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Schedule (28 lecture hours):
Monday 12:15-14:00
Tuesday 10:15-12:00
Thursday 12.15-14:00
Last lecture: Thursday, October 13, 2011

Communication tools
Course Public Webpage (Wp) ⇔ BlackBoard (BB)
(link from http://www.imada.sdu.dk/~marco/DM811/)
Announcements in BlackBoard
Course Documents (Photocopies) in (BB)
Discussion Board in (BB)
Assignment Hand in in (BB)
Personal email
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Heuristic algorithms: compute, efficiently, good solutions to a problem with
no guarantee of optimality.
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Obligatory Assignments, pass/fail, evaluation by teacher (≈ 4 hand ins)

Evaluation: final individual project, 7-grade scale, external examiner)
Algorithm design
Implementation (deliverable and checkable source code)
(Analytical) and experimental analysis
Written description
Performance counts
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Main References:

B1 W. Michiels, E. Aarts and J. Korst. Theoretical Aspects of Local Search.
Springer Berlin Heidelberg, 2007

B2 S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach.
(Part II) Prentice Hall, 2003.

B3 Comet Tutorial (see doc in Comet Application)
B4 P.V. Hentenryck and L. Michel. Constraint-Based Local Search. The

MIT Press, Cambridge, USA, 2005.
B5 H. Hoos and T. Stuetzle, Stochastic Local Search: Foundations and

Applications, 2005, Morgan Kaufmann
B6 E.K. Burke, G. Kendal, Search methodologies: introductory tutorials in

optimization and decision support techniques 2005, Springer, New York

Photocopies (from Course Documents left menu of BlackBoard)
Articles from the Webpage
R notes from the Webpage
Lecture slides
Assignments and Exercises

...but take notes in class! 7
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Practical experience is important to learn to develop heuristics
Implementation details play an important role.

Be prepared for:

Problem solving in class

Assignment Sheets for hands on experience  programming

Experimental analysis of performance

Group discussions

Exercise Sheets

Require home preparation!
Worthwhile in preparation of the project!
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On the course:

the course bulids on a lot of knowledge from previous courses

programming

practical drive

taught on examples

no sharp rules are given and hence more space left to creativity

unexpected heavy workload
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On the exam:

hardest part is the design of the heuristics
the content of the course is vast  many possibilities without clue on
what will work best.

In general:

Hands-on examples are relevant, would be nice closer look at source
code.

From my side, mistakes I would like to see avoided:

non competitive local search procedures and mistaken data aggregation
in instance set analysis.
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Combinatorial problems

They arise in many areas
of Computer Science, Artificial Intelligence and Operations Research:

allocating register memory
planning, scheduling, timetabling
Internet data packet routing
protein structure prediction
combinatorial auctions winner determination
portfolio selection
...
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Simplified models are often used to formalize real life problems

finding models of propositional formulae (SAT)
finding variable assignment which satisfy constraints (CSP)
coloring graphs (GCP)
finding shortest/cheapest round trips (TSP)
partitioning graphs or digraphs
partitioning, packing, covering sets
finding the order of arcs with minimal backward cost
...
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They are chosen because conceptually concise, intended to illustrate the
development, analysis and presentation of algorithms

Although real-world problems tend to have much more complex
formulations, these problems capture their essence
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Combinatorial problems are characterized by an input,
i.e., a general description of conditions (or constraints) and parameters and
a question (or task, or objective) defining
the properties of a solution.

They involve finding a grouping, ordering, or assignment
of a discrete, finite set of objects that satisfies given conditions.

Warning, in this course,

(Candidate) solutions are combinations of objects or solution components
that need not satisfy all given conditions.

Solutions are candidate solutions that satisfy all given conditions.
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Classical Example

Traveling Salesman Problem

Given: edge-weighted, undirected complete graph G
Task: find a minimum-weight Hamiltonian cycle in G .

Note:

candidate solution: one of the (n − 1)! possible sequences of points to
visit one directly after the other.
solution: Hamiltonian cycle of minimal length
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Hamiltonian cycle problem

Given: undirected graph G
Question: does G contain a Hamiltonian cycle?

solutions = candidate solutions that satisfy given logical conditions

Two variants:
Existence variant: Determine whether solutions
for given problem instance exists
Search variant: Find a solution for given problem instance
(or determine that no solution exists)

20
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Traveling Salesman Problem

Given: edge-weighted, undirected complete graph G
Task: find a minimum-weight Hamiltonian cycle in G .

objective function measures solution quality
(often defined on all candidate solutions)
find solution with optimal quality, i.e., minimize/maximize obj. func.

