
DM811

Heuristics for Combinatorial Optimization

Lecture 12
Stochastic Local Search and Metaheuristics

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

MetaheuristicsCourse Overview

1. Combinatorial Optimization, Methods and Models

2. General overview

3. Solver System and Working Environment

4. Construction Heuristics

5. Local Search: Components, Basic Algorithms

6. Local Search: Neighborhoods and Search Landscape

7. Efficient Local Search: Incremental Updates and Neighborhood Pruning

8. Stochastic Local Search & Metaheuristics

9. Methods for the Analysis of Experimental Results

10. Configuration Tools: F-race

11. Very Large Scale Neighborhoods

Examples: GCP, CSP, TSP, SAT, MaxIndSet, SMTWP, Steiner Tree

2

MetaheuristicsOutline

1. Trajectory Based Metaheuristics
Stochastic Local Search
Simulated Annealing
Iterated Local Search
Tabu Search
Variable Neighborhood Search
Guided Local Search

3

MetaheuristicsOutline

1. Trajectory Based Metaheuristics
Stochastic Local Search
Simulated Annealing
Iterated Local Search
Tabu Search
Variable Neighborhood Search
Guided Local Search

5

MetaheuristicsOutline

1. Trajectory Based Metaheuristics
Stochastic Local Search
Simulated Annealing
Iterated Local Search
Tabu Search
Variable Neighborhood Search
Guided Local Search

6

MetaheuristicsRandomized Iterative Impr.
aka, Stochastic Hill Climbing

Key idea: In each search step, with a fixed probability
perform an uninformed random walk step instead of
an iterative improvement step.

Randomized Iterative Improvement (RII):
determine initial candidate solution s
while termination condition is not satisfied do

With probability wp:
choose a neighbor s ′ of s uniformly at random

Otherwise:
choose a neighbor s ′ of s such that f (s ′) < f (s) or,
if no such s ′ exists, choose s ′ such that f (s ′) is minimal

s := s ′

7

MetaheuristicsRandomized Iterative Impr.
aka, Stochastic Hill Climbing

Key idea: In each search step, with a fixed probability
perform an uninformed random walk step instead of
an iterative improvement step.

Randomized Iterative Improvement (RII):
determine initial candidate solution s
while termination condition is not satisfied do

With probability wp:
choose a neighbor s ′ of s uniformly at random

Otherwise:
choose a neighbor s ′ of s such that f (s ′) < f (s) or,
if no such s ′ exists, choose s ′ such that f (s ′) is minimal

s := s ′

7

MetaheuristicsRandomized Iterative Impr.
aka, Stochastic Hill Climbing

Key idea: In each search step, with a fixed probability
perform an uninformed random walk step instead of
an iterative improvement step.

Randomized Iterative Improvement (RII):
determine initial candidate solution s
while termination condition is not satisfied do

With probability wp:
choose a neighbor s ′ of s uniformly at random

Otherwise:
choose a neighbor s ′ of s such that f (s ′) < f (s) or,
if no such s ′ exists, choose s ′ such that f (s ′) is minimal

s := s ′

7

MetaheuristicsRandomized Iterative Impr.
aka, Stochastic Hill Climbing

Key idea: In each search step, with a fixed probability
perform an uninformed random walk step instead of
an iterative improvement step.

Randomized Iterative Improvement (RII):
determine initial candidate solution s
while termination condition is not satisfied do

With probability wp:
choose a neighbor s ′ of s uniformly at random

Otherwise:
choose a neighbor s ′ of s such that f (s ′) < f (s) or,
if no such s ′ exists, choose s ′ such that f (s ′) is minimal

s := s ′

7

Metaheuristics

Example: Randomized Iterative Improvement for SAT

procedure RIISAT(F , wp, maxSteps)
input: a formula F , probability wp, integer maxSteps
output: a model ϕ for F or ∅

choose assignment ϕ for F uniformly at random;
steps := 0;
while not(ϕ is not proper) and (steps < maxSteps) do

with probability wp do
select x in X uniformly at random and flip;

otherwise
select x in X c uniformly at random from those that

maximally decrease number of clauses violated;
change ϕ;
steps := steps+1;

end
if ϕ is a model for F then return ϕ
else return ∅
end

end RIISAT

9

Metaheuristics

Example: Randomized Iterative Improvement for SAT

procedure RIISAT(F , wp, maxSteps)
input: a formula F , probability wp, integer maxSteps
output: a model ϕ for F or ∅
choose assignment ϕ for F uniformly at random;
steps := 0;

while not(ϕ is not proper) and (steps < maxSteps) do
with probability wp do

select x in X uniformly at random and flip;
otherwise

select x in X c uniformly at random from those that
maximally decrease number of clauses violated;

change ϕ;
steps := steps+1;

end
if ϕ is a model for F then return ϕ
else return ∅
end

end RIISAT

9

Metaheuristics

Example: Randomized Iterative Improvement for SAT

procedure RIISAT(F , wp, maxSteps)
input: a formula F , probability wp, integer maxSteps
output: a model ϕ for F or ∅
choose assignment ϕ for F uniformly at random;
steps := 0;
while not(ϕ is not proper) and (steps < maxSteps) do

with probability wp do
select x in X uniformly at random and flip;

otherwise
select x in X c uniformly at random from those that

maximally decrease number of clauses violated;

change ϕ;
steps := steps+1;

end

if ϕ is a model for F then return ϕ
else return ∅
end

end RIISAT

9

Metaheuristics

Example: Randomized Iterative Improvement for SAT

procedure RIISAT(F , wp, maxSteps)
input: a formula F , probability wp, integer maxSteps
output: a model ϕ for F or ∅
choose assignment ϕ for F uniformly at random;
steps := 0;
while not(ϕ is not proper) and (steps < maxSteps) do

with probability wp do
select x in X uniformly at random and flip;

otherwise
select x in X c uniformly at random from those that

maximally decrease number of clauses violated;

change ϕ;
steps := steps+1;

end

if ϕ is a model for F then return ϕ
else return ∅
end

end RIISAT

9

Metaheuristics

Example: Randomized Iterative Improvement for SAT

procedure RIISAT(F , wp, maxSteps)
input: a formula F , probability wp, integer maxSteps
output: a model ϕ for F or ∅
choose assignment ϕ for F uniformly at random;
steps := 0;
while not(ϕ is not proper) and (steps < maxSteps) do

with probability wp do
select x in X uniformly at random and flip;

otherwise
select x in X c uniformly at random from those that

maximally decrease number of clauses violated;
change ϕ;
steps := steps+1;

end

if ϕ is a model for F then return ϕ
else return ∅
end

end RIISAT

9

Metaheuristics

Example: Randomized Iterative Improvement for SAT

procedure RIISAT(F , wp, maxSteps)
input: a formula F , probability wp, integer maxSteps
output: a model ϕ for F or ∅
choose assignment ϕ for F uniformly at random;
steps := 0;
while not(ϕ is not proper) and (steps < maxSteps) do

with probability wp do
select x in X uniformly at random and flip;

otherwise
select x in X c uniformly at random from those that

maximally decrease number of clauses violated;
change ϕ;
steps := steps+1;

end
if ϕ is a model for F then return ϕ
else return ∅
end

end RIISAT

9

Metaheuristics

Note:

No need to terminate search when local minimum is encountered

Instead: Impose limit on number of search steps or CPU time,
from beginning of search or after last improvement.

