 1.

The name of the instances has the following format: T-G.w.5-SIZE.DENSITY.SEED.col, where
w is the maximum weight on the vertices, SIZE is the number of vertices, DENSITY is the edge density
and SEED is the seed number for the generation of the instance. The instances can be downloaded
from the course web page. The instance clementson.col used in Figure 1 is also included for testing
purposes.

All the following points must be addressed to pass the exam:

1. Design and implement two or more construction heuristics and show that they perform better
than the solution obtained by passing a random permutation of vertices to a procedure that given
a set of vertices already colored assigns the smallest (i.e, the Vrst) feasible interval to the new
vertex to color.
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2. Design and implement one or more local search algorithms.

3. Design and implement an eUective algorithm enhancing the heuristics developed at one or both
of the previous two points using stochastic local search methods and metaheuristics.

4. For all the methods above carry out an experimental analysis and draw sound conclusions.

In the experimental assessment of any algorithm limit the maximum computation to one minute.2

4 Remarks

Remark 1 For each point above a description must be provided in the report of the work undertaken.
In particular for the best algorithms arising from the experimental analysis enough details must
be provided in order to guarantee the reproducibility of the algorithm from the report alone (i.e.,
without need for looking at the source code).

Remark 2 The results of the experiments must be reported either in graphical form or in form of
tables or both. Moreover, for the best solver resulting from the point 4, a table must be provided
with the best results for each speciVc instance of Table 1.

Remark 3 The total length of the report should not be less than 5 pages and not be more than 12
pages, appendix included (lengths apply to font size of 11pt and 3cm margins). Although these
bounds are not strict, their violation is highly discouraged. In the description of the algorithms,
it is allowed (and encouraged) to use short algorithmic sketches in form of pseudo-code but not
to include program codes.

Remark 4 This is a list of factors that will be taken into account in the evaluation:

• quality of the Vnal results;

• level of detail of the study;

• complexity and originality of the approaches chosen;

• organization of experiments which guarantee reproducibility of conclusions;

• clarity of the report;

• eUective use of graphics in the presentation of experimental results.

Remark 5 In the project requirements of Sec. 3 the words “one or more algorithms” do NOT imply
“the more algorithms, the better the Vnal grade”. A few, well thought algorithms are better in
this sense than many naive ones!

2Times refer to machines in IMADA terminal room.
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Appendix A Instance Format

All graphs are in DIMACS format, which consists of a Vle where each line begins with a letter that
deVnes the content of the line. The legal lines are:

• c Comment: remainder of line ignored.

• p Problem: is in the form p type n m where n is the number of vertices (to be numbered 1..n)
and m the number of edges. The Veld type can be any word and it must be ignored.

• n Vertex: is in the form n v w where v is the identiVer of the vertex and w its weight.

• e Edge: is in the form e n1 n2 d where n1 and n2 are the endpoints of the edge and d is a
parameter that must be ignored.

Note that each edge can be written twice and that loops, that is, edges with head and tail on the
same vertex must be ignored.

Appendix B Solution Format

In order to check the validity of the results reported, the program submitted must output when Vnishing
the best solution found during its execution in a Vle with extension .sln. The Vle must be in text format
and contain in each line the set of colors assigned to the corresponding vertex.

For example, the solution of Figure 1 would be printed as:

$> cat clementson.sln
3 4
6
1 2 3
4
6 7
1 2
4
5 6 7

Appendix C Solution Validator

A program to check the validity of a given solution is made available at the course web page. The
program runs on the Linux machines of the IMADA terminal room.

To verify a solution type from the command line something like the following:

make
test_col -i clementson.col -s clementson.sln -p 6

Appendix D Handing in Electronically

Your work must be handed in electronically via BlackBoard. In addition two printed copies of the
report must be deposited at the teacher’s mailbox in the secretary oXce. In both submissions do not
put your name in the author Veld of the report, instead put your CPR number. The oXcial receipt will
be obtained at the BlackBoard submission.

This section describes how you must organize your electronic submission.
Main directory:
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CPRN/

where CPRN is the student’s CPR number without the last four digits (eg, 030907) and content:

CPRN/README
CPRN/Makefile
CPRN/src/
CPRN/bin/
CPRN/res/
CPRN/doc/

The directory doc contains a pdf or postscript version of your report. The Vle README provides
instructions for compilation of the program. The directory src contains the sources which may be in
C, C++, Java or other languages. If needed a MakeVle can be included either in the root directory or
in src. After compilation the executable must be placed in bin. For java programs, a jar package can
also be created via MakeVle. The directory data contains the instances.

Programs must work on IMADA’s computers under Linux environment and with the compilers and
other applications present on IMADA’s computers. Students are free to develop their program at home,
but it is their own responsibility to transfer the program to IMADA’s system and make the necessary
adjustments such that it works at IMADA.3

The executable must be called gcp. It must execute from command line by typing in the directory
CPRN/bin/:

gcp -i INSTANCE -t TIME -s SEED -o OUTPUT

where the Wags indicate:

• -i INSTANCE the input instance;

• -t TIME the time limit in seconds;

• -s SEED the random seed;

• -o OUTPUT the Vle name where the solution is written.

For example:

gcp -i data/clementson.col -o clementson.sln -t 60 -s 1 > clementson.log

will run the program on the instance clementson.col opportunely retrieved from the given path for
180 seconds with random seed 1 and write the solution in the Vle clementson.sln.

In its default mode, the program must run the best algorithm developed and must print on the
standard output only one single number at the end of the run corresponding to the quality of the best
interval coloring found during the run.

It is advisable to have a log of algorithm activities during the run. This can be achieved by printing
further information on the standard error or in a Vle. A suggested format is to output a line whenever
a new best solution is found containing at least the following pieces of information:

best 53 time 10.000000 iter 1000

All process times are the sum of user and system CPU time spent during the execution of a program
as returned by the linux C library routine getrusage. Process times include the time to read the
instance.

3Past issue: the java compiler path is /usr/local/bin/javac; in C, any routine that uses subroutines from the math.c
library should be compiled with the -lm Wag – eg, cc floor.c -lm.
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