Variants of optimization problems:

Evaluation variant: Determine optimal objective function
value for given problem instance
Search variant: Find a solution with optimal
objective function value for given problem instance
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Remarks
Every optimization problem has an associated decision problem:
Given a problem instance and a fixed solution quality bound b,
find a solution with objective function value ≤ b (for minimization
problems) or determine that no such solution exists.

Many optimization problems have an objective function
as well as constraints (= logical conditions) that solutions must satisfy.

A candidate solution is called feasible (or valid) iff it satisfies
the given constraints.

Approximate solutions are feasible candidate solutions that are not
optimal.

Note: Logical conditions can always be captured by
an objective function such that feasible candidate solutions
correspond to solutions of an associated decision problem
with a specific bound.

22
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General problem vs problem instance:

General problem Π:
Given any set of points X in a square, find a shortest Hamiltonian cycle
Solution: Algorithm that finds shortest Hamiltonian cycle for any X

Problem instantiation π = Π(I ):
Given a specific set of points I in the square, find a shortest Hamiltonian
cycle
Solution: Shortest Hamiltonian cycle for I

Problems can be formalized on sets of problem instances I (instance classes)

23



Course Introduction
Combinatorial Optimization
Exercise
Problem Solving
Modelling and Search
SummaryTraveling Salesman Problem

Types of TSP instances:

Symmetric: For all edges uv of the given graph G , vu is also in G , and
w(uv) = w(vu).
Otherwise: asymmetric.
Euclidean: Vertices = points in an Euclidean space,
weight function = Euclidean distance metric.
Geographic: Vertices = points on a sphere,
weight function = geographic (great circle) distance.
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Instance classes
Real-life applications (geographic, VLSI)
Random Euclidean
Random Clustered Euclidean
Random Distance

Available at the TSPLIB (more than 100 instances upto 85.900 cities)
and at the 8th DIMACS challenge
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A Method is a general framework for the development of a solution
algorithm. It is not problem-specific.

An Algorithm (or algorithmic model) is a problem-specific template that
leaves only some practical details unspecified.
The level of detail may vary:

minimally instantiated (few details, algorithm template)
lowly instantiated (which data structure to use)
highly instantiated (programming tricks that give speedups)
maximally instantiated (details specific of a programming language and
computer architecture)

A Program is the formulation of an algorithm in a programming language.

An algorithm can thus be regarded as a class of computer programs
(its implementations)

28
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Exact methods (complete)
guaranteed to eventually find (optimal) solution,
or to determine that no solution exists (eg, systematic enumeration)

Search algorithms (backtracking, branch and bound)
Dynamic programming
Constraint programming
Integer programming
Dedicated Algorithms

Approximation methods
worst-case solution guarantee
http://www.nada.kth.se/~viggo/problemlist/compendium.html

Heuristic (Approximate) methods (incomplete)
not guaranteed to find (optimal) solution,
and unable to prove that no solution exists

29
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Problem specific methods:

Dynamic programming (knapsack)

Dedicated algorithms (shortest path)

General methods:

Integer Programming

Constraint Programming

Generic methods:
U Allow to save development time
D Do not achieve same performance as specific algorithms
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Given: A graph G and a set of colors Γ.
A proper coloring is an assignment of one color to each vertex of the graph
such that adjacent vertices receive different colors.

Decision version (k-coloring)
Task: Find a proper coloring of G that uses at most
k colors.
Optimization version (chromatic number)
Task: Find a proper coloring of G that uses the
minimal number of colors.

Design an algorithm for solving general instances of the graph coloring
problem.
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N-Queens problem

Input: A chessboard of size N × N

Task: Find a placement of n queens
on the board such that no two queens
are on the same row, column, or
diagonal.
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N2 Queens
Input: A chessboard of size N × N

Question: Given such a chessboard, is
it possible to place N sets of N queens
on the board so that no two queens of
the same set are in the same row,
column, or diagonal?

The answer is yes ⇐⇒ an opportune conflict graph admits a coloring with N
colors

35
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Get inspired by approach to problem solving in human mind
[Newell and Simon, 1976]

effective rules

trial and error

Applications:
Optimization, Timetabling, Routing, Scheduling
But also in Psychology, Economics, Management

Side aspects: basis on empirical evidence rather than mathematical logic.
Getting things done in the given time. Good having creativity in problem
solving and criticism.

37
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Beside psychologists, also mathematicians reflected upon problem solving
processes:

George Pólya, How to Solve it, 1945

J. Hadamard, The Mathematician’s Mind - The Psychology of Invention
in the Mathematical Field, 1945
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George Pólya

George Pólya’s 1945 book How to Solve It:

1. Understand the problem.
2. Make a plan.
3. Carry out the plan.
4. Look back on your work. How could it be better?

http://en.wikipedia.org/wiki/How_to_Solve_It
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Pólya’s First Principle: Understand the Problem

Do you understand all the words used in stating the problem?
What are you asked to find or show?
Is there enough information to enable you to find a solution?
Can you restate the problem in your own words?
Can you think of a picture or a diagram that might help you to
understand the problem?
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Pólya’s Second Principle: Devise a plan

There are many reasonable ways to solve problems.