Probabilistic mechanism permits arbitrary long sequences
of random walk steps

Therefore: When run sufficiently long, RII is guaranteed
to find (optimal) solution to any problem instance with
arbitrarily high probability.

GWSAT, GWSAT [Selman et al., 1994],
was at some point state-of-the-art for SAT.

10

Metaheuristics

Note:

No need to terminate search when local minimum is encountered

Instead: Impose limit on number of search steps or CPU time,
from beginning of search or after last improvement.

Probabilistic mechanism permits arbitrary long sequences
of random walk steps

Therefore: When run sufficiently long, RII is guaranteed
to find (optimal) solution to any problem instance with
arbitrarily high probability.

GWSAT, GWSAT [Selman et al., 1994],
was at some point state-of-the-art for SAT.

10

Metaheuristics

Note:

No need to terminate search when local minimum is encountered

Instead: Impose limit on number of search steps or CPU time,
from beginning of search or after last improvement.

Probabilistic mechanism permits arbitrary long sequences
of random walk steps

Therefore: When run sufficiently long, RII is guaranteed
to find (optimal) solution to any problem instance with
arbitrarily high probability.

GWSAT, GWSAT [Selman et al., 1994],
was at some point state-of-the-art for SAT.

10

Metaheuristics

Note:

No need to terminate search when local minimum is encountered

Instead: Impose limit on number of search steps or CPU time,
from beginning of search or after last improvement.

Probabilistic mechanism permits arbitrary long sequences
of random walk steps

Therefore: When run sufficiently long, RII is guaranteed
to find (optimal) solution to any problem instance with
arbitrarily high probability.

GWSAT, GWSAT [Selman et al., 1994],
was at some point state-of-the-art for SAT.

10

Metaheuristics

Note:

No need to terminate search when local minimum is encountered

Instead: Impose limit on number of search steps or CPU time,
from beginning of search or after last improvement.

Probabilistic mechanism permits arbitrary long sequences
of random walk steps

Therefore: When run sufficiently long, RII is guaranteed
to find (optimal) solution to any problem instance with
arbitrarily high probability.

GWSAT, GWSAT [Selman et al., 1994],
was at some point state-of-the-art for SAT.

10

MetaheuristicsMin-Conflict Heuristic

(Already encountered)

11

MetaheuristicsMin-Conflict Heuristic
In Comet

import cotls;
int n = 16;
range Size = 1..n;
UniformDistribution distr(Size);

Solver<LS> m();
var{int} queen[Size](m,Size) := distr.get();
ConstraintSystem<LS> S(m);

S.post(alldifferent(queen));
S.post(alldifferent(all(i in Size) queen[i] + i));
S.post(alldifferent(all(i in Size) queen[i] − i));
m.close();

int it = 0;
while (S.violations() > 0 && it < 50 ∗ n) {
select(q in Size : S.violations(queen[q])>0) {
selectMin(v in Size)(S.getAssignDelta(queen[q],v)) {
queen[q] := v;
cout<<"chng @ "<<it<<": queen["<<q<<"] := "<<v<<" viol: "<<S.violations()

<<endl;
}
it = it + 1;

}
}
cout << queen << endl;

12

MetaheuristicsMin-Conflict + Random Walk

Example of slc heuristic: with prob. wp select a random move, with prob.
1− wp select the best

13

MetaheuristicsProbabilistic Iterative Improv.

Key idea: Accept worsening steps with probability that depends
on respective deterioration in evaluation function value:
bigger deterioration ∼= smaller probability

Realization:

Function p(f , s): determines probability distribution
over neighbors of s based on their values under
evaluation function f .
Let step(s, s ′) := p(f , s, s ′).

Note:

Behavior of PII crucially depends on choice of p.
II and RII are special cases of PII.

14

MetaheuristicsProbabilistic Iterative Improv.

Key idea: Accept worsening steps with probability that depends
on respective deterioration in evaluation function value:
bigger deterioration ∼= smaller probability

Realization:

Function p(f , s): determines probability distribution
over neighbors of s based on their values under
evaluation function f .

Let step(s, s ′) := p(f , s, s ′).

Note:

Behavior of PII crucially depends on choice of p.
II and RII are special cases of PII.

14

MetaheuristicsProbabilistic Iterative Improv.

Key idea: Accept worsening steps with probability that depends
on respective deterioration in evaluation function value:
bigger deterioration ∼= smaller probability

Realization:

Function p(f , s): determines probability distribution
over neighbors of s based on their values under
evaluation function f .
Let step(s, s ′) := p(f , s, s ′).

Note:

Behavior of PII crucially depends on choice of p.
II and RII are special cases of PII.

14

MetaheuristicsProbabilistic Iterative Improv.

Key idea: Accept worsening steps with probability that depends
on respective deterioration in evaluation function value:
bigger deterioration ∼= smaller probability

Realization:

Function p(f , s): determines probability distribution
over neighbors of s based on their values under
evaluation function f .
Let step(s, s ′) := p(f , s, s ′).

Note:

Behavior of PII crucially depends on choice of p.

II and RII are special cases of PII.

14

MetaheuristicsProbabilistic Iterative Improv.

Key idea: Accept worsening steps with probability that depends
on respective deterioration in evaluation function value:
bigger deterioration ∼= smaller probability

Realization:

Function p(f , s): determines probability distribution
over neighbors of s based on their values under
evaluation function f .
Let step(s, s ′) := p(f , s, s ′).

Note:

Behavior of PII crucially depends on choice of p.
II and RII are special cases of PII.

14

Metaheuristics

Example: Metropolis PII for the TSP

Search space S : set of all Hamiltonian cycles in given graph G .
Solution set: same as S
Neighborhood relation N (s): 2-edge-exchange
Initialization: an Hamiltonian cycle uniformly at random.
Step function: implemented as 2-stage process:

1. select neighbor s ′ ∈ N(s) uniformly at random;
2. accept as new search position with probability:

p(T , s, s ′) :=

{
1 if f (s ′) ≤ f (s)
exp −(f (s′)−f (s))

T otherwise

(Metropolis condition), where temperature parameter T controls
likelihood of accepting worsening steps.

Termination: upon exceeding given bound on run-time.

15

MetaheuristicsOutline

1. Trajectory Based Metaheuristics
Stochastic Local Search
Simulated Annealing
Iterated Local Search
Tabu Search
Variable Neighborhood Search
Guided Local Search

16

Metaheuristics

Inspired by statistical mechanics in matter physics:

candidate solutions ∼= states of physical system
evaluation function ∼= thermodynamic energy
globally optimal solutions ∼= ground states
parameter T ∼= physical temperature

Note: In physical process (e.g., annealing of metals), perfect ground states
are achieved by very slow lowering of temperature.

17

MetaheuristicsSimulated Annealing

Key idea: Vary temperature parameter, i.e., probability of accepting
worsening moves, in Probabilistic Iterative Improvement according to
annealing schedule (aka cooling schedule).

