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(as in [Hoos, Stützle, 2005])

For given problem instance π:

1. search space Sπ

2. neighborhood relation Nπ ⊆ Sπ × Sπ

3. evaluation function fπ : S → R

4. set of memory states Mπ

5. initialization function init : ∅ → Sπ ×Mπ)

6. step function step : Sπ ×Mπ → Sπ ×Mπ

7. termination predicate terminate : Sπ ×Mπ → {>,⊥}
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After implementation and test of the above components, improvements in
efficiency (ie, computation time) can be achieved by:

A. fast delta evaluation

B. neighborhood pruning

C. clever use of data structures

Improvements in quality can be achieved by:

D. application of a metaheuristic

E. definition of a larger neighborhood
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Given:
n units with a matrix F = [fij ] ∈ Rn×n of flows between them and
n locations with a matrix D = [duv ] ∈ Rn×n of distances

Task: Find the assignment σ of units to locations that minimizes the
sum of product between flows and distances, ie,

min
σ∈Σ

∑
i,j

fijdσ(i)σ(j)

Applications: hospital layout; keyboard layout
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i1

i2

i3

i4

i5

u1

u2

u3

u4

u5

xiu ∈ [0; 1]

indices i , j for units and u, v for locations:

min
∑

i
∑

u
∑

j
∑

v fijduvxiuxjv +
(∑

i
∑

u ciuxiu
)

s.t.
∑

i xiu = 1 ∀u∑
u xiu = 1 ∀i

x ≥ 0 and integer ∀i , u

Largest instances solvable exactly n = 30
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Example: QAP

D =


0 4 3 2 1
4 0 3 2 1
3 3 0 2 1
2 2 2 0 1
1 1 1 1 0

 F =


0 1 2 3 4
1 0 2 3 4
2 2 0 3 4
3 3 3 0 4
4 4 4 4 0



The optimal solution is σ = (1, 2, 3, 4, 5), that is,
facility 1 is assigned to location 1,
facility 2 is assigned to location 2, etc.

The value of f (σ) is 100.
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Delta evaluation

Evaluation of 2-exchange {r , s} can be done in O(n)
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Example: Tabu Search for QAP

Solution representation: permutation π
Initial Solution: randomly generated
Neighborhood: interchange
∆I : δ(π) = {π′|π′k = πk for all k 6= {i , j} and π′i = πj , π

′
j = πi}

Tabu status: forbid δ that place back the items in the positions they
have already occupied in the last tt iterations (short term memory)

Implementation details:
compute g(π′)− f (π) in O(n) or O(1) by storing the values all possible
previous moves.
maintain a matrix [Tij ] of size n × n and write the last time item i was
moved in location k plus tt
δ is tabu if it satisfies both:

Ti,π(j) ≥ current iteration
Tj,π(i) ≥ current iteration
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Example: Robust Tabu Search for QAP

Aspiration criteria:

allow forbidden δ if it improves the last π∗

select δ if never chosen in the last A iterations (long term memory)

Parameters: tt ∈ [b0.9nc, d1.1n + 4e] and A = 5n2
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Example: Reactive Tabu Search for QAP

Aspiration criteria:

allow forbidden δ if it improves the last π∗

Tabu Tenure

maintain a hash table (or function) to record previously visited solutions

increase tt by a factor αinc(= 1.1) if the current solution was previously
visited

decrease tt by a factor αdec(= 0.9) if tt not changed in the last sttc
iterations or all moves are tabu

Trigger escape mechanism if a solution is visited more than nr(= 3)
times

Escape mechanism = 1 + (1 + r) ·ma/2 random moves
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Input: a finite set of time periods and courses with assigned: a teacher, a set
of attending students and a suitable room.

Task: Produce weekly timetable of courses, that is: assign a time period of
the week (typically one hour) to every course such that courses are assigned
to different time periods if:

they are taught by the same teacher
they can be held only in the same room
they share students.

