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Very Large Scale Neighborhoods

Small neighborhoods:
@ might be short-sighted

@ need many steps to traverse the search space
Large neighborhoods

@ introduce large modifications to reach higher quality solutions

o allows to traverse the search space in few steps

Key idea: use very large neighborhoods that can be searched efficiently
(preferably in polynomial time) or are searched heuristically
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11. Very Large Scale Neighborhoods

Examples: GCP, CSP, TSP, SAT, MaxIndSet, SMTWP, Steiner Tree,
p-median, set covering, bin packing

Very large scale neighborhood search

1. define an exponentially large neighborhood
(though, O(n?) might already be large)

2. define a polynomial time search algorithm to search the neighborhood
(= solve the neighborhood search problem, NSP)

o exactly (leads to a best improvement strategy)

o heuristically (some improving moves might be missed)
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Examples of VLSN Search

[Ahuja, Ergun, Orlin, Punnen, 2002]

@ based on concatenation of simple moves

o Variable Depth Search (TSP, GP)
o Ejection Chains

@ based on Dynamic Programming or Network Flows
Dynasearch (ex. SMTWTP)

Weighted Matching based neighborhoods (ex. TSP)
Cyclic exchange neighborhood (ex. VRP)

Shortest path

@ based on polynomially solvable special cases of hard combinatorial
optimization problems

o Pyramidal tours
o Halin Graphs

» Idea: turn a special case into a neighborhood
VLSN allows to use the literature on polynomial time algorithms

Variable Depth Search
Ejection Chains

Dynasearch

Weighted Matching Neighbo
Cyclic Exchange Neighborho

Variable Depth Search

o Key idea: Complex steps in large neighborhoods = variable-length
sequences of simple steps in small neighborhood.

o Use various feasibility restrictions on selection of simple search steps to
limit time complexity of constructing complex steps.

o Perform lterative Improvement w.r.t. complex steps.

Variable Depth Search (VDS):
determine initial candidate solution s

t:=s
while s is not locally optimal do
repeat

select best feasible neighbor ¢
if g(t) <g(t) thent =t
S = Yt
until construction of complex step has been completed ;
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1. Variable Depth Search
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Graph Partitioning

Graph Partitioning

Given: (G = (V, E), weighted function w : V' — R, a positive number p:
0 < w; < p, Vi and a connectivity matrix C' = [¢;;] € RIVI*IV].

Task: A k-partition of G, Vi, V5, ..., Vj: [ U, V; = G such that:
@ it is admissible, ie, |V;| < p for all i and

o it has minimum cost, ie, the sum of ¢;;, i, j that belong to different
subsets is mimimal
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Ejection Chains

Dynasearch Dynasearch
. Weighted Matching Neighbo Weighted Matching Neighbo
VLSN for the Traveling Salesman Problem:s«neizsibehe Cyeic Exchange Neighborha
o li-exchange heuristics The Lin-Kernighan (LK) Algorithm for the TSP (1)
o 2-opt [Flood, 1956, Croes, 1958]
o 2.5-opt or 2H-opt o Complex search steps correspond to sequences
o Or-opt [Or, 1976] of 2-exchange steps and are constructed from
o 3-opt [Block, 1958] sequences of Hamiltonian paths
o k-opt [Lin 1965]

@ J-path: Hamiltonian path p + 1 edge connecting one end of p to interior

@ complex neighborhoods node of p

Lin-Kernighan [Lin and Kernighan, 1965]
Helsgaun's Lin-Kernighan

Dynasearch u v
Ejection chains approach
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Basic LK exchange step:

. I Construction of complex LK steps:
@ Start with Hamiltonian path (u,...,v):

1. start with current candidate solution (Hamiltonian cycle) s;

li/\_/\_/ww\/—w\/—\\: set t* 1= S,
set pi=s
@ Obtain §-path by adding an edge (v, w): 2. obtain d-path p’ by replacing one edge in p
" wo N 3. consider Hamiltonian cycle ¢ obtained from p by

P e N N N N N N NI e, b

(uniquely) defined edge exchange
4. if w(t) < w(t*) then

@ Break cycle by removing edge (w,v'): set 1* :=1; p = p/; go to step 2

u WV ey else accept ¢* as new current candidate solution s
P e NI NI NI NI g e~ e ~
@ Note: Hamiltonian path can be completed Note: This can be interpreted as sequence of 1-exchange steps that alternate

into Hamiltonian cycle by adding edge (v, u): between d-paths and Hamiltonian cycles.

u.-- w3l v Y
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Mechanisms used by LK algorithm:

@ Pruning exact rule: If a sequence of numbers has a positive sum, there is
a cyclic permutation of these numbers such that every partial sum is
positive.
= need to consider only gains whose partial sum remains positive

2. Ejection Chains

@ Tabu restriction: Any edge that has been added cannot be removed and
any edge that has been removed cannot be added in the same LK step.