Simulated Annealing (SA):
determine initial candidate solution s
set initial temperature T according to annealing schedule

while termination condition is not satisfied: do
while maintain same temperature T according to annealing schedule do

probabilistically choose a neighbor s ′ of s using proposal mechanism
if s ′ satisfies probabilistic acceptance criterion (depending on T) then

s := s ′

update T according to annealing schedule

18

MetaheuristicsSimulated Annealing

Key idea: Vary temperature parameter, i.e., probability of accepting
worsening moves, in Probabilistic Iterative Improvement according to
annealing schedule (aka cooling schedule).

Simulated Annealing (SA):
determine initial candidate solution s
set initial temperature T according to annealing schedule
while termination condition is not satisfied: do

while maintain same temperature T according to annealing schedule do
probabilistically choose a neighbor s ′ of s using proposal mechanism
if s ′ satisfies probabilistic acceptance criterion (depending on T) then

s := s ′

update T according to annealing schedule

18

Metaheuristics

2-stage step function based on
proposal mechanism (often uniform random choice from N(s))
acceptance criterion (often Metropolis condition)

Annealing schedule
(function mapping run-time t onto temperature T (t)):

initial temperature T0

(may depend on properties of given problem instance)
temperature update scheme
(e.g., linear cooling: Ti+1 = T0(1− i/Imax),
geometric cooling: Ti+1 = α · Ti)
number of search steps to be performed at each temperature
(often multiple of neighborhood size)
may be static or dynamic
seek to balance moderate execution time with asymptotic behavior
properties

Termination predicate: often based on acceptance ratio,
i.e., ratio accepted / proposed steps or number of idle iterations

19

Metaheuristics

2-stage step function based on
proposal mechanism (often uniform random choice from N(s))
acceptance criterion (often Metropolis condition)

Annealing schedule
(function mapping run-time t onto temperature T (t)):

initial temperature T0

(may depend on properties of given problem instance)

temperature update scheme
(e.g., linear cooling: Ti+1 = T0(1− i/Imax),
geometric cooling: Ti+1 = α · Ti)
number of search steps to be performed at each temperature
(often multiple of neighborhood size)
may be static or dynamic
seek to balance moderate execution time with asymptotic behavior
properties

Termination predicate: often based on acceptance ratio,
i.e., ratio accepted / proposed steps or number of idle iterations

19

Metaheuristics

2-stage step function based on
proposal mechanism (often uniform random choice from N(s))
acceptance criterion (often Metropolis condition)

Annealing schedule
(function mapping run-time t onto temperature T (t)):

initial temperature T0

(may depend on properties of given problem instance)
temperature update scheme
(e.g., linear cooling: Ti+1 = T0(1− i/Imax),
geometric cooling: Ti+1 = α · Ti)

number of search steps to be performed at each temperature
(often multiple of neighborhood size)
may be static or dynamic
seek to balance moderate execution time with asymptotic behavior
properties

Termination predicate: often based on acceptance ratio,
i.e., ratio accepted / proposed steps or number of idle iterations

19

Metaheuristics

2-stage step function based on
proposal mechanism (often uniform random choice from N(s))
acceptance criterion (often Metropolis condition)

Annealing schedule
(function mapping run-time t onto temperature T (t)):

initial temperature T0

(may depend on properties of given problem instance)
temperature update scheme
(e.g., linear cooling: Ti+1 = T0(1− i/Imax),
geometric cooling: Ti+1 = α · Ti)
number of search steps to be performed at each temperature
(often multiple of neighborhood size)

may be static or dynamic
seek to balance moderate execution time with asymptotic behavior
properties

Termination predicate: often based on acceptance ratio,
i.e., ratio accepted / proposed steps or number of idle iterations

19

Metaheuristics

2-stage step function based on
proposal mechanism (often uniform random choice from N(s))
acceptance criterion (often Metropolis condition)

Annealing schedule
(function mapping run-time t onto temperature T (t)):

initial temperature T0

(may depend on properties of given problem instance)
temperature update scheme
(e.g., linear cooling: Ti+1 = T0(1− i/Imax),
geometric cooling: Ti+1 = α · Ti)
number of search steps to be performed at each temperature
(often multiple of neighborhood size)
may be static or dynamic

seek to balance moderate execution time with asymptotic behavior
properties

Termination predicate: often based on acceptance ratio,
i.e., ratio accepted / proposed steps or number of idle iterations

19

Metaheuristics

2-stage step function based on
proposal mechanism (often uniform random choice from N(s))
acceptance criterion (often Metropolis condition)

Annealing schedule
(function mapping run-time t onto temperature T (t)):

initial temperature T0

(may depend on properties of given problem instance)
temperature update scheme
(e.g., linear cooling: Ti+1 = T0(1− i/Imax),
geometric cooling: Ti+1 = α · Ti)
number of search steps to be performed at each temperature
(often multiple of neighborhood size)
may be static or dynamic
seek to balance moderate execution time with asymptotic behavior
properties

Termination predicate: often based on acceptance ratio,
i.e., ratio accepted / proposed steps or number of idle iterations

19

Metaheuristics

2-stage step function based on
proposal mechanism (often uniform random choice from N(s))
acceptance criterion (often Metropolis condition)

Annealing schedule
(function mapping run-time t onto temperature T (t)):

initial temperature T0

(may depend on properties of given problem instance)
temperature update scheme
(e.g., linear cooling: Ti+1 = T0(1− i/Imax),
geometric cooling: Ti+1 = α · Ti)
number of search steps to be performed at each temperature
(often multiple of neighborhood size)
may be static or dynamic
seek to balance moderate execution time with asymptotic behavior
properties

Termination predicate: often based on acceptance ratio,
i.e., ratio accepted / proposed steps or number of idle iterations

19

Metaheuristics

2-stage step function based on
proposal mechanism (often uniform random choice from N(s))
acceptance criterion (often Metropolis condition)

Annealing schedule
(function mapping run-time t onto temperature T (t)):

initial temperature T0

(may depend on properties of given problem instance)
temperature update scheme
(e.g., linear cooling: Ti+1 = T0(1− i/Imax),
geometric cooling: Ti+1 = α · Ti)
number of search steps to be performed at each temperature
(often multiple of neighborhood size)
may be static or dynamic
seek to balance moderate execution time with asymptotic behavior
properties

Termination predicate: often based on acceptance ratio,
i.e., ratio accepted / proposed steps or number of idle iterations

19

Metaheuristics

Example: Simulated Annealing for TSP

Extension of previous PII algorithm for the TSP, with

proposal mechanism: uniform random choice from
2-exchange neighborhood;
acceptance criterion: Metropolis condition (always accept improving
steps, accept worsening steps with probability exp [−(f (s ′)− f (s))/T]);
annealing schedule: geometric cooling T := 0.95 · T with n · (n − 1)
steps at each temperature (n = number of vertices in given graph), T0
chosen such that 97% of proposed steps are accepted;
termination: when for five successive temperature values no
improvement in solution quality and acceptance ratio < 2%.

