DM811 Heuristics for Combinatorial Optimization

> Lecture 11 Examples

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Recap. Examples

1. Recap.

2. Examples

1. Recap.

2. Examples

Summary: Local Search Algorithms (as in [Hoos, Stützle, 2005])

For given problem instance π :

- 1. search space S_{π}
- 2. neighborhood relation $\mathcal{N}_{\pi} \subseteq \mathcal{S}_{\pi} imes \mathcal{S}_{\pi}$
- 3. evaluation function $f_{\pi}: S \to \mathbf{R}$
- 4. set of memory states M_{π}
- 5. initialization function init : $\emptyset \to S_{\pi} \times M_{\pi}$)
- 6. step function step : $S_{\pi} \times M_{\pi} \rightarrow S_{\pi} \times M_{\pi}$

7. termination predicate terminate : $S_{\pi} \times M_{\pi} \rightarrow \{\top, \bot\}$

After implementation and test of the above components, improvements in efficiency (ie, computation time) can be achieved by:

- A. fast delta evaluation
- B. neighborhood pruning
- C. clever use of data structures

Improvements in quality can be achieved by:

- D. application of a metaheuristic
- E. definition of a larger neighborhood

Recap. Examples

1. Recap.

2. Examples

Recap. Examples

1. Recap.

2. Examples TSP

Asymmetric TSP into Symmetric TSP

How to encode an asymmetric TSP into a symmetric TSP?

Recap. Examples

1. Recap.

2. Examples

Local Search for Graph coloring

Different choices for the candidate solutions, neighborhood structures and evaluation function define different approaches to the problem

k -fixed	complete	proper	
k -fixed	partial	proper	+ + +
<i>k</i> -fixed	complete	unproper	+ + +
<i>k</i> -fixed	partial	unproper	_
<u>k</u> -variable	complete	proper	++
<u>k</u> -variable	partial	proper	_
<u>k</u> -variable	complete	unproper	++
k -variable	partial	unproper	_

Polynomial time simplifications

k-coloring (k fixed)

- Remove under-constrained nodes
- Remove subsumed nodes
- Merge nodes that must have the same color

Recap. Examples

1. Recap.

2. Examples

Total Weighted Completion Time on Unrelated Parallel Machines Problem

Input: A set of jobs *J* to be processed on a set of parallel machines *M*. Each job $j \in J$ has a weight w_j and processing time p_{ij} that depends on the machine $i \in M$ on which it is processed.

Task: Find a schedule of the jobs on the machines such that the sum of weighted completion time of the jobs is minimal.

Steiner Tree

Steiner Tree Problem

Input: A graph G = (V, E), a weight function $\omega : E \mapsto N$, and a subset $U \subseteq V$.

Task: Find a Steiner tree, that is, a subtree $T = (V_T, E_T)$ of G that includes all the vertices of U and such that the sum of the weights of the edges in the subtree is minimal.

Vertices in U are the special vertices and vertices in $S = V \setminus U$ are Steiner vertices.

