DM811 Heuristics for Combinatorial Optimization

> Lecture 13 Examples

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Recap. Other COPs

1. Recap.

 Other Combinatorial Optimization Problems GCP SAT p-median Problem Covering and Partitioning

1. Recap.

 Other Combinatorial Optimization Problems GCP SAT p-median Problem Covering and Partitioning

Summary: Local Search Algorithms (as in [Hoos, Stützle, 2005])

Recap. Other COPs

For given problem instance π :

- 1. search space S_{π}
- 2. neighborhood relation $\mathcal{N}_{\pi} \subseteq \mathcal{S}_{\pi} imes \mathcal{S}_{\pi}$
- 3. evaluation function $f_{\pi}: S \to \mathbf{R}$
- 4. set of memory states M_{π}
- 5. initialization function init : $\emptyset \to S_{\pi} \times M_{\pi}$)
- 6. step function step : $S_{\pi} \times M_{\pi} \rightarrow S_{\pi} \times M_{\pi}$

7. termination predicate terminate : $S_{\pi} \times M_{\pi} \rightarrow \{\top, \bot\}$

After implementation and test of the above components, improvements in efficiency (ie, computation time) can be achieved by:

- A. fast delta evaluation
- B. neighborhood pruning
- C. clever use of data structures

Improvements in quality can be achieved by:

- D. application of a metaheuristic
- E. definition of a larger neighborhood

1. Recap.

 Other Combinatorial Optimization Problems GCP SAT p-median Problem Covering and Partitioning

1. Recap.

2. Other Combinatorial Optimization Problems GCP

SAT p-median Problem Covering and Partitioning Approach: K-fixed / complete / improper

Local Search

- Solution representation: var{int} a[|V|](1..K)
- Evaluation function: conflicting edges
- Neighborhood: one-exchange
- Pivoting rule: best neighbor

Approach: K-fixed / complete / improper

Local Search

- Solution representation: var{int} a[|V|](1..K)
- Evaluation function: conflicting edges
- Neighborhood: one-exchange
- Pivoting rule: best neighbor

```
Naive approach: O(n^2k)
Neighborhood examination
for all v \in V do
for all k \in 1..k do
compute \Delta(v, k)
```

Better approach:

- V^c set of vertices involved in a conflict
- adj_in_class[n][K] stores number of vertices adjacent in each color class

Initialize:

• compute adj_in_class[n][K] and V^c in O(n²)

Neighborhood examination:

for all $v \in V^c$ do for all $k \in 1..k$ do \lfloor compute $\Delta(v, k) = adj in class[v][k] - adj in class[v][a(v)]$

Update:

• change adj_in_class[n][K] and V^c in $O(n^2)$

1. Recap.

2. Other Combinatorial Optimization Problems

GCP

SAT

p-median Problem Covering and Partitioning

- *n* 0-1 variables x_j , $j \in N = \{1, 2, ..., n\}$,
- *m* clauses C_i , $i \in M$, and weights $w_i \ (\geq 0)$, $i \in M = \{1, 2, ..., m\}$
- $\max_{\mathbf{a} \in \{0,1\}^n} \sum \{w_i | i \in M \text{ and } C_i \text{ is satisfied in } \mathbf{a} \}$
- $\bar{x}_j = 1 x_j$
- $L = \bigcup_{j \in N} \{x_j, \bar{x_j}\}$ set of literals
- $C_i \subseteq L$ for $i \in M$ (e.g., $C_i = \{x_1, \bar{x_3}, x_8\}$).