Note: This limits the number of simple steps in a complex LK step.

o Limited form of backtracking ensures that local minimum found by the
algorithm is optimal w.r.t. standard 3-exchange neighborhood

o (For further details, see original article)

[LKH Helsgaun's implementation
http://www.akira.ruc.dk/ keld/research/LKH/ (99 pages report)]
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Ejection Chains

Ejection Chains Outline

Dynasearch

o Attempt to use large neighborhoods without examining them
exhaustively

@ Sequences of successive steps each influenced by the precedent and
determined by myopic choices

o Limited in length

o Local optimality in the large neighborhood is not guaranteed.
3. Dynasearch

Example (on TSP):
successive 2-exchanges where each exchange involves one edge of the
previous exchange

Example (on GCP):

successive 1-exchanges: a vertex v changes color from ¢(v1) = ¢; to ¢, in
turn forcing some vertex v, with color ¢(v2) = c2 to change to another color
¢35 (which may be different or equal to ¢;) and again forcing a vertex v; with

color ¢(v3) = ¢3 to change to color ¢y.
17



Dynasearch

Dynasearch

o lterative improvement method based on building complex search steps
from combinations of mutually independent search steps

@ Mutually independent search steps do not interfere with each other wrt
effect on evaluation function and feasibility of candidate solutions.

Example: Independent 2-exchange steps for the TSP:

./\/V\."‘.(\/\K '.f\/\/\."‘.{v{}\ o e—e

Uy Up Ui U U U Uy U Uy U Upyg

Therefore: Overall effect of complex search step = sum of effects of
constituting simple steps;
complex search steps maintain feasibility of candidate solutions.

o Key idea: Efficiently find optimal combination of mutually independent
simple search steps using Dynamic Programming.
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Weighted Matching Neighborhoods

o Key idea use basic polynomial time algorithms, example: weighted
matching in bipartied graphs, shortest path, minimum spanning tree.

@ Neighborhood defined by finding a minimum cost matching on a
(non-)bipartite improvement graph

Example (TSP)
Neighborhood: Eject k nodes and reinsert them optimally
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4. Weighted Matching Neighborhoods
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5. Cyclic Exchange Neighborhoods

Weighted Matching Neighbo
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Cyclic Exchange Neighborho
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Cychc Excha nge Nelghborhoods Cyclic Exchange Neighborho: Cyclic Exchange Neighborho
@ Possible for problems where solution can be represented as form of
partitioning
o Definition of a partitioning problem:
Given: a set IV of n elements, a collection 7 = {7,75,...,T}} of

subsets of 11/, such that W =7, U...UT}, and T; N'7T; = (), and a cost Neighborhood search

function ¢: 7 — R:
Task: Find another partition 7' of W by means of single exchanges
between the sets such that

@ Define an improvement graph

@ Solve the relative

min E :C(Ti> o Subset Disjoint Negative Cost Cycle Problem
i=1
o Cyclic exchange: o Subset Disjoint Minimum Cost Cycle Problem )
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Variable Depth Search Variable Depth Search
Ejection Cltiains Ejection Cibains
Dyrjasearc i . ynasearc! i i
Example (GCP) ephelaenis: Example (GCP) Db Merchine iehbe
Neighborhood Structures: Very Large Scale Neighborhood Examination of the Very Large Scale Neighborhood

Exponential size but can be searched efficiently

One Exchange Path Exchange

\
N\W/

Improvement Graph

A Subset Disjoint Negative Cost Cycle Problem in the Improvement Graph
Cyclic Exchange can be solved by dynamic programming in O(|V/|?2%|D’|).

Swap
Yet, heuristic rules can be adopted to reduce the complexity to O(|V'|?)
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