Improvements:

neighborhood pruning (e.g., candidate lists for TSP)
greedy initialization (e.g., by using NNH for the TSP)
low temperature starts (to prevent good initial candidate solutions from
being too easily destroyed by worsening steps)

20

Metaheuristics

Example: Simulated Annealing for TSP

Extension of previous PII algorithm for the TSP, with

proposal mechanism: uniform random choice from
2-exchange neighborhood;
acceptance criterion: Metropolis condition (always accept improving
steps, accept worsening steps with probability exp [−(f (s ′)− f (s))/T]);
annealing schedule: geometric cooling T := 0.95 · T with n · (n − 1)
steps at each temperature (n = number of vertices in given graph), T0
chosen such that 97% of proposed steps are accepted;
termination: when for five successive temperature values no
improvement in solution quality and acceptance ratio < 2%.

Improvements:

neighborhood pruning (e.g., candidate lists for TSP)
greedy initialization (e.g., by using NNH for the TSP)
low temperature starts (to prevent good initial candidate solutions from
being too easily destroyed by worsening steps)

20

MetaheuristicsProfiling

0.0

0.5

1.0

1.5

2.0

2.5
T

em
pe

ra
tu

re

Run A

0 10 20 30 40 50

0

100

200

300

400

500

600

Iterations 107

C
os

t f
un

ct
io

n
va

lu
e

Run B

0 10 20 30 40 50

Iterations 107

22

MetaheuristicsOutline

1. Trajectory Based Metaheuristics
Stochastic Local Search
Simulated Annealing
Iterated Local Search
Tabu Search
Variable Neighborhood Search
Guided Local Search

25

MetaheuristicsIterated Local Search

Key Idea: Use two types of LS steps:

subsidiary local search steps for reaching
local optima as efficiently as possible (intensification)

perturbation steps for effectively
escaping from local optima (diversification).

Also: Use acceptance criterion to control diversification vs intensification
behavior.

Iterated Local Search (ILS):
determine initial candidate solution s
perform subsidiary local search on s
while termination criterion is not satisfied do

r := s
perform perturbation on s
perform subsidiary local search on s
based on acceptance criterion,
keep s or revert to s := r

26

MetaheuristicsIterated Local Search

Key Idea: Use two types of LS steps:

subsidiary local search steps for reaching
local optima as efficiently as possible (intensification)

perturbation steps for effectively
escaping from local optima (diversification).

Also: Use acceptance criterion to control diversification vs intensification
behavior.

Iterated Local Search (ILS):
determine initial candidate solution s
perform subsidiary local search on s

while termination criterion is not satisfied do
r := s
perform perturbation on s
perform subsidiary local search on s
based on acceptance criterion,
keep s or revert to s := r

26

MetaheuristicsIterated Local Search

Key Idea: Use two types of LS steps:

subsidiary local search steps for reaching
local optima as efficiently as possible (intensification)

perturbation steps for effectively
escaping from local optima (diversification).

Also: Use acceptance criterion to control diversification vs intensification
behavior.

Iterated Local Search (ILS):
determine initial candidate solution s
perform subsidiary local search on s
while termination criterion is not satisfied do

r := s
perform perturbation on s
perform subsidiary local search on s

based on acceptance criterion,
keep s or revert to s := r

26

MetaheuristicsIterated Local Search

Key Idea: Use two types of LS steps:

subsidiary local search steps for reaching
local optima as efficiently as possible (intensification)

perturbation steps for effectively
escaping from local optima (diversification).

Also: Use acceptance criterion to control diversification vs intensification
behavior.

Iterated Local Search (ILS):
determine initial candidate solution s
perform subsidiary local search on s
while termination criterion is not satisfied do

r := s
perform perturbation on s
perform subsidiary local search on s
based on acceptance criterion,
keep s or revert to s := r

26

Metaheuristics

Note:

Subsidiary local search results in a local minimum.

ILS trajectories can be seen as walks in the space of
local minima of the given evaluation function.

Perturbation phase and acceptance criterion may use aspects of search
history (i.e., limited memory).

In a high-performance ILS algorithm, subsidiary local search,
perturbation mechanism and acceptance criterion need to complement
each other well.

27

Metaheuristics

Note:

Subsidiary local search results in a local minimum.

ILS trajectories can be seen as walks in the space of
local minima of the given evaluation function.

Perturbation phase and acceptance criterion may use aspects of search
history (i.e., limited memory).

In a high-performance ILS algorithm, subsidiary local search,
perturbation mechanism and acceptance criterion need to complement
each other well.

27

Metaheuristics

Note:

Subsidiary local search results in a local minimum.

ILS trajectories can be seen as walks in the space of
local minima of the given evaluation function.

Perturbation phase and acceptance criterion may use aspects of search
history (i.e., limited memory).

In a high-performance ILS algorithm, subsidiary local search,
perturbation mechanism and acceptance criterion need to complement
each other well.

27

Metaheuristics

Note:

Subsidiary local search results in a local minimum.

ILS trajectories can be seen as walks in the space of
local minima of the given evaluation function.

Perturbation phase and acceptance criterion may use aspects of search
history (i.e., limited memory).

In a high-performance ILS algorithm, subsidiary local search,
perturbation mechanism and acceptance criterion need to complement
each other well.

27

MetaheuristicsComponents

Subsidiary local search: (1)

More effective subsidiary local search procedures lead to better ILS
performance.
Example: 2-opt vs 3-opt vs LK for TSP.

Often, subsidiary local search = iterative improvement,
but more sophisticated LS methods can be used.
(e.g., Tabu Search).

28

MetaheuristicsComponents

Perturbation mechanism: (1)

Needs to be chosen such that its effect cannot be easily undone by
subsequent local search phase.
(Often achieved by search steps larger neighborhood.)
Example: local search = 3-opt, perturbation = 4-exchange steps in ILS
for TSP.

A perturbation phase may consist of one or more
perturbation steps.

Weak perturbation ⇒ short subsequent local search phase;
but: risk of revisiting current local minimum.

Strong perturbation ⇒ more effective escape from local minima;
but: may have similar drawbacks as random restart.

Advanced ILS algorithms may change nature and/or strength of
perturbation adaptively during search.

29

MetaheuristicsComponents

Acceptance criteria: (1)

Always accept the best of the two candidate solutions

⇒ ILS performs Iterative Improvement in the space of local optima
reached by subsidiary local search.

Always accept the most recent of the two candidate solutions

⇒ ILS performs random walk in the space of local optima reached by
subsidiary local search.

Intermediate behavior: select between the two candidate solutions based
on the Metropolis criterion (e.g., used in Large Step Markov Chains
[Martin et al., 1991].

Advanced acceptance criteria take into account search history,
e.g., by occasionally reverting to incumbent solution.

30

MetaheuristicsComponents

Acceptance criteria: (1)

Always accept the best of the two candidate solutions

⇒ ILS performs Iterative Improvement in the space of local optima
reached by subsidiary local search.

Always accept the most recent of the two candidate solutions

⇒ ILS performs random walk in the space of local optima reached by
subsidiary local search.

Intermediate behavior: select between the two candidate solutions based
on the Metropolis criterion (e.g., used in Large Step Markov Chains
[Martin et al., 1991].

Advanced acceptance criteria take into account search history,
e.g., by occasionally reverting to incumbent solution.

30

MetaheuristicsComponents

Acceptance criteria: (1)

Always accept the best of the two candidate solutions

⇒ ILS performs Iterative Improvement in the space of local optima
reached by subsidiary local search.

Always accept the most recent of the two candidate solutions

⇒ ILS performs random walk in the space of local optima reached by
subsidiary local search.

