Heuristics for Combinatorial Optimization

Efficient Local Search

Department of Mathematics & Computer Science

Outline

1. Efficient Local Search

DM811

Lecture 10

Marco Chiarandini

University of Southern Denmark

Efficient Local Search
Examples

Efficient Local Search

Outline Efficiant |

1. Efficient Local Search

2. Examples
TSP

Efficient Local Search

Efficiency vs Effectiveness Evamples

The performance of local search is determined by:
1. quality of local optima (effectiveness)

2. time to reach local optima (efficiency):

A. time to move from one solution to the next

B. number of solutions to reach local optima

Efficient Local Search

Efficient Local Search

Examples Examples
Note: Trade-off (to be assessed experimentally):
@ Local minima depend on evaluation function f and neighborhood @ Using larger neighborhoods
function \. can improve performance of LS algorithms.
o Larger neighborhoods A induce @ But: time required for determining improving search steps
o neighborhood graphs with smaller diameter; increases with neighborhood size.
o fewer local minima.) ’
Ideal case: exact neighl.)orhoo.d, i.e., neighborhood function Speedups Techniques for Efficient Neighborhood Search
for which any local optimum is also guaranteed to be
a global optimum. 1) Incremental updates

o Typically, exact neighborhoods are too large to be searched effectively

(exponential in size of problem instance). 2) Neighborhood pruning

Efficient Local Search

Speedups in Neighborhood Examination =~

1) Incremental updates (aka delta evaluations)

. . Do not do this:
o Key idea: calculate effects of differences between

o . ,
current.search position s and neighbors s’ on tmp < current
evaluation function value. while 3 unseen sol in N(current) do
. .) change current into sol
o Evaluation function values often consist of evaluate current
independent contributions of solution components; if current better than tmp then
hence, f(s) can be efficiently calculated from f(s’) by differences L break;

between s and s’ in terms of solution components. current < tmp

o Typically crucial for the efficient implementation of
[l algorithms (and other LS techniques).

Efficient Local Search
Examples

Do this:

while 3 unseen sol in N(current) do
evaluate changes at current
if improving then
| change current into sol

Efficient Local Search

Example: Incremental updates for TSP

@ solution components = edges of given graph ¢

@ standard 2-exchange neighborhood, i.e., neighboring
round trips p, p’ differ in two edges

e w(p'):=w(p) — edges in p but not in p’
+ edges in p’ but not in p

Note: Constant time (4 arithmetic operations), compared to
linear time (n arithmetic operations for graph with n vertices)
for computing w(p’) from scratch.

10

Outline Exameles

2. Examples
TSP

12

Efficient Local Search

2) Neighborhood Pruning

o Idea: Reduce size of neighborhoods by excluding neighbors that are
likely (or guaranteed) not to yield improvements in f.

@ Note: Crucial for large neighborhoods, but can be also very useful for
small neighborhoods (e.g., linear in instance size).

Example: Heuristic candidate lists for the TSP
o Intuition: High-quality solutions likely include short edges.

o Candidate list of vertex v: list of v's nearest neighbors (limited number),
sorted according to increasing edge weights.

@ Search steps (e.g., 2-exchange moves) always involve edges to elements
of candidate lists.

@ Significant impact on performance of LS algorithms
for the TSP.

11

Single Machine Total Weighted Tardiness=

Given: a set of n jobs {.J1,...,.J,,} to be processed on a single machine
and for each job J; a processing time p;, a weight w; and a due date d;.
Task: Find a schedule that minimizes

the total weighted tardiness > | w; - T}

where T; = max{C; — d;,0} (C; completion time of job .J;)

Example:
Job J1 !]2]3]4 J5 J(;
Processing Time 3 2 2 3 4 3
Due date 6 13 4 9 7 17
Weight 2 3 1 5 1 2

Sequence G) = ‘]3-, ']1' J51 J47 ‘]11 J(i

Job Js S Js Ja Ja Jg
C; 2 5 9 12 14 17
T; 0 0 2 3 1 0
w; - T 0 0 2 15 3 0

14

Single Machine Total Weighted Tardiness-FHroblem

o Interchange: size (1) and O(|i — j|) evaluation each

o first-improvement: 7, 7

Pr; < P, forimprovements, w;T; +w; Ty must decrease because jobs
in 7;,...,m, can only increase their tardiness.
Pr; > Pr, possible use of auxiliary data structure to speed up the com-

putation
o best-improvement: 7;, 7

Pr; < pr, for improvements, w; T + wyT) must decrease at least as
the best interchange found so far because jobs in 7j, ..., 7

can only increase their tardiness.

Pr; = Pr), possible use of auxiliary data structure to speed up the com-

putation
@ Swap: size n — 1 and O(1) evaluation each

o Insert: size (n — 1)% and O(|i — j|) evaluation each

But possible to speed up with systematic examination by means of
swaps: an insert is equivalent to |i — j| swaps hence overall examination

takes O(n?)

TSP data structures
Tour representation:

@ reverse(a,b)

@ succ

@ prec

@ sequence(a,b,c) — check whether b is within ¢ and b
Possible choices:

e |V] < 1.000 array for 7 and 7!

e |V| < 1.000.000 two level tree

e |V| > 1.000.000 splay tree
Moreover static data structure:

@ priority lists

o k-d trees

16

Examples

19

Local Search for the Traveling Salesman =F+eblem

o k-exchange heuristics
2-opt

2.5-opt

Or-opt

3-opt

@ complex neighborhoods

o Lin-Kernighan

o Helsgaun's Lin-Kernighan
o Dynasearch

e ejection chains approach

Implementations exploit speed-up techniques
1. neighborhood pruning: fixed radius nearest neighborhood search
2. neighborhood lists: restrict exchanges to most interesting candidates
3. don't look bits: focus perturbative search to “interesting” part

4. sophisticated data structures

18

Examples

Look at implementation of local search for TSP by T. Stiitzle:

File: http://www.imada.sdu.dk/ “marco/DM811/Resource/ls.c

two_opt_b(tour); % best improvement, no speedup

two_opt_f(tour); % first improvement, no speedup

two:opt:best(tour); % first improvement including speed—ups (dIbs, fixed radius near
neighbour searches, neughbourhood lists)

two_opt_first(tour); % best improvement including speed—ups (dlbs, fixed radius near
neighbour searches, neughbourhood lists)

three opt_first(tour); % first improvement

20

Efficient Local Search Efficient Local Search
Examples Examples

Table 17.2 Computer-generated source code for k-opt moves.

Table 17.1 Cases for k-opt moves. k No. of Lines
6 120,228

k No. of Cases 7 1,259,863
2 1 8 17,919,296
3 4

4 20 770000 . T . . : :
5 148

6 1358 760000

7 15,104 E‘) 750000

8 198,144 <

9 2,998,656 2 740000

10 51,290,496

— e 730000

720000
2

[Appelgate Bixby, Chvatal, Cook, 2006]
Figure 17.1 k-opt on a 10,000-city Euclidean TSP.

21

Efficient Local Search

Asymmetric TSP into Symmetric TSP semeie

How to encode an asymmetric TSP into a symmetric TSP?

24