Let's take the case $w_j = 1$ for all $j \in N$

- Assignment: $\mathbf{a} \in \{0,1\}^n$
- Evaluation function: f(a) = # unsatisfied clauses
- Neighborhood: one-flip
- Pivoting rule: best neighbor

Let's take the case $w_j = 1$ for all $j \in N$

- Assignment: $\mathbf{a} \in \{0,1\}^n$
- Evaluation function: f(a) = # unsatisfied clauses
- Neighborhood: one-flip
- Pivoting rule: best neighbor

Naive approach: exahustive neighborhood examination in O(nmk) (k size of largest C_i)

Let's take the case $w_j = 1$ for all $j \in N$

- Assignment: $\mathbf{a} \in \{0,1\}^n$
- Evaluation function: f(a) = # unsatisfied clauses
- Neighborhood: one-flip
- Pivoting rule: best neighbor

Naive approach: exahustive neighborhood examination in O(nmk) (k size of largest C_i)

A better approach:

- $C(x_j) = \{i \in M | x_j \in C_i\}$ (i.e., clauses dependent on x_j)
- $L(x_j) = \{l \in N | \exists i \in M \text{ with } x_l \in C_i \text{ and } x_j \in C_i\}$
- $f(a(x_j)) = \#$ unsatisfied clauses
- Score of x_j : $\Delta(x_j) = f(a(x_j)) f(1 a(x_j))$

Initialize:

- compute f, score of each variable and list unsat clauses in O(mk)
- init $C(x_j)$ for all variables

Examine

• choose the var with best score

Update:

• change the score of variables affected, that is, look in $L(\cdot)$ and $C(\cdot)$

Even better approach:

 \rightarrow after the flip of x_j only the score of variables in $L(x_j)$ that critically depend on x_j actually changes

- Clause C_i is critically satisfied by a variable x_j in a iff:
 - x_j is in C_i
 - C_i is satisfied in a and flipping x_j makes C_i unsatisfied (e.g., 1 ∨ 0 ∨ 0 but not 1 ∨1 ∨ 0

Keep a list of such clauses for each var

- x_j is critically dependent on x_l under **a** iff: there exists $C_i \in C(x_j) \cap C(x_l)$ and such that flipping x_j :
 - C_j changes satisfaction status
 - C_j changes satisfied /critically satisfied status

Initialize:

- compute score of variables;
- init $C(x_j)$ for all variables
- init status criticality for all clauses

Update:

```
change sign to score of x_j
```

```
for all C_i in C(x_j) do
```

```
for all x_i \in C_i do
```

_ update score x_l depending on its critical status before flipping x_j

Data Structure

1. Recap.

2. Other Combinatorial Optimization Problems

SAT

p-median Problem

Covering and Partitioning

The p-median Problem

Given:

a set *F* of locations of *m* facilities a set *U* of locations for *n* users a distance matrix $D = [d_{ij}] \in \mathbb{R}^{n \times m}$ **Task:** Select *p* locations of *F* where to install facilities such that the sum of the distances of each user to its closest installed facility is minimized, *i.e.*,

$$\min\left\{\sum_{i\in U}\min_{j\in J}d_{ij}\mid J\subseteq F \text{ and } |J|=p\right\}$$

1. Recap.

2. Other Combinatorial Optimization Problems

GCP SAT p-median Problem Covering and Partitioning

Graph Problems

Max Independent Set (aka, stable set problem or vertex packing problem)

Given: an undirected graph G(V, E) and a non-negative weight function ω on V($\omega : V \to \mathbb{R}$) **Task:** A largest weight independent set of vertices, i.e., a subset $V' \subseteq V$ such that no two vertices in V' are joined by an edge in E.

Graph Problems

Max Independent Set (aka, stable set problem or vertex packing problem)

Given: an undirected graph G(V, E) and a non-negative weight function ω on V($\omega : V \to \mathbb{R}$) **Task:** A largest weight independent set of vertices, i.e., a subset $V' \subseteq V$ such that no two vertices in V' are joined by an edge in E.

Maximum Clique

Given: an undirected graph G(V, E)**Task:** A maximum cardinality clique, i.e., a subset $V' \subseteq V$ such that every two vertices in V' are joined by an edge in E

Vertex Cover

Given: an undirected graph G(V, E) and a non-negative weight function ω on V ($\omega : V \to \mathbb{R}$) **Task:** A smallest weight vertex cover, i.e., a subset $V' \subseteq V$ such that each edge of G has at least one endpoint in V'.

Compare with Dominating Set

The independent set problem is equivalent to the set packing. Vertex cover problem is a strict special case of set covering.