DM811

Heuristics for Combinatorial Optimization

Lecture 13
Examples

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Outline R cors

1. Recap.

2. Other Combinatorial Optimization Problems
GCP
SAT
p-median Problem
Covering and Partitioning

Recap.

Outline o:he':cops

1. Recap.

Summary: Local Search Algorithms R o,
(as in [Hoos, Stiitzle, 2005])

For given problem instance 7:

1. search space S,

2. neighborhood relation AV, C S, x S,

3. evaluation function . : S —+ R

4. set of memory states M,

5. initialization function init : () — S, x M)
6. step function step: S; x M, — S, x M,

7. termination predicate terminate : S; x M, — {T, L}

Recap.

After implementation and test of the above components, improvements in
efficiency (ie, computation time) can be achieved by:

A. fast delta evaluation
B. neighborhood pruning

C. clever use of data structures

Improvements in quality can be achieved by:

D. application of a metaheuristic

E. definition of a larger neighborhood

Outline ey cops

2. Other Combinatorial Optimization Problems
GCP
SAT
p-median Problem
Covering and Partitioning

Outline ey cops

2. Other Combinatorial Optimization Problems
GCP

Recap
Other COPs

Approach: K-fixed / complete / improper

Local Search
@ Solution representation: var{int} a[|V|](1..K)
o Evaluation function: conflicting edges

@ Neighborhood: one-exchange

(4]

Pivoting rule: best neighbor

Recap
Other COPs

Approach: K-fixed / complete / improper

Local Search
@ Solution representation: var{int} a[|V|](1..K)
o Evaluation function: conflicting edges

@ Neighborhood: one-exchange

(4]

Pivoting rule: best neighbor

Naive approach: O(n%k)
Neighborhood examination
for all v € V do
L for all k € 1.k do

| compute A(v, k)

Other COPs

Better approach:

o V€ set of vertices involved in a conflict

o adj_in_class[n][K] stores number of vertices adjacent in each color class

Initialize:
e compute adj in_class[n][K] and V¢ in O(n?)
Neighborhood examination:

for all v € V© do
L for all k€ 1..k do

| compute A(v, k) = adj_in_class[v][k] — adj_in_class[v][a(v)]

Update:
@ change adj _in_class[n][K] and V¢ in O(n?)

Outline

2. Other Combinatorial Optimization Problems

SAT

Recap.
Other COPs

10

SAT

n 0-1 variables x;, j € N = {1,2, ..., n},

m clauses C;, i € M, and weights w; (> 0), i€ M = {1,2,...

MaXac{o,13n »_{wi|i € M and C; is satisfied in a}
Xj=1-x

L=U;cn{x. %} set of literals

G CLforie M (eg., C={x1,%3,xs}).

Recap
Other COPs

7m}

11

Let's take the case w; =1 forall j € N

@ Assignment: a € {0,1}"

@ Evaluation function: f(a) = # unsatisfied clauses
@ Neighborhood: one-flip

@ Pivoting rule: best neighbor

Let's take the case w; =1 forall j € N

@ Assignment: a € {0,1}"

@ Evaluation function: f(a) = # unsatisfied clauses
@ Neighborhood: one-flip

@ Pivoting rule: best neighbor

Naive approach: exahustive neighborhood examination in O(nmk) (k size of
largest C;)

Let's take the case w; = 1 for all j € N

@ Assignment: a € {0,1}"

@ Evaluation function: f(a) = # unsatisfied clauses
@ Neighborhood: one-flip

@ Pivoting rule: best neighbor

Naive approach: exahustive neighborhood examination in O(nmk) (k size of
largest C;)
A better approach:

o C(x)) ={i € M|x; € G} (i.e., clauses dependent on x;)
o L(x;) ={l € N|3i € M with x; € C; and x; € C;}

@ f(a(x;)) = # unsatisfied clauses

@ Score of x;: A(x) = f(a(x)) — (1 — a(xj))

Initialize:
@ compute f, score of each variable and list unsat clauses in O(mk)
@ init C(x;) for all variables
Examine
@ choose the var with best score
Update:
@ change the score of variables affected, that is, look in L(-) and C(+)

Even better approach:
~ after the flip of x; only the score of variables in L(x;) that critically depend on x;
actually changes

o Clause C; is critically satisfied by a variable x; in a iff:
e xjisin G
o (; is satisfied in a and flipping x; makes C; unsatisfied
(e.g., 1VOVObutnotlVvivoO

Keep a list of such clauses for each var

@ x; is critically dependent on x; under a iff:
there exists C; € C(x;) N C(x;) and such that flipping x;:
o C; changes satisfaction status
o C; changes satisfied /critically satisfied status
Initialize:
@ compute score of variables;
@ init C(x;) for all variables
@ init status criticality for all clauses
Update:
change sign to score of x;
for all C; in C(x;) do

for all x; € C; do
| update score x; depending on its critical status before flipping x;

Data Structure

Variables

Other COPs

14

Outline

2. Other Combinatorial Optimization Problems

p-median Problem

Recap
Other COPs

15

The p-median Problem Gther coPs

Given:

a set F of locations of m facilities

a set U of locations for n users

a distance matrix D = [dj] € R"*™

Task: Select p locations of F where to install facilities such that

the sum of the distances of each user to its closest installed facility is
minimized, i.e.,

min{z?qeipd,-j}JgFand J|p}

ieU

16

Outline

2. Other Combinatorial Optimization Problems

Covering and Partitioning

Recap
Other COPs

17

Graph Problems Other COPs

Max Independent Set (aka, stable set problem or vertex packing problem)

Given: an undirected graph G(V, E) and a non-negative weight function w on V
(w:V—=R)

Task: A largest weight independent set of vertices, i.e., a subset V' C V such that
no two vertices in V' are joined by an edge in E.

18

Graph Problems Other COPs

Max Independent Set (aka, stable set problem or vertex packing problem)

Given: an undirected graph G(V, E) and a non-negative weight function w on V
(w:V—=R)

Task: A largest weight independent set of vertices, i.e., a subset V' C V such that
no two vertices in V' are joined by an edge in E.

Maximum Clique

Given: an undirected graph G(V, E)
Task: A maximum cardinality clique, i.e., a subset V' C V such that every two
vertices in V' are joined by an edge in E

Vertex Cover

Given: an undirected graph G(V, E) and a non-negative weight function w on V
(w:V —=R)

Task: A smallest weight vertex cover, i.e., a subset V' C V such that each edge of
G has at least one endpoint in V'.

Compare with Dominating Set

18

Set Problems S cops

Set Covering Set Partitioning Set Packing
min Z CjX; min Z CjX; max Z CjX;
ZaUXJ21 Vi Za,lxjfl Vi Zauxjgl Vi
j=
el e o1 G e(0.1)

The independent set problem is equivalent to the set packing.
Vertex cover problem is a strict special case of set covering.

19

	Recap.
	Other Combinatorial Optimization Problems
	GCP
	SAT
	p-median Problem
	Covering and Partitioning