Guess and check
Make an orderly list
Eliminate possibilities
Use symmetry
Consider special cases
Use direct reasoning

Also suggested:

Look for a pattern
Draw a picture
Solve a simpler problem
Use a model
Work backward

Choosing an appropriate strategy is best learned by solving many problems.
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Pólya’s Third Principle: Carry out the plan

“Needed is care and patience, given that you have the necessary
skills. Persist with the plan that you have chosen. If it continues
not to work discard it and choose another. Don’t be misled, this is
how mathematics is done, even by professionals.”

Pólya’s Fourth Principle: Review/Extend

“Much can be gained by taking the time to reflect and look back at
what you have done, what worked and what didn’t. Doing this will
enable you to predict what strategy to use to solve future problems.”
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Inspiration can strike anytime, particularly after an individual
had worked hard on a problem for days and then turned the
attention to another activity.

The Mathematician’s Mind - The Psychology of Invention in the
Mathematical Field, J. Hadamard, 1945
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solution algorithm = model + search
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Standard IP formulation: Let xvk be a 0–1 variable equal to 1 whenever the
vertex v takes the color k
and yk be 1 if color k is used and 0 otherwise

min
∑
k∈K

yk

s.t.
∑
k∈K

xvk = 1, ∀v ∈ V ,

xvk + xuk ≤ yk , ∀(u, v) ∈ E (G ),∀k ∈ K ,
xvk ∈ {0, 1}, ∀v ∈ V ,∀k ∈ K
yk ∈ {0, 1}, ∀k ∈ K .
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Notation
Independent set s, with cardinality cs
S : Collection of every maximal independent set of G
Sv : subset of S that contains v
λs : 0-1 variable equal to 1 if independent set s is used

min
∑
s∈S

λs

s.t.
∑
s∈Sv

λs ≥ 1, ∀v ∈ V ,

λs ∈ {0, 1}, ∀s ∈ S.
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The domain of a variable x , denoted D(x), is a finite set of elements that
can be assigned to x .

A constraint C on X is a subset of the Cartesian product of the domains of
the variables in X, i.e., C ⊆ D(x1)× · · · ×D(xk). A tuple (d1, . . . , dk) ∈ C is
called a solution to C .
Equivalently, we say that a solution (d1, ..., dk) ∈ C is an assignment of the
value di to the variable xi ,∀1 ≤ i ≤ k, and that this assignment satisfies C .
If C = ∅, we say that it is inconsistent.
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Constraint Satisfaction Problem (CSP)

A CSP is a finite set of variables X , together with a finite set of constraints
C , each on a subset of X . A solution to a CSP is an assignment of a value
d ∈ D(x) to each x ∈ X , such that all constraints are satisfied simultaneously.

Constraint Optimization Problem (COP)

A COP is a CSP P defined on the variables x1, . . . , xn, together with an
objective function f : D(x1)× · · · × D(xn)→ Q that assigns a value to each
assignment of values to the variables. An optimal solution to a minimization
(maximization) COP is a solution d to P that minimizes (maximizes) the
value of f (d).
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CP formulation:

variables : domain(yi) = {1, . . . ,K} ∀i ∈ V

constraints : yi 6= yj ∀ij ∈ E(G)

alldifferent({yi | i ∈ C}) ∀C ∈ C
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Can be done within the same framework of Constraint Programming.
See Constraint Based Local-Search (Hentenryck and Michel) [B4].

Decide the variables.
An assignment of these variables should identify a candidate solution
or a candidate solution must be retrievable efficiently
Must be linked to some Abstract Data Type (arrays, sets, permutations).

Express the constraints on these variables

No restrictions are posed on the language in which the above two elements
are expressed.
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Backtracking (complete)

Branch and Bound (complete)

Local search (incomplete)
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1. Course Introduction

2. Combinatorial Optimization

Combinatorial Problems, Terminology
Solution Methods, Overview
Travelling Salesman Problem

3. Problem Solving

Example: Graph Coloring Problem
Model + Search
Polya’s view about Problem Solving

4. Basic Concepts from Algorithmics
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Next Time:

Construction Heuristics

High level description of Local Search

Solver Systems

Setting up the Working Environment

In preparation:

Lecture notes

Revise basic concepts in algorithmics (see slides available at the web
page and complement them with Cormen, Leiserson, Rivest and Stein.
Introduction to algorithms. 2001)

Reading material

Obligatory assignment 1 launched
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