Intermediate behavior: select between the two candidate solutions based
on the Metropolis criterion (e.g., used in Large Step Markov Chains
[Martin et al., 1991].

Advanced acceptance criteria take into account search history,
e.g., by occasionally reverting to incumbent solution.

30

MetaheuristicsComponents

Acceptance criteria: (1)

Always accept the best of the two candidate solutions

⇒ ILS performs Iterative Improvement in the space of local optima
reached by subsidiary local search.

Always accept the most recent of the two candidate solutions

⇒ ILS performs random walk in the space of local optima reached by
subsidiary local search.

Intermediate behavior: select between the two candidate solutions based
on the Metropolis criterion (e.g., used in Large Step Markov Chains
[Martin et al., 1991].

Advanced acceptance criteria take into account search history,
e.g., by occasionally reverting to incumbent solution.

30

MetaheuristicsExamples
Example: Iterated Local Search for the TSP (1)

Given: TSP instance G .

Search space: Hamiltonian cycles in G .

Subsidiary local search: Lin-Kernighan variable depth search algorithm

Perturbation mechanism:
‘double-bridge move’ = particular 4-exchange step:

A

BC

D

double bridge

move

A

BC

D

Acceptance criterion: Always return the best of the two given
candidate round trips.

31

MetaheuristicsExamples
Example: Iterated Local Search for the TSP (1)

Given: TSP instance G .

Search space: Hamiltonian cycles in G .

Subsidiary local search: Lin-Kernighan variable depth search algorithm

Perturbation mechanism:
‘double-bridge move’ = particular 4-exchange step:

A

BC

D

double bridge

move

A

BC

D

Acceptance criterion: Always return the best of the two given
candidate round trips.

31

MetaheuristicsOutline

1. Trajectory Based Metaheuristics
Stochastic Local Search
Simulated Annealing
Iterated Local Search
Tabu Search
Variable Neighborhood Search
Guided Local Search

34

Metaheuristics

Key idea: Avoid repeating history (memory)
How can we remember the history without

memorizing full solutions (space)

computing hash functions (time)

 use attirbutes

35

MetaheuristicsTabu Search

Key idea: Use aspects of search history (memory) to escape from local
minima.

Associate tabu attributes with candidate solutions or
solution components.

Forbid steps to search positions recently visited by
underlying iterative best improvement procedure based on
tabu attributes.

Tabu Search (TS):
determine initial candidate solution s

While termination criterion is not satisfied:
|| determine set N ′ of non-tabu neighbors of s
|| choose a best candidate solution s ′ in N ′
||
|| update tabu attributes based on s ′
b s := s ′

36

MetaheuristicsTabu Search

Key idea: Use aspects of search history (memory) to escape from local
minima.

Associate tabu attributes with candidate solutions or
solution components.

Forbid steps to search positions recently visited by
underlying iterative best improvement procedure based on
tabu attributes.

Tabu Search (TS):
determine initial candidate solution s
While termination criterion is not satisfied:

|| determine set N ′ of non-tabu neighbors of s
|| choose a best candidate solution s ′ in N ′
||
|| update tabu attributes based on s ′
b s := s ′

36

MetaheuristicsTabu Search

Key idea: Use aspects of search history (memory) to escape from local
minima.

Associate tabu attributes with candidate solutions or
solution components.

Forbid steps to search positions recently visited by
underlying iterative best improvement procedure based on
tabu attributes.

Tabu Search (TS):
determine initial candidate solution s
While termination criterion is not satisfied:
|| determine set N ′ of non-tabu neighbors of s
|| choose a best candidate solution s ′ in N ′

||
|| update tabu attributes based on s ′
b s := s ′

36

MetaheuristicsTabu Search

Key idea: Use aspects of search history (memory) to escape from local
minima.

Associate tabu attributes with candidate solutions or
solution components.

Forbid steps to search positions recently visited by
underlying iterative best improvement procedure based on
tabu attributes.

Tabu Search (TS):
determine initial candidate solution s
While termination criterion is not satisfied:
|| determine set N ′ of non-tabu neighbors of s
|| choose a best candidate solution s ′ in N ′
||
|| update tabu attributes based on s ′
b s := s ′

36

Metaheuristics

Example: Tabu Search for CSP

Search space: set of all complete assignments of X .
Solution set: feasible assignment of X .
Neighborhood relation: one-exchange.
Memory: Associate tabu status (Boolean value) with each pair (x , v).
Initialization: a construction heuristic
Search steps:

pairs (x , v) are tabu if they have been changed
in the last tt steps;
neighboring assignments are admissible if they
can be reached by changing a non-tabu pair
or have fewer unsatisfied constraints than the best assignments
seen so far (aspiration criterion);
choose uniformly at random admissible neighbors
with minimal number of unsatisfied constraints.

Termination: upon finding a feasible assignment or after given bound
on number of search steps has been reached or after a number of idle
iterations

38

Metaheuristics

Note:

Admissible neighbors of s: Non-tabu search positions in N(s)

Tabu tenure: a fixed number of subsequent search steps
for which the last search position
or the solution components just added/removed from it
are declared tabu

Aspiration criterion (often used): specifies conditions under which
tabu status may be overridden (e.g., if considered step leads to
improvement in incumbent solution).

Crucial for efficient implementation:
efficient best improvement local search
 pruning, delta updates, (auxiliary) data structures

efficient determination of tabu status:
store for each variable x the number of the search step
when its value was last changed itx ; x is tabu if
it − itx < tt, where it = current search step number.

39

Metaheuristics

Note:

Admissible neighbors of s: Non-tabu search positions in N(s)

Tabu tenure: a fixed number of subsequent search steps
for which the last search position
or the solution components just added/removed from it
are declared tabu

Aspiration criterion (often used): specifies conditions under which
tabu status may be overridden (e.g., if considered step leads to
improvement in incumbent solution).

Crucial for efficient implementation:
efficient best improvement local search
 pruning, delta updates, (auxiliary) data structures

efficient determination of tabu status:
store for each variable x the number of the search step
when its value was last changed itx ; x is tabu if
it − itx < tt, where it = current search step number.

39

Metaheuristics

Note: Performance of Tabu Search depends crucially on
setting of tabu tenure tt:

tt too low ⇒ search stagnates due to inability to escape
from local minima;
tt too high ⇒ search becomes ineffective due to overly restricted search
path (admissible neighborhoods too small)

Advanced TS methods:

Robust Tabu Search [Taillard, 1991]:
repeatedly choose tt from given interval;
also: force specific steps that have not been made for a long time.

Reactive Tabu Search [Battiti and Tecchiolli, 1994]:
dynamically adjust tt during search;
also: use escape mechanism to overcome stagnation.

40

Metaheuristics

Note: Performance of Tabu Search depends crucially on
setting of tabu tenure tt:

tt too low ⇒ search stagnates due to inability to escape
from local minima;

tt too high ⇒ search becomes ineffective due to overly restricted search
path (admissible neighborhoods too small)

Advanced TS methods:

Robust Tabu Search [Taillard, 1991]:
repeatedly choose tt from given interval;
also: force specific steps that have not been made for a long time.

Reactive Tabu Search [Battiti and Tecchiolli, 1994]:
dynamically adjust tt during search;
also: use escape mechanism to overcome stagnation.

