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Summary: Local Search Algorithms R o,
(as in [Hoos, Stiitzle, 2005])

For given problem instance 7:

1. search space S,

2. neighborhood relation AV, C S, x S,

3. evaluation function . : S —+ R

4. set of memory states M,

5. initialization function init : () — S, x M)
6. step function step: S; x M, — S, x M,

7. termination predicate terminate : S; x M, — {T, L}



Recap.

After implementation and test of the above components, improvements in
efficiency (ie, computation time) can be achieved by:

A. fast delta evaluation
B. neighborhood pruning

C. clever use of data structures

Improvements in quality can be achieved by:

D. application of a metaheuristic

E. definition of a larger neighborhood
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Approach: K-fixed / complete / improper

Local Search
@ Solution representation: var{int} a[|V|](1..K)
o Evaluation function: conflicting edges

@ Neighborhood: one-exchange

(4]

Pivoting rule: best neighbor
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Approach: K-fixed / complete / improper

Local Search
@ Solution representation: var{int} a[|V|](1..K)
o Evaluation function: conflicting edges

@ Neighborhood: one-exchange

(4]

Pivoting rule: best neighbor

Naive approach: O(n%k)
Neighborhood examination
for all v € V do
L for all k € 1.k do

| compute A(v, k)



Other COPs

Better approach:

o V€ set of vertices involved in a conflict

o adj_in_class[n][K] stores number of vertices adjacent in each color class

Initialize:
e compute adj in_class[n][K] and V¢ in O(n?)
Neighborhood examination:

for all v € V© do
L for all k€ 1..k do

| compute A(v, k) = adj_in_class[v][k] — adj_in_class[v][a(v)]

Update:
@ change adj _in_class[n][K] and V¢ in O(n?)
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SAT

n 0-1 variables x;, j € N = {1,2, ..., n},

m clauses C;, i € M, and weights w; (> 0), i€ M = {1,2,...

MaXac{o,13n »_{wi|i € M and C; is satisfied in a}
Xj=1-x

L=U;cn{x. %} set of literals

G CLforie M (eg., C={x1,%3,xs}).

Recap
Other COPs
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Let's take the case w; =1 forall j € N

@ Assignment: a € {0,1}"

@ Evaluation function: f(a) = # unsatisfied clauses
@ Neighborhood: one-flip

@ Pivoting rule: best neighbor
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Naive approach: exahustive neighborhood examination in O(nmk) (k size of
largest C;)



Let's take the case w; = 1 for all j € N

@ Assignment: a € {0,1}"

@ Evaluation function: f(a) = # unsatisfied clauses
@ Neighborhood: one-flip

@ Pivoting rule: best neighbor

Naive approach: exahustive neighborhood examination in O(nmk) (k size of
largest C;)
A better approach:

o C(x)) ={i € M|x; € G} (i.e., clauses dependent on x;)
o L(x;) ={l € N|3i € M with x; € C; and x; € C;}

@ f(a(x;)) = # unsatisfied clauses

@ Score of x;: A(x) = f(a(x)) — (1 — a(xj))

Initialize:
@ compute f, score of each variable and list unsat clauses in O(mk)
@ init C(x;) for all variables
Examine
@ choose the var with best score
Update:
@ change the score of variables affected, that is, look in L(-) and C(+)



Even better approach:
~ after the flip of x; only the score of variables in L(x;) that critically depend on x;
actually changes

o Clause C; is critically satisfied by a variable x; in a iff:
e xjisin G
o (; is satisfied in a and flipping x; makes C; unsatisfied
(e.g., 1VOVObutnotlVvivoO

Keep a list of such clauses for each var

@ x; is critically dependent on x; under a iff:
there exists C; € C(x;) N C(x;) and such that flipping x;:
o C; changes satisfaction status
o C; changes satisfied /critically satisfied status
Initialize:
@ compute score of variables;
@ init C(x;) for all variables
@ init status criticality for all clauses
Update:
change sign to score of x;
for all C; in C(x;) do

for all x; € C; do
| update score x; depending on its critical status before flipping x;



Data Structure

Variables

Other COPs
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p-median Problem
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The p-median Problem Gther coPs

Given:

a set F of locations of m facilities

a set U of locations for n users

a distance matrix D = [dj] € R"*™

Task: Select p locations of F where to install facilities such that

the sum of the distances of each user to its closest installed facility is
minimized, i.e.,

min{z?qeipd,-j}JgFand J|p}

ieU
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Covering and Partitioning

Recap
Other COPs
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Graph Problems Other COPs

Max Independent Set (aka, stable set problem or vertex packing problem)

Given: an undirected graph G(V, E) and a non-negative weight function w on V
(w:V—=R)

Task: A largest weight independent set of vertices, i.e., a subset V' C V such that
no two vertices in V' are joined by an edge in E.
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Graph Problems Other COPs

Max Independent Set (aka, stable set problem or vertex packing problem)

Given: an undirected graph G(V, E) and a non-negative weight function w on V
(w:V—=R)

Task: A largest weight independent set of vertices, i.e., a subset V' C V such that
no two vertices in V' are joined by an edge in E.

Maximum Clique

Given: an undirected graph G(V, E)
Task: A maximum cardinality clique, i.e., a subset V' C V such that every two
vertices in V' are joined by an edge in E

Vertex Cover

Given: an undirected graph G(V, E) and a non-negative weight function w on V
(w:V —=R)

Task: A smallest weight vertex cover, i.e., a subset V' C V such that each edge of
G has at least one endpoint in V'.

Compare with Dominating Set
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Set Problems S cops

Set Covering Set Partitioning Set Packing
min Z CjX; min Z CjX; max Z CjX;
ZaUXJ21 Vi Za,lxjfl Vi Zauxjgl Vi
j=
el e o1 G e(0.1)

The independent set problem is equivalent to the set packing.
Vertex cover problem is a strict special case of set covering.
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