Outline

DM811

Heuristics for Combinatorial Optimization

Lecture 13 **Examples**

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

1. Recap.

2. Other Combinatorial Optimization Problems

GCP SAT

p-median Problem

Covering and Partitioning

Outline

Recap. Other COPs

Summary: Local Search Algorithms (as in [Hoos, Stützle, 2005])

Recap. Other COPs

2

1. Recap.

For given problem instance π :

- 1. search space S_{π}
- 2. neighborhood relation $\mathcal{N}_{\pi} \subseteq S_{\pi} \times S_{\pi}$
- 3. evaluation function $f_{\pi}:S\to \mathbf{R}$
- 4. set of memory states M_{π}
- 5. initialization function init : $\emptyset \to S_\pi \times M_\pi$)
- 6. step function step : $S_{\pi} \times M_{\pi} \to S_{\pi} \times M_{\pi}$
- 7. termination predicate terminate : $S_{\pi} \times M_{\pi} \to \{\top, \bot\}$

After implementation and test of the above components, improvements in efficiency (ie, computation time) can be achieved by:

- A. fast delta evaluation
- B. neighborhood pruning
- C. clever use of data structures

Improvements in quality can be achieved by:

- D. application of a metaheuristic
- E. definition of a larger neighborhood

Recap. Other COPs

Approach: K-fixed / complete / improper

Local Search

- Solution representation: var{int} a[|V|](1..K)
- Evaluation function: conflicting edges
- Neighborhood: one-exchange
- Pivoting rule: best neighbor

Naive approach: $O(n^2k)$ Neighborhood examination

$$\begin{array}{c|c} \textbf{for all} \ v \in V \ \textbf{do} \\ \hline \quad \textbf{for all} \ k \in 1..k \ \textbf{do} \\ \hline \quad \\ \hline \quad \textbf{compute} \ \Delta(v,k) \end{array}$$

1. Recap

2. Other Combinatorial Optimization Problems

GCP SAT

p-median Problem

Covering and Partitioning

Recap.
Other COPs

Better approach:

- ullet V^c set of vertices involved in a conflict
- adj_in_class[n][K] stores number of vertices adjacent in each color class

Initialize:

 \bullet compute adj_in_class[n][K] and V^c in $O(n^2)$

Neighborhood examination:

Update:

 \bullet change adj_in_class[n][K] and V^c in $O(n^2)$

8

9

SAT

Recap. Other COPs

- n 0-1 variables x_j , $j \in N = \{1, 2, ..., n\}$,
- m clauses C_i , $i \in M$, and weights $w_i (\geq 0)$, $i \in M = \{1, 2, ..., m\}$
- $\max_{\mathbf{a} \in \{0,1\}^n} \sum \{w_i | i \in M \text{ and } C_i \text{ is satisfied in } \mathbf{a}\}$
- $\bar{x}_i = 1 x_i$
- $L = \bigcup_{j \in N} \{x_j, \bar{x_j}\}$ set of literals
- ullet $C_i\subseteq L$ for $i\in M$ (e.g., $C_i=\{x_1, \bar{x_3}, x_8\}$).

Even better approach:

 \leadsto after the flip of x_j only the score of variables in $L(x_j)$ that critically depend on x_j actually changes

- Clause C_i is critically satisfied by a variable x_j in a iff:
 - \bullet x_j is in C_i
 - C_i is satisfied in a and flipping x_j makes C_i unsatisfied (e.g., $1 \lor 0 \lor 0$ but not $1 \lor 1 \lor 0$

Keep a list of such clauses for each var

- x_j is critically dependent on x_l under a iff: there exists $C_i \in C(x_j) \cap C(x_l)$ and such that flipping x_j :
 - ullet C_j changes satisfaction status
 - ullet C_j changes satisfied /critically satisfied status

Initialize:

- compute score of variables;
- init $C(x_i)$ for all variables
- init status criticality for all clauses

Update:

Let's take the case $w_j = 1$ for all $j \in N$

• Assignment: $\mathbf{a} \in \{0, 1\}^n$

• Evaluation function: $f(\mathbf{a}) = \#$ unsatisfied clauses

Neighborhood: one-flipPivoting rule: best neighbor

Naive approach: exahustive neighborhood examination in O(nmk) (k size of largest C_i)

A better approach:

- $C(x_j) = \{i \in M | x_j \in C_i\}$ (i.e., clauses dependent on x_j)
- $L(x_j) = \{l \in N | \exists i \in M \text{ with } x_l \in C_i \text{ and } x_j \in C_i \}$
- $f(a(x_j)) = \#$ unsatisfied clauses
- Score of x_i : $\Delta(x_i) = f(a(x_i)) f(1 a(x_i))$

Initialize:

- compute f, score of each variable and list unsat clauses in O(mk)
- init $C(x_i)$ for all variables

Examine

choose the var with best score

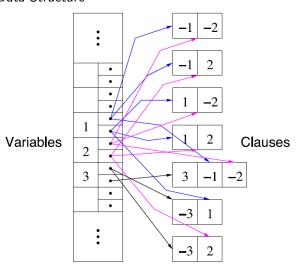
Update:

11

• change the score of variables affected, that is, look in $L(\cdot)$ and $C(\cdot)$

Recap. Other COPs

Data Structure



The p-median Problem

Recap. Other COPs

o-median Problem

Given:

a set F of locations of m facilities a set U of locations for n users a distance matrix $D = [d_{ij}] \in \mathbf{R}^{n \times m}$

Task: Select p locations of F where to install facilities such that the sum of the distances of each user to its closest installed facility is minimized, *i.e.*,

$$\min \left\{ \sum_{i \in U} \min_{j \in J} d_{ij} \mid J \subseteq F \text{ and } |J| = p \right\}$$

Set Problems

Recap. Other COPs 16

Set Covering

Set Partitioning

Set Packing

min
$$\sum_{j=1}^{n} c_{j}x_{j}$$
 min $\sum_{j=1}^{n} c_{j}x_{j}$ max $\sum_{j=1}^{n} c_{j}x_{j}$ $\sum_{j=1}^{n} a_{ij}x_{j} \ge 1$ $\forall i$ $\sum_{j=1}^{n} a_{ij}x_{j} = 1$ $\forall i$ $\sum_{j=1}^{n} a_{ij}x_{j} \le 1$ $\forall i$ $x_{j} \in \{0, 1\}$ $x_{j} \in \{0, 1\}$

The independent set problem is equivalent to the set packing. Vertex cover problem is a strict special case of set covering.

Graph Problems

Recap. Other COPs

Max Independent Set (aka, stable set problem or vertex packing problem)

Given: an undirected graph G(V,E) and a non-negative weight function ω on V ($\omega:V\to\mathbf{R}$)

Task: A largest weight independent set of vertices, i.e., a subset $V' \subseteq V$ such that no two vertices in V' are joined by an edge in E.

Maximum Clique

Given: an undirected graph G(V, E)

Task: A maximum cardinality clique, i.e., a subset $V' \subseteq V$ such that every two vertices in V' are joined by an edge in E

Vertex Cover

Given: an undirected graph G(V,E) and a non-negative weight function ω on V ($\omega:V\to\mathbf{R}$)

Task: A smallest weight vertex cover, i.e., a subset $V' \subseteq V$ such that each edge of G has at least one endpoint in V'.

Compare with Dominating Set

18