40

Metaheuristics

Note: Performance of Tabu Search depends crucially on
setting of tabu tenure tt:

tt too low ⇒ search stagnates due to inability to escape
from local minima;
tt too high ⇒ search becomes ineffective due to overly restricted search
path (admissible neighborhoods too small)

Advanced TS methods:

Robust Tabu Search [Taillard, 1991]:
repeatedly choose tt from given interval;
also: force specific steps that have not been made for a long time.

Reactive Tabu Search [Battiti and Tecchiolli, 1994]:
dynamically adjust tt during search;
also: use escape mechanism to overcome stagnation.

40

Metaheuristics

Note: Performance of Tabu Search depends crucially on
setting of tabu tenure tt:

tt too low ⇒ search stagnates due to inability to escape
from local minima;
tt too high ⇒ search becomes ineffective due to overly restricted search
path (admissible neighborhoods too small)

Advanced TS methods:

Robust Tabu Search [Taillard, 1991]:
repeatedly choose tt from given interval;
also: force specific steps that have not been made for a long time.

Reactive Tabu Search [Battiti and Tecchiolli, 1994]:
dynamically adjust tt during search;
also: use escape mechanism to overcome stagnation.

40

Metaheuristics

Note: Performance of Tabu Search depends crucially on
setting of tabu tenure tt:

tt too low ⇒ search stagnates due to inability to escape
from local minima;
tt too high ⇒ search becomes ineffective due to overly restricted search
path (admissible neighborhoods too small)

Advanced TS methods:

Robust Tabu Search [Taillard, 1991]:
repeatedly choose tt from given interval;
also: force specific steps that have not been made for a long time.

Reactive Tabu Search [Battiti and Tecchiolli, 1994]:
dynamically adjust tt during search;
also: use escape mechanism to overcome stagnation.

40

Metaheuristics

Further improvements can be achieved by using intermediate-term or
long-term memory to achieve additional intensification or diversification.

Examples:

Occasionally backtrack to elite candidate solutions, i.e., high-quality
search positions encountered earlier in the search; when doing this, all
associated tabu attributes are cleared.

Freeze certain solution components and keep them fixed
for long periods of the search.

Occasionally force rarely used solution components to be introduced into
current candidate solution.

Extend evaluation function to capture frequency of use
of candidate solutions or solution components.

41

Metaheuristics

Further improvements can be achieved by using intermediate-term or
long-term memory to achieve additional intensification or diversification.

Examples:

Occasionally backtrack to elite candidate solutions, i.e., high-quality
search positions encountered earlier in the search; when doing this, all
associated tabu attributes are cleared.

Freeze certain solution components and keep them fixed
for long periods of the search.

Occasionally force rarely used solution components to be introduced into
current candidate solution.

Extend evaluation function to capture frequency of use
of candidate solutions or solution components.

41

Metaheuristics

Further improvements can be achieved by using intermediate-term or
long-term memory to achieve additional intensification or diversification.

Examples:

Occasionally backtrack to elite candidate solutions, i.e., high-quality
search positions encountered earlier in the search; when doing this, all
associated tabu attributes are cleared.

Freeze certain solution components and keep them fixed
for long periods of the search.

Occasionally force rarely used solution components to be introduced into
current candidate solution.

Extend evaluation function to capture frequency of use
of candidate solutions or solution components.

41

Metaheuristics

Further improvements can be achieved by using intermediate-term or
long-term memory to achieve additional intensification or diversification.

Examples:

Occasionally backtrack to elite candidate solutions, i.e., high-quality
search positions encountered earlier in the search; when doing this, all
associated tabu attributes are cleared.

Freeze certain solution components and keep them fixed
for long periods of the search.

Occasionally force rarely used solution components to be introduced into
current candidate solution.

Extend evaluation function to capture frequency of use
of candidate solutions or solution components.

41

Metaheuristics

Further improvements can be achieved by using intermediate-term or
long-term memory to achieve additional intensification or diversification.

Examples:

Occasionally backtrack to elite candidate solutions, i.e., high-quality
search positions encountered earlier in the search; when doing this, all
associated tabu attributes are cleared.

Freeze certain solution components and keep them fixed
for long periods of the search.

Occasionally force rarely used solution components to be introduced into
current candidate solution.

Extend evaluation function to capture frequency of use
of candidate solutions or solution components.

41

Metaheuristics

Tabu search algorithms are state of the art
for solving many combinatorial problems, including:

SAT and MAX-SAT
CSP and MAX-CSP
GCP
many scheduling problems

 typically works well with small neighborhoods (because based on best
improvement)

Crucial factors in many applications:

choice of neighborhood relation

efficient evaluation of candidate solutions
(caching and incremental updating mechanisms)

42

Metaheuristics

Tabu search algorithms are state of the art
for solving many combinatorial problems, including:

SAT and MAX-SAT
CSP and MAX-CSP
GCP
many scheduling problems

 typically works well with small neighborhoods (because based on best
improvement)

Crucial factors in many applications:

choice of neighborhood relation

efficient evaluation of candidate solutions
(caching and incremental updating mechanisms)

42

Metaheuristics

Tabu search algorithms are state of the art
for solving many combinatorial problems, including:

SAT and MAX-SAT
CSP and MAX-CSP
GCP
many scheduling problems

 typically works well with small neighborhoods (because based on best
improvement)

Crucial factors in many applications:

choice of neighborhood relation

efficient evaluation of candidate solutions
(caching and incremental updating mechanisms)

42

MetaheuristicsMin-Conflict + Tabu Search

After the value of a variable x is changed from v to v ′ with min-conflict
heuristic, the variable/value pair (xi , v) is declared tabu for the next tt
steps

tt = 2 is often a good choice

è Advantage: the neighborhood does not need to be searched exahustively

43

MetaheuristicsDesign Choices

Design choices:

Neighborhood exploration:

no reduction

min-conflict heuristic

Prohibition power for move = <x,new_v,old_v>

<x,-,->

<x,-,old_v>

<x,new_v,old_v>, <x,old_v,new_v>

Tabu list dynamics:

Interval: tt ∈ [tb, tb + w]

Adaptive: tt = bα · cc+ RandU(0, tb)

45

MetaheuristicsOutline

1. Trajectory Based Metaheuristics
Stochastic Local Search
Simulated Annealing
Iterated Local Search
Tabu Search
Variable Neighborhood Search
Guided Local Search

46

MetaheuristicsVariable Neighborhood Search

Variable Neighborhood Search is a method based on the systematic change of
the neighborhood during the search.

