
DM811

Heuristics for Combinatorial Optimization

Lecture 13
Examples

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Recap.
Other COPsOutline

1. Recap.

2. Other Combinatorial Optimization Problems
GCP
SAT
p-median Problem
Covering and Partitioning

2

Recap.
Other COPsOutline

1. Recap.

2. Other Combinatorial Optimization Problems
GCP
SAT
p-median Problem
Covering and Partitioning

3

Recap.
Other COPsSummary: Local Search Algorithms

(as in [Hoos, Stützle, 2005])

For given problem instance π:

1. search space Sπ

2. neighborhood relation Nπ ⊆ Sπ × Sπ

3. evaluation function fπ : S → R

4. set of memory states Mπ

5. initialization function init : ∅ → Sπ ×Mπ)

6. step function step : Sπ ×Mπ → Sπ ×Mπ

7. termination predicate terminate : Sπ ×Mπ → {>,⊥}

4

Recap.
Other COPs

After implementation and test of the above components, improvements in
efficiency (ie, computation time) can be achieved by:

A. fast delta evaluation

B. neighborhood pruning

C. clever use of data structures

Improvements in quality can be achieved by:

D. application of a metaheuristic

E. definition of a larger neighborhood

5

Recap.
Other COPsOutline

1. Recap.

2. Other Combinatorial Optimization Problems
GCP
SAT
p-median Problem
Covering and Partitioning

6

Recap.
Other COPs

Approach: K-fixed / complete / improper

Local Search

Solution representation: var{int} a[|V|](1..K)

Evaluation function: conflicting edges

Neighborhood: one-exchange

Pivoting rule: best neighbor

Naive approach: O(n2k)
Neighborhood examination
for all v ∈ V do

for all k ∈ 1..k do
compute ∆(v, k)

8

Recap.
Other COPs

Better approach:

V c set of vertices involved in a conflict
adj_in_class[n][K] stores number of vertices adjacent in each color class

Initialize:
compute adj_in_class[n][K] and V c in O(n2)

Neighborhood examination:
for all v ∈ V c do

for all k ∈ 1..k do
compute ∆(v, k) = adj_in_class[v][k]− adj_in_class[v][a(v)]

Update:

change adj_in_class[n][K] and V c in O(n2)

9

Recap.
Other COPsSAT

n 0-1 variables xj , j ∈ N = {1, 2, ..., n},
m clauses Ci, i ∈M , and weights wi (≥ 0), i ∈M = {1, 2, ...,m}
maxa∈{0,1}n

∑{wi|i ∈M and Ci is satisfied in a}
x̄j = 1− xj
L =

⋃
j∈N{xj , x̄j} set of literals

Ci ⊆ L for i ∈M (e.g., Ci = {x1, x̄3, x8}).

11

Let’s take the case wj = 1 for all j ∈ N

Assignment: a ∈ {0, 1}n
Evaluation function: f(a) = # unsatisfied clauses
Neighborhood: one-flip
Pivoting rule: best neighbor

Naive approach: exahustive neighborhood examination in O(nmk) (k size of
largest Ci)
A better approach:

C(xj) = {i ∈M |xj ∈ Ci} (i.e., clauses dependent on xj)
L(xj) = {l ∈ N |∃i ∈M with xl ∈ Ci and xj ∈ Ci}
f(a(xj)) = # unsatisfied clauses
Score of xj : ∆(xj) = f(a(xj))− f(1− a(xj))

Initialize:
compute f , score of each variable and list unsat clauses in O(mk)

init C(xj) for all variables
Examine

choose the var with best score
Update:

change the score of variables affected, that is, look in L(·) and C(·)

Even better approach:
 after the flip of xj only the score of variables in L(xj) that critically depend on
xj actually changes

Clause Ci is critically satisfied by a variable xj in a iff:
xj is in Ci

Ci is satisfied in a and flipping xj makes Ci unsatisfied
(e.g., 1 ∨ 0 ∨ 0 but not 1 ∨1 ∨ 0

Keep a list of such clauses for each var

xj is critically dependent on xl under a iff:
there exists Ci ∈ C(xj) ∩ C(xl) and such that flipping xj :

Cj changes satisfaction status
Cj changes satisfied /critically satisfied status

Initialize:
compute score of variables;
init C(xj) for all variables
init status criticality for all clauses

Update:
change sign to score of xj

for all Ci in C(xj) do
for all xl ∈ Ci do

update score xl depending on its critical status before flipping xj

Recap.
Other COPs

Data Structure

14

Recap.
Other COPsThe p-median Problem

Given:
a set F of locations of m facilities
a set U of locations for n users
a distance matrix D = [dij] ∈ Rn×m

Task: Select p locations of F where to install facilities such that
the sum of the distances of each user to its closest installed facility is
minimized, i.e.,

min

{∑

i∈U
min
j∈J

dij
∣∣ J ⊆ F and |J | = p

}

16

Recap.
Other COPsGraph Problems

Max Independent Set (aka, stable set problem or vertex packing problem)

Given: an undirected graph G(V,E) and a non-negative weight function ω on V
(ω : V → R)
Task: A largest weight independent set of vertices, i.e., a subset V ′ ⊆ V such that
no two vertices in V ′ are joined by an edge in E.

Maximum Clique

Given: an undirected graph G(V,E)
Task: A maximum cardinality clique, i.e., a subset V ′ ⊆ V such that every two
vertices in V ′ are joined by an edge in E

Vertex Cover

Given: an undirected graph G(V,E) and a non-negative weight function ω on V
(ω : V → R)
Task: A smallest weight vertex cover, i.e., a subset V ′ ⊆ V such that each edge of
G has at least one endpoint in V ′.

Compare with Dominating Set
18

Recap.
Other COPsSet Problems

Set Covering

min
n∑
j=1

cjxj

n∑
j=1

aijxj ≥ 1 ∀i

xj ∈ {0, 1}

Set Partitioning

min
n∑
j=1

cjxj

n∑
j=1

aijxj = 1 ∀i

xj ∈ {0, 1}

Set Packing

max
n∑
j=1

cjxj

n∑
j=1

aijxj ≤ 1 ∀i

xj ∈ {0, 1}

The independent set problem is equivalent to the set packing.
Vertex cover problem is a strict special case of set covering.

19