16



Recap.
Other COPs
AppendixOutline

1. Recap.

2. Other Combinatorial Optimization Problems
Quadratic Assignment Problem
School Scheduling
Linear Ordering
Bin Packing

3. Appendix
Random Numbers

17



Recap.
Other COPs
AppendixLinear Ordering Problem

Input: an n × n matrix C

Task: Find a permutation π of the column and row indices {1, . . . , n} such
that the value

f (π) =
n∑

i=1

n∑
j=i+1

cπiπj

is maximized. In other terms, find a permutation of the columns and rows of
C such that the sum of the elements in the upper triangle is maximized.
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Consider as an example the (5,5)-matrix:

H =


0 16 11 15 7
21 0 14 15 9
26 23 0 26 12
22 22 11 0 13
30 28 25 24 0


π = (1, 2, 3, 4, 5). The sum of its superdiagonal elements is 138.
π = (5, 3, 4, 2, 1) i.e., H12 becomes Hπ(1)π(2) = H54 in the permuted matrix.
Thus the optimal triangulation of H is

H∗ =


0 25 24 28 30
12 0 26 23 26
13 11 0 22 22
9 14 15 0 21
7 11 15 16 0


Now the sum of superdiagonal elements is 247.
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Definition: A directed graph (or digraph) D consists of a non-empty finite
set V (D) of distinct vertices and a finite set A of ordered pairs of distinct
vertices called arcs.

Feedback arc set problem (FASP)

Input: A directed graph D = (V ,A), where V = {1, 2, . . . , n}, and arc
weights cij for all [ij ] ∈ A

Task: Find a permutation π1, π2, . . . πn of V (that is, a linear ordering of V )
such that the total costs of those arcs [πjπi ] where j > i (that is, the arcs
that point backwards in the ordering)

f (π) =
n∑

i=1

n∑
j=i+1

cπjπi

is minimized.
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Definition: A linear ordering of a finite set of vertices V = {1, 2, . . . , n} is a
bijective mapping (permutation) π : {1, 2, . . . , n} → V . For u, v ∈ V , we say
that u is “before” v if π−1(u) < π−1(v) (π−1(i) = posπ(i)).

Definition: A digraph D is complete if, for every pair x , y of distinct vertices
of D both xy and yx arcs are in D.

Definition: An oriented graph is a digraph with no cycle of length two. A
tournament is an oriented graph where every pair of distinct vertices are
adjacent.

Remark: Given a digraph D = (V ,A) and a linear ordering of the vertices V ,
the arc set E = {[uv ]|π−1(u) < π−1(v)} forms an acyclic tournament on V .
Similarly, an acyclic tournament T = (V ,E ) induces a linear ordering of V .
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Definition: The cost of a linear ordering is expressed by∑
π−1(u)<π−1(v)

cuv

where the costs cuv are the costs associated to the arcs.

Linear Ordering Problem

Input: Given a complete digraph D = (V ,A) with arc weights cij for all
ij ∈ A

Task: Find an acyclic tournament T = (V ,T ) in D such that

f (T ) =
∑
ij∈T

cij

is maximized.
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Kemeny’s problem. Suppose that there are m persons and each person i ,
i = 1, ...,m, has ranked n objects by giving a linear ordering Ti of the
objects. Which common linear ordering aggregates the individual orderings in
the best possible way?

 linear ordering problem by setting cij = number of persons preferring
object Oi to object Oj
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Input-output analysis (Leontief, Nobel prize)

The economy of a state is divided into n sectors, and an n × n input-output
matrix C is constructed where the entry cij denotes the transactions from
sector i to sector j in that year.

Triangulation (ie, solving associated LOP) allows identification of important
inter-industry relations in an economy (from primary stage sectors via the
manufacturing sectors to the sectors of final demand) and consequent
comparisons between different countries.

Depicts dependencies between the different branches of an economy
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Hij = number of goals which were scored by team i against team j .

R. Martí, G. Reinelt, R. Martí and G. Reinelt. The Linear Ordering Problem,
Introduction. Springer Berlin Heidelberg, 2011, 1-15
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Knapsack

Given: a knapsack with maximum weight W and a set of n items
{1, 2, . . . , n}, with each item j associated to a profit pj and to a weight wj .

Task: Find the subset of items of maximal total profit and whose total
weight is not greater than W .