Central observations

a local minimum w.r.t. one neighborhood function is not necessarily
locally minimal w.r.t. another neighborhood function
a global optimum is locally optimal w.r.t. all neighborhood functions

47

Metaheuristics

Key principle: change the neighborhood during the search

Several adaptations of this central principle

(Basic) Variable Neighborhood Descent (VND)

Variable Neighborhood Search (VNS)

Reduced Variable Neighborhood Search (RVNS)

Variable Neighborhood Decomposition Search (VNDS)

Skewed Variable Neighborhood Search (SVNS)

Notation

Nk , k = 1, 2, . . . , km is a set of neighborhood functions

Nk(s) is the set of solutions in the k-th neighborhood of s

48

Metaheuristics

How to generate the various neighborhood functions?

for many problems different neighborhood functions (local searches)
exist / are in use
change parameters of existing local search algorithms
use k-exchange neighborhoods; these can be naturally extended
many neighborhood functions are associated with distance measures; in
this case increase the distance

49

MetaheuristicsBasic Variable Neighborhood Descent

Procedure BVND
input : Nk , k = 1, 2, . . . , kmax , and an initial solution s
output: a local optimum s for Nk , k = 1, 2, . . . , kmax
k ← 1
repeat

s ′ ← FindBestNeighbor(s,Nk)
if f (s ′) < f (s) then

s ← s ′

(k ← 1)
else

k ← k + 1
until k = kmax ;

50

MetaheuristicsVariable Neighborhood Descent

Procedure VND
input : Nk , k = 1, 2, . . . , kmax , and an initial solution s
output: a local optimum s for Nk , k = 1, 2, . . . , kmax
k ← 1
repeat

s ′ ← IterativeImprovement(s,Nk)
if f (s ′) < f (s) then

s ← s ′

k ← 1
else

k ← k + 1
until k = kmax ;

51

Metaheuristics

Final solution is locally optimal w.r.t. all neighborhoods

First improvement may be applied instead of best improvement

Typically, order neighborhoods from smallest to largest

If iterative improvement algorithms IIk , k = 1, . . . , kmax
are available as black-box procedures:

order black-boxes
apply them in the given order
possibly iterate starting from the first one
order chosen by: solution quality and speed

52

MetaheuristicsExample

VND for single-machine total weighted tardiness problem

Candidate solutions are permutations of job indexes
Two neighborhoods: interchange and insert
Influence of different starting heuristics also considered

initial interchange insert interch.+insert insert+interch.
solution ∆avg tavg ∆avg tavg ∆avg tavg ∆avg tavg
EDD 0.62 0.140 1.19 0.64 0.24 0.20 0.47 0.67
MDD 0.65 0.078 1.31 0.77 0.40 0.14 0.44 0.79

∆avg deviation from best-known solutions, averaged over 100 instances

53

MetaheuristicsBasic Variable Neighborhood Search

Procedure BVNS
input : Nk , k = 1, 2, . . . , kmax , and an initial solution s
output: a local optimum s for Nk , k = 1, 2, . . . , kmax
repeat

k ← 1
repeat

s ′ ← RandomPicking(s,Nk)
s ′′ ← IterativeImprovement(s ′,Nk)
if f (s ′′) < f (s) then

s ← s ′′

k ← 1
else

k ← k + 1
until k = kmax ;

until Termination Condition ;

54

Metaheuristics

To decide:
which neighborhoods
how many
which order
which change strategy

Extended version: parameters kmin and kstep; set k ← kmin and increase
by kstep if no better solution is found (achieves diversification)

55

MetaheuristicsExtensions (1)

Reduced Variable Neighborhood Search (RVNS)

same as VNS except that no IterativeImprovement procedure is applied

only explores different neighborhoods randomly

can be faster than standard local search algorithms for reaching good
quality solutions

56

MetaheuristicsExtensions (2)

Variable Neighborhood Decomposition Search (VNDS)
same as in VNS but in IterativeImprovement all solution components are
kept fixed except k randomly chosen
IterativeImprovement is applied on the k unfixed components

IterativeImprovement can be substituted by exhaustive search up to a
maximum size b (parameter) of the problem

57

MetaheuristicsExtensions (3)

Skewed Variable Neighborhood Search (SVNS)

Derived from VNS
Accept s ← s ′′ when s ′′ is worse

according to some probability

skewed VNS: accept if

g(s ′′)− α · d(s, s ′′) < g(s)

d(s, s ′′) measures the distance between solutions

(underlying idea: avoiding degeneration to multi-start)

58

MetaheuristicsOutline

1. Trajectory Based Metaheuristics
Stochastic Local Search
Simulated Annealing
Iterated Local Search
Tabu Search
Variable Neighborhood Search
Guided Local Search

59

MetaheuristicsGuided Local Search

Key Idea: Modify the evaluation function whenever
a local optimum is encountered.

Associate weights (penalties) with solution components; these determine
impact of components on evaluation function value.
Perform Iterative Improvement; when in local minimum, increase
penalties of some solution components until improving steps become
available.

Guided Local Search (GLS):
determine initial candidate solution s
initialize penalties
while termination criterion is not satisfied do

compute modified evaluation function g ′ from g
based on penalties

perform subsidiary local search on s
using evaluation function g ′

update penalties based on s

60

MetaheuristicsGuided Local Search

Key Idea: Modify the evaluation function whenever
a local optimum is encountered.
Associate weights (penalties) with solution components; these determine
impact of components on evaluation function value.

Perform Iterative Improvement; when in local minimum, increase
penalties of some solution components until improving steps become
available.

Guided Local Search (GLS):
determine initial candidate solution s
initialize penalties
while termination criterion is not satisfied do

compute modified evaluation function g ′ from g
based on penalties

perform subsidiary local search on s
using evaluation function g ′

update penalties based on s

60

MetaheuristicsGuided Local Search

Key Idea: Modify the evaluation function whenever
a local optimum is encountered.
Associate weights (penalties) with solution components; these determine
impact of components on evaluation function value.
Perform Iterative Improvement; when in local minimum, increase
penalties of some solution components until improving steps become
available.

Guided Local Search (GLS):
determine initial candidate solution s
initialize penalties
while termination criterion is not satisfied do

compute modified evaluation function g ′ from g
based on penalties

perform subsidiary local search on s
using evaluation function g ′

update penalties based on s

60

MetaheuristicsGuided Local Search

Key Idea: Modify the evaluation function whenever
a local optimum is encountered.
Associate weights (penalties) with solution components; these determine
impact of components on evaluation function value.
Perform Iterative Improvement; when in local minimum, increase
penalties of some solution components until improving steps become
available.

Guided Local Search (GLS):
determine initial candidate solution s
initialize penalties
while termination criterion is not satisfied do

compute modified evaluation function g ′ from g
based on penalties

perform subsidiary local search on s
using evaluation function g ′

update penalties based on s

60

MetaheuristicsGuided Local Search

Key Idea: Modify the evaluation function whenever
a local optimum is encountered.
Associate weights (penalties) with solution components; these determine
impact of components on evaluation function value.
Perform Iterative Improvement; when in local minimum, increase
penalties of some solution components until improving steps become
available.

Guided Local Search (GLS):
determine initial candidate solution s
initialize penalties

while termination criterion is not satisfied do
compute modified evaluation function g ′ from g

based on penalties
perform subsidiary local search on s

using evaluation function g ′

update penalties based on s

60

MetaheuristicsGuided Local Search

Key Idea: Modify the evaluation function whenever
a local optimum is encountered.
Associate weights (penalties) with solution components; these determine
impact of components on evaluation function value.
Perform Iterative Improvement; when in local minimum, increase
penalties of some solution components until improving steps become
available.

