# DM811 <br> Heuristics for Combinatorial Optimization 

> Lecture 13
> Examples

## Marco Chiarandini

Department of Mathematics \& Computer Science
University of Southern Denmark

## Outline

1. Recap.
2. Other Combinatorial Optimization Problems GCP
SAT
p-median Problem
Covering and Partitioning

## Outline

1. Recap.
2. Other Combinatorial Optimization Problems

GCP
SAT
p-median Problem
Covering and Partitioning

For given problem instance $\pi$ :

1. search space $S_{\pi}$
2. neighborhood relation $\mathcal{N}_{\pi} \subseteq S_{\pi} \times S_{\pi}$
3. evaluation function $f_{\pi}: S \rightarrow \mathbf{R}$
4. set of memory states $M_{\pi}$
5. initialization function init: $\left.\emptyset \rightarrow S_{\pi} \times M_{\pi}\right)$
6. step function step : $S_{\pi} \times M_{\pi} \rightarrow S_{\pi} \times M_{\pi}$
7. termination predicate terminate : $S_{\pi} \times M_{\pi} \rightarrow\{\top, \perp\}$

After implementation and test of the above components, improvements in efficiency (ie, computation time) can be achieved by:
A. fast delta evaluation
B. neighborhood pruning
C. clever use of data structures

Improvements in quality can be achieved by:
D. application of a metaheuristic
E. definition of a larger neighborhood

## Outline

1. Recap.
2. Other Combinatorial Optimization Problems

GCP
SAT
p-median Problem
Covering and Partitioning

## Outline

## 1. Recap.

2. Other Combinatorial Optimization Problems

GCP
SAT
p-median Problem
Covering and Partitioning

Approach: K-fixed / complete / improper
Local Search

- Solution representation: var\{int\} a[|V|](1..K)
- Evaluation function: conflicting edges
- Neighborhood: one-exchange
- Pivoting rule: best neighbor

Approach: K-fixed / complete / improper
Local Search

- Solution representation: var\{int\} a[|V|](1..K)
- Evaluation function: conflicting edges
- Neighborhood: one-exchange
- Pivoting rule: best neighbor

Naive approach: $O\left(n^{2} k\right)$
Neighborhood examination
for all $v \in V$ do
for all $k \in 1 . . k$ do
$L$ compute $\Delta(v, k)$

Better approach:

- $V^{c}$ set of vertices involved in a conflict
- adj_in_class[n][K] stores number of vertices adjacent in each color class

Initialize:

- compute adj_in_class[n][K] and $V^{c}$ in $O\left(n^{2}\right)$

Neighborhood examination:
for all $v \in V^{c}$ do
for all $k \in 1 . . k$ do
L compute $\Delta(v, k)=$ adj_in_class[v][k]-adj_in_class[v][a(v)]
Update:

- change adj_in_class $[n][K]$ and $V^{c}$ in $O\left(n^{2}\right)$


## Outline

## 1. Recap.

2. Other Combinatorial Optimization Problems

SAT
p-median Problem
Covering and Partitioning

## SAT

- $n 0-1$ variables $x_{j}, j \in N=\{1,2, \ldots, n\}$,
- $m$ clauses $C_{i}, i \in M$, and weights $w_{i}(\geq 0), i \in M=\{1,2, \ldots, m\}$
- $\max _{\mathbf{a} \in\{0,1\}^{n}} \sum\left\{w_{i} \mid i \in M\right.$ and $C_{i}$ is satisfied in $\left.\mathbf{a}\right\}$
- $\bar{x}_{j}=1-x_{j}$
- $L=\bigcup_{j \in N}\left\{x_{j}, \bar{x}_{j}\right\}$ set of literals
- $C_{i} \subseteq L$ for $i \in M$ (e.g., $\left.C_{i}=\left\{x_{1}, \overline{x_{3}}, x_{8}\right\}\right)$.

Let's take the case $w_{j}=1$ for all $j \in N$

- Assignment: $\mathbf{a} \in\{0,1\}^{n}$
- Evaluation function: $f(a)=\#$ unsatisfied clauses
- Neighborhood: one-flip
- Pivoting rule: best neighbor

Let's take the case $w_{j}=1$ for all $j \in N$

- Assignment: $\mathbf{a} \in\{0,1\}^{n}$
- Evaluation function: $f(a)=\#$ unsatisfied clauses
- Neighborhood: one-flip
- Pivoting rule: best neighbor

Naive approach: exahustive neighborhood examination in $O(n m k$ ) ( $k$ size of largest $C_{i}$ )

Let's take the case $w_{j}=1$ for all $j \in N$

- Assignment: $\mathbf{a} \in\{0,1\}^{n}$
- Evaluation function: $f(a)=\#$ unsatisfied clauses
- Neighborhood: one-flip
- Pivoting rule: best neighbor

Naive approach: exahustive neighborhood examination in $O(n m k$ ) ( $k$ size of largest $C_{i}$ )
A better approach:

- $C\left(x_{j}\right)=\left\{i \in M \mid x_{j} \in C_{i}\right\}$ (i.e., clauses dependent on $x_{j}$ )
- $L\left(x_{j}\right)=\left\{I \in N \mid \exists i \in M\right.$ with $x_{I} \in C_{i}$ and $\left.x_{j} \in C_{i}\right\}$
- $f\left(a\left(x_{j}\right)\right)=\#$ unsatisfied clauses
- Score of $x_{j}: \Delta\left(x_{j}\right)=f\left(a\left(x_{j}\right)\right)-f\left(1-a\left(x_{j}\right)\right)$

Initialize:

- compute $f$, score of each variable and list unsat clauses in $O(m k)$
- init $C\left(x_{j}\right)$ for all variables

Examine

- choose the var with best score

Update:

- change the score of variables affected, that is, look in $L(\cdot)$ and $C(\cdot)$

Even better approach:
$\rightsquigarrow$ after the flip of $x_{j}$ only the score of variables in $L\left(x_{j}\right)$ that critically depend on $x_{j}$ actually changes

- Clause $C_{i}$ is critically satisfied by a variable $x_{j}$ in a iff:
- $x_{j}$ is in $C_{i}$
- $C_{i}$ is satisfied in a and flipping $x_{j}$ makes $C_{i}$ unsatisfied (e.g., $1 \vee 0 \vee 0$ but not $1 \vee 1 \vee 0$

Keep a list of such clauses for each var

- $x_{j}$ is critically dependent on $x_{l}$ under a iff:
there exists $C_{i} \in C\left(x_{j}\right) \cap C\left(x_{l}\right)$ and such that flipping $x_{j}$ :
- $C_{j}$ changes satisfaction status
- $C_{j}$ changes satisfied /critically satisfied status

Initialize:

- compute score of variables;
- init $C\left(x_{j}\right)$ for all variables
- init status criticality for all clauses

Update:
change sign to score of $x_{j}$
for all $C_{i}$ in $C\left(x_{j}\right)$ do
for all $x_{I} \in C_{i}$ do
update score $x_{l}$ depending on its critical status before flipping $x_{j}$

## Data Structure



## Outline

2. Other Combinatorial Optimization Problems

SAT
p-median Problem
Covering and Partitioning

## The p-median Problem

## Given:

a set $F$ of locations of $m$ facilities
a set $U$ of locations for $n$ users
a distance matrix $D=\left[d_{i j}\right] \in \mathbf{R}^{n \times m}$
Task: Select $p$ locations of $F$ where to install facilities such that the sum of the distances of each user to its closest installed facility is minimized, i.e.,

$$
\min \left\{\sum_{i \in U} \min _{j \in J} d_{i j} \mid J \subseteq F \text { and }|J|=p\right\}
$$

## Outline

2. Other Combinatorial Optimization Problems

SAT
p-median Problem
Covering and Partitioning

## Graph Problems

Max Independent Set (aka, stable set problem or vertex packing problem)
Given: an undirected graph $G(V, E)$ and a non-negative weight function $\omega$ on $V$ $(\omega: V \rightarrow \mathbf{R})$
Task: A largest weight independent set of vertices, i.e., a subset $V^{\prime} \subseteq V$ such that no two vertices in $V^{\prime}$ are joined by an edge in $E$.

## Graph Problems

Max Independent Set (aka, stable set problem or vertex packing problem)
Given: an undirected graph $G(V, E)$ and a non-negative weight function $\omega$ on $V$ $(\omega: V \rightarrow \mathbf{R})$
Task: A largest weight independent set of vertices, i.e., a subset $V^{\prime} \subseteq V$ such that no two vertices in $V^{\prime}$ are joined by an edge in $E$.

## Maximum Clique

Given: an undirected graph $G(V, E)$
Task: A maximum cardinality clique, i.e., a subset $V^{\prime} \subseteq V$ such that every two vertices in $V^{\prime}$ are joined by an edge in $E$

## Vertex Cover

Given: an undirected graph $G(V, E)$ and a non-negative weight function $\omega$ on $V$ $(\omega: V \rightarrow \mathbf{R})$
Task: A smallest weight vertex cover, i.e., a subset $V^{\prime} \subseteq V$ such that each edge of $G$ has at least one endpoint in $V^{\prime}$.

Compare with Dominating Set

## Set Problems

Set Covering

$$
\begin{array}{lclll}
\text { Set Covering } & \text { Set Partitioning } & \text { Set Packing } \\
\min \sum_{j=1}^{n} c_{j} x_{j} & \min & \sum_{j=1}^{n} c_{j} x_{j} & \max & \sum_{j=1}^{n} c_{j} x_{j} \\
\sum_{j=1}^{n} a_{i j} x_{j} \geq 1 & \forall i & \sum_{j=1}^{n} a_{i j} x_{j}=1 & \forall i & \sum_{j=1}^{n} a_{i j} x_{j} \leq 1
\end{array} \quad \forall i
$$

The independent set problem is equivalent to the set packing. Vertex cover problem is a strict special case of set covering.

