DM811

Heuristics for Combinatorial Optimization

Lecture 13
Examples

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Recap.

Outline R cops

1. Recap.

Recap

Outline R cops

1. Recap.

2. Other Combinatorial Optimization Problems
GCP
SAT
p-median Problem
Covering and Partitioning

Summary: Local Search Algorithms RecaP o,
(as in [Hoos, Stiitzle, 2005])

For given problem instance 7:

1. search space S,

2. neighborhood relation N, C S, x S

3. evaluation function f, : S — R

4. set of memory states M,

5. initialization function init : () — S, x M)
6. step function step : S; x M, — S, x M,

7. termination predicate terminate : S x M, — {T, L}

Recap.

After implementation and test of the above components, improvements in
efficiency (ie, computation time) can be achieved by:

A. fast delta evaluation
B. neighborhood pruning

C. clever use of data structures

Improvements in quality can be achieved by:

D. application of a metaheuristic

E. definition of a larger neighborhood

Other COPs

Approach: K-fixed / complete / improper

Local Search
@ Solution representation: var{int} a[|V|](1..K)
o Evaluation function: conflicting edges
@ Neighborhood: one-exchange

@ Pivoting rule: best neighbor

Naive approach: O(n?k)
Neighborhood examination
for all v € VV do
L for all k € 1..k do

| compute A(v, k)

Outline ey cops

2. Other Combinatorial Optimization Problems
GCP
SAT
p-median Problem
Covering and Partitioning

Other COPs

Better approach:

@ V¢ set of vertices involved in a conflict

e adj in_class[n][K] stores number of vertices adjacent in each color class

Initialize:
e compute adj in_class[n][K] and V¢ in O(n?)
Neighborhood examination:

for all v € V¢ do
L forall k€ 1..k do

| compute A(v, k) = adj_in_class[v][k] — adj _in_class[v][a(v)]

Update:
e change adj _in_class[n][K] and V¢ in O(n?)

S AT Other COPs

e 1 0-1 variables z;, j € N = {1,2,...,n},

e m clauses C;, i € M, and weights w; (> 0), i€ M ={1,2,....m}
® maXae(o,1}» » {wi|i € M and C; is satisfied in a}

o r;=1—-u

o L =J;cn{zj @)} set of literals

o (; C Lforie M (eg., C; ={x1,23,28}).

11

Even better approach:
~ after the flip of x; only the score of variables in L(z;) that critically depend on
x; actually changes

o Clause Cj is critically satisfied by a variable z; in a iff:
e zjisin C}
o (; is satisfied in a and flipping x; makes C'; unsatisfied
(e.g., 1VOVObutnotlVviVvo

Keep a list of such clauses for each var

@ 1, is critically dependent on x; under a iff:
there exists C; € C'(x;) N C(x;) and such that flipping z;:
o (; changes satisfaction status
o C; changes satisfied /critically satisfied status
Initialize:
@ compute score of variables;
@ init C(x;) for all variables
@ init status criticality for all clauses
Update:
change sign to score of x;
for all C; in C(z;) do
L for all z; € C; do

| update score x; depending on its critical status before flipping x;

Let's take the case w; = 1 for all j € N

@ Assignment: a € {0,1}"

@ Evaluation function: f(a) = # unsatisfied clauses
@ Neighborhood: one-flip

@ Pivoting rule: best neighbor

Naive approach: exahustive neighborhood examination in O(nmk) (k size of
largest C)

A better approach:

C(zj) ={i € Ml|z; € C;} (i.e., clauses dependent on z;)

L(xz;) ={l € N|3i € M with z; € C; and z; € C;}

f(a(x;)) = # unsatisfied clauses

Score of z;: A(z;) = f(a(x;)) — f(1 - a(z;))

Initialize:
@ compute f, score of each variable and list unsat clauses in O(mk)
@ init C(x;) for all variables
Examine
@ choose the var with best score
Update:
@ change the score of variables affected, that is, look in L(-) and C(+)

Other COPs

Data Structure

. -1 -2
. //
: JoA=1] 2
-/
!/
] <)
</

Variables A Clauses
2 < _
3 3-1]=2

: -3 1
: e
) -3 2

14

Reca

The p-median Problem Other coPs

Given:

a set ' of locations of m facilities

a set U of locations for n users

a distance matrix D = [d;;] € R"*™

Task: Select p locations of F' where to install facilities such that

the sum of the distances of each user to its closest installed facility is
minimized, i.e.,

min {Z IIIiI]ldij ! J C F and |J| _p}
j€.

ieU

16

Recap
Other COPs

Set Problems

Set Covering Set Partitioning Set Packing

n n
min) ¢z, max ., ¢;T;
j=1 j=1
n
Z Qi S 1 Vi
j=1

T; €{0,1}

n
min Zl CT;
7:

n n

Yoagx;>1 Vi Yoar; =1 Vi
j=1 =1

IS {O, 1} IS {0,1}

The independent set problem is equivalent to the set packing.
Vertex cover problem is a strict special case of set covering.

19

Reca

Graph Problems Other coPs

Max Independent Set (aka, stable set problem or vertex packing problem)

Given: an undirected graph G(V, F/) and a non-negative weight function w on V'
(w:V —=R)

Task: A largest weight independent set of vertices, i.e., a subset V' C V such that
no two vertices in V' are joined by an edge in .

Maximum Clique

Given: an undirected graph G(V, E)

Task: A maximum cardinality clique, i.e., a subset V' C V such that every two
vertices in V' are joined by an edge in

Vertex Cover

Given: an undirected graph G(V, E/) and a non-negative weight function w on V'
(w:V —=R)

Task: A smallest weight vertex cover, i.e., a subset V' C V such that each edge of
G has at least one endpoint in V.

Compare with Dominating Set

18