Guided Local Search (GLS):
determine initial candidate solution s
initialize penalties
while termination criterion is not satisfied do

compute modified evaluation function g ′ from g
based on penalties

perform subsidiary local search on s
using evaluation function g ′

update penalties based on s

60

Metaheuristics

Guided Local Search (continued)

Modified evaluation function:

g ′(s) := g(s) +
∑

i∈SC(s)

penalty(i),

where SC (s) is the set of solution components
used in candidate solution s.

Penalty initialization: For all i : penalty(i) := 0.

Penalty update in local minimum s: Typically involves penalty increase
of some or all solution components of s; often also occasional penalty
decrease or penalty smoothing.

Subsidiary local search: Often Iterative Improvement.

61

Metaheuristics

Guided Local Search (continued)

Modified evaluation function:

g ′(s) := g(s) +
∑

i∈SC(s)

penalty(i),

where SC (s) is the set of solution components
used in candidate solution s.

Penalty initialization: For all i : penalty(i) := 0.

Penalty update in local minimum s: Typically involves penalty increase
of some or all solution components of s; often also occasional penalty
decrease or penalty smoothing.

Subsidiary local search: Often Iterative Improvement.

61

Metaheuristics

Guided Local Search (continued)

Modified evaluation function:

g ′(s) := g(s) +
∑

i∈SC(s)

penalty(i),

where SC (s) is the set of solution components
used in candidate solution s.

Penalty initialization: For all i : penalty(i) := 0.

Penalty update in local minimum s: Typically involves penalty increase
of some or all solution components of s; often also occasional penalty
decrease or penalty smoothing.

Subsidiary local search: Often Iterative Improvement.

61

Metaheuristics

Guided Local Search (continued)

Modified evaluation function:

g ′(s) := g(s) +
∑

i∈SC(s)

penalty(i),

where SC (s) is the set of solution components
used in candidate solution s.

Penalty initialization: For all i : penalty(i) := 0.

Penalty update in local minimum s: Typically involves penalty increase
of some or all solution components of s; often also occasional penalty
decrease or penalty smoothing.

Subsidiary local search: Often Iterative Improvement.

61

Metaheuristics

Potential problem:

Solution components required for (optimal) solution
may also be present in many local minima.

Possible solutions:

A: Occasional decreases/smoothing of penalties.
B: Only increase penalties of solution components that are

least likely to occur in (optimal) solutions.

Implementation of B:
Only increase penalties of solution components i with maximal utility
[Voudouris and Tsang, 1995]:

util(s, i) :=
gi (s)

1 + penalty(i)

where gi (s) is the solution quality contribution of i in s.

62

Metaheuristics

Potential problem:

Solution components required for (optimal) solution
may also be present in many local minima.

Possible solutions:

A: Occasional decreases/smoothing of penalties.

B: Only increase penalties of solution components that are
least likely to occur in (optimal) solutions.

Implementation of B:
Only increase penalties of solution components i with maximal utility
[Voudouris and Tsang, 1995]:

util(s, i) :=
gi (s)

1 + penalty(i)

where gi (s) is the solution quality contribution of i in s.

62

Metaheuristics

Potential problem:

Solution components required for (optimal) solution
may also be present in many local minima.

Possible solutions:

A: Occasional decreases/smoothing of penalties.
B: Only increase penalties of solution components that are

least likely to occur in (optimal) solutions.

Implementation of B:
Only increase penalties of solution components i with maximal utility
[Voudouris and Tsang, 1995]:

util(s, i) :=
gi (s)

1 + penalty(i)

where gi (s) is the solution quality contribution of i in s.

62

Metaheuristics

Potential problem:

Solution components required for (optimal) solution
may also be present in many local minima.

Possible solutions:

A: Occasional decreases/smoothing of penalties.
B: Only increase penalties of solution components that are

least likely to occur in (optimal) solutions.

Implementation of B:
Only increase penalties of solution components i with maximal utility
[Voudouris and Tsang, 1995]:

util(s, i) :=
gi (s)

1 + penalty(i)

where gi (s) is the solution quality contribution of i in s.
62

Metaheuristics

Example: Guided Local Search (GLS) for the TSP

[Voudouris and Tsang 1995; 1999]

Given: TSP instance G
Search space: Hamiltonian cycles in G with n vertices;
Neighborhood: 2-edge-exchange;

Solution components edges of G ;
ge(G , p) := w(e);

Penalty initialization: Set all edge penalties to zero.

Subsidiary local search: Iterative First Improvement.

Penalty update: Increment penalties of all edges with maximal utility by

λ := 0.3 · w(s2-opt)

n

where s2-opt = 2-optimal tour.

63

Metaheuristics

Example: Guided Local Search (GLS) for the TSP

[Voudouris and Tsang 1995; 1999]

Given: TSP instance G
Search space: Hamiltonian cycles in G with n vertices;
Neighborhood: 2-edge-exchange;

Solution components edges of G ;
ge(G , p) := w(e);

Penalty initialization: Set all edge penalties to zero.

Subsidiary local search: Iterative First Improvement.

Penalty update: Increment penalties of all edges with maximal utility by

λ := 0.3 · w(s2-opt)

n

where s2-opt = 2-optimal tour.

63

Metaheuristics

Example: Guided Local Search (GLS) for the TSP

[Voudouris and Tsang 1995; 1999]

Given: TSP instance G
Search space: Hamiltonian cycles in G with n vertices;
Neighborhood: 2-edge-exchange;

Solution components edges of G ;
ge(G , p) := w(e);

Penalty initialization: Set all edge penalties to zero.

Subsidiary local search: Iterative First Improvement.

Penalty update: Increment penalties of all edges with maximal utility by

λ := 0.3 · w(s2-opt)

n

where s2-opt = 2-optimal tour.

63

Metaheuristics

Example: Guided Local Search (GLS) for the TSP

[Voudouris and Tsang 1995; 1999]

Given: TSP instance G
Search space: Hamiltonian cycles in G with n vertices;
Neighborhood: 2-edge-exchange;

Solution components edges of G ;
ge(G , p) := w(e);

Penalty initialization: Set all edge penalties to zero.

Subsidiary local search: Iterative First Improvement.

Penalty update: Increment penalties of all edges with maximal utility by

λ := 0.3 · w(s2-opt)

n

where s2-opt = 2-optimal tour.

63

Metaheuristics

Example: Guided Local Search (GLS) for the TSP

[Voudouris and Tsang 1995; 1999]

Given: TSP instance G
Search space: Hamiltonian cycles in G with n vertices;
Neighborhood: 2-edge-exchange;

Solution components edges of G ;
ge(G , p) := w(e);

Penalty initialization: Set all edge penalties to zero.

Subsidiary local search: Iterative First Improvement.

Penalty update: Increment penalties of all edges with maximal utility by

λ := 0.3 · w(s2-opt)

n

where s2-opt = 2-optimal tour.

63

MetaheuristicsLagrangian Method

Change the objective function bringing constraints gi into it

L(~s, ~λ) = f (~s) +
∑

i

λigi (~s)

λi are continous variables called Lagrangian Multipliers

L(~s∗, λ) ≤ L(~s∗, ~λ∗) ≤ L(~s, ~λ∗)

Alternate optimizations in ~s and in ~λ

64

	Trajectory Based Metaheuristics
	Stochastic Local Search
	Simulated Annealing
	Iterated Local Search
	Tabu Search
	Variable Neighborhood Search
	Guided Local Search