One dimensional Bin Packing

Given: A set L = (a1, a2, . . . , an) of items, each with a size s(ai ) ∈ (0, 1] and
an unlimited number of unit-capacity bins B1,B2, . . . ,Bm.

Task: Pack all the items into a minimum number of unit-capacity bins
B1,B2, . . . ,Bm.

Cutting stock

Each item has a profit pj > 0 and a number of times it must appear ai .
The task is to select a subset of items to be packed in a single finite bin that
maximizes the total selected profit.
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Heuristics for Bin Packing

Construction Heuristics
Best Fit Decreasing (BFD)

First Fit Decreasing (FFD) Cmax(FFD) ≤ 11
9 Cmax(OPT ) + 6

9

Local Search: [Alvim and Aloise and Glover and Ribeiro, 1999]

Step 1: remove one bin and redistribute items by BFD

Step 2: if infeasible, re-make feasible by redistributing items for
pairs of bins, such that their total weights becomes equal
(number partitioning problem)

29



Recap.
Other COPs
Appendix

Heuristics for Bin Packing

Construction Heuristics
Best Fit Decreasing (BFD)

First Fit Decreasing (FFD) Cmax(FFD) ≤ 11
9 Cmax(OPT ) + 6

9

Local Search: [Alvim and Aloise and Glover and Ribeiro, 1999]

Step 1: remove one bin and redistribute items by BFD

Step 2: if infeasible, re-make feasible by redistributing items for
pairs of bins, such that their total weights becomes equal
(number partitioning problem)

29



Recap.
Other COPs
Appendix

[Levine and Ducatelle, 2004]
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Two dimensional bin packing

Given: A set L = (a1, a2, . . . , an) of n rectangular items, each with a width
wj and a height hj and an unlimited number of identical rectangular bins of
width W and height H.
Task: Allocate all the items into a minimum number of bins, such that the
original orientation is respected (no rotation of the items is allowed).

Two dimensional strip packing

Given: A set L = (a1, a2, . . . , an) of n rectangular items, each with a width
wj and a height hj and a bin of width W and infinite height (a strip).
Task: Allocate all the items into the strip by minimizing the used height and
such that the original orientation is respected (no rotation of the items is
allowed).

Two dimensional cutting stock

Each item has a profit pj > 0 and the task is to select a subset of items to be
packed in a single finite bin that maximizes the total selected profit.
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Three dimensional

Given: A set L = (a1, a2, . . . , an) of rectangular boxes, each with a width wj ,
height hj and depth dj and an unlimited number of three-dimensional bins
B1,B2, . . . ,Bm of width W , height H, and depth D.

Task: Pack all the boxes into a minimum number of bins, such that the
original orientation is respected (no rotation of the boxes is allowed)
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See http://www.nada.kth.se/~viggo/problemlist/
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Carachtersitics of a good pseudo-random generator
(from stochastic simulation)

long period

uniform unbiased distribution

uncorrelated (time series analysis)

efficient

Suggested: MRG32k3a by L’Ecuyer
http://www.iro.umontreal.ca/~lecuyer/
java.lang.Object

extended by umontreal.iro.lecuyer.rng.RandomStreamBase
extended by umontreal.iro.lecuyer.rng.MRG32k3a

36
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Let’s consider a sequence of n elements: {e1, e2, . . . en}.
The ideal random shuffle is a permutation chosen uniformly at random from
the set of all possible n! permutations.

π1 is uniformly randomly chosen among {e1, e2, . . . en}.
π2 is uniformly randomly chosen among {e1, e2, . . . en} − {π1}.
π3 is uniformly randomly chosen among {e1, e2, . . . en} − {π1, π2}
...

Joint probability of (π1, π2 . . . πn) is 1
n ·

1
n−1 · . . . 1 = 1

n!

long int∗ Random::generate_random_array(const int& size) {
long int i, j, help;
long int ∗v = new long int[size];
for ( i = 0 ; i < size; i++ )

v[i] = i;
for ( i = 0 ; i < size−1 ; i++) {

j = (long int) ( ranU01( ) ∗ (size − i));
help = v[i];
v[i] = v[i+j];
v[i+j] = help;

}
return v; }
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