DM811 Heuristics for Combinatorial Optimization

Lecture 19 Very Large Scale Neighborhoods

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Course Overview

- 1. Combinatorial Optimization, Methods and Models
- 2. General overview
- 3. Solver System and Working Environment
- 4. Construction Heuristics
- 5. Local Search: Components, Basic Algorithms
- 6. Local Search: Neighborhoods and Search Landscape
- 7. Efficient Local Search: Incremental Updates and Neighborhood Pruning
- 8. Stochastic Local Search & Metaheuristics
- 9. Methods for the Analysis of Experimental Results
- 10. Configuration Tools: F-race
- 11. Very Large Scale Neighborhoods

Examples: GCP, CSP, TSP, SAT, MaxIndSet, SMTWP, Steiner Tree, p-median, set covering, bin packing

Small neighborhoods:

- might be short-sighted
- need many steps to traverse the search space

Large neighborhoods

- introduce large modifications to reach higher quality solutions
- allows to traverse the search space in few steps

Small neighborhoods:

- might be short-sighted
- need many steps to traverse the search space

Large neighborhoods

- introduce large modifications to reach higher quality solutions
- allows to traverse the search space in few steps

Key idea: use very large neighborhoods that can be searched efficiently (preferably in polynomial time) or are searched heuristically

Very large scale neighborhood Search Weighted Miching Neighborhoods

Variable Depth Search

- 1. define an exponentially large neighborhood (though, $O(n^3)$ might already be large)
- define a polynomial time search algorithm to search the neighborhood (= solve the neighborhood search problem, NSP)
 - exactly (leads to a best improvement strategy)
 - heuristically (some improving moves might be missed)

Examples of VLSN Search

Variable Depth Search Ejection Chains Dynasearch Weighted Matching Neighborhoods Cyclic Exchange Neighborhoods

[Ahuja, Ergun, Orlin, Punnen, 2002]

- based on concatenation of simple moves
 - Variable Depth Search (TSP, GP)
 - Ejection Chains
- based on Dynamic Programming or Network Flows
 - Dynasearch (ex. SMTWTP)
 - Weighted Matching based neighborhoods (ex. TSP)
 - Cyclic exchange neighborhood (ex. VRP)
 - Shortest path
- based on polynomially solvable special cases of hard combinatorial optimization problems
 - Pyramidal tours
 - Halin Graphs

Idea: turn a special case into a neighborhood
 VLSN allows to use the literature on polynomial time algorithms

Outline

- 1. Variable Depth Search
- 2. Ejection Chains
- 3. Dynasearch
- 4. Weighted Matching Neighborhoods
- 5. Cyclic Exchange Neighborhoods

Variable Depth Search Ejection Chains Dynasearch Weighted Matching Neighborhoods Cyclic Exchange Neighborhoods

• Key idea: *Complex steps* in large neighborhoods = variable-length sequences of *simple steps* in small neighborhood.

- Key idea: *Complex steps* in large neighborhoods = variable-length sequences of *simple steps* in small neighborhood.
- Use various *feasibility restrictions* on selection of simple search steps to limit time complexity of constructing complex steps.

- Key idea: *Complex steps* in large neighborhoods = variable-length sequences of *simple steps* in small neighborhood.
- Use various *feasibility restrictions* on selection of simple search steps to limit time complexity of constructing complex steps.
- Perform Iterative Improvement w.r.t. complex steps.

- Key idea: *Complex steps* in large neighborhoods = variable-length sequences of *simple steps* in small neighborhood.
- Use various *feasibility restrictions* on selection of simple search steps to limit time complexity of constructing complex steps.
- Perform Iterative Improvement w.r.t. complex steps.

- Key idea: *Complex steps* in large neighborhoods = variable-length sequences of *simple steps* in small neighborhood.
- Use various *feasibility restrictions* on selection of simple search steps to limit time complexity of constructing complex steps.
- Perform Iterative Improvement w.r.t. complex steps.

```
Variable Depth Search (VDS):

determine initial candidate solution s

\hat{t} := s

while s is not locally optimal do

repeat

select best feasible neighbor t

if g(t) < g(\hat{t}) then \hat{t} := t

s := \hat{t}

until construction of complex step has been completed ;
```

Graph Partitioning

Variable Depth Search Ejection Chains Dynasearch Weighted Matching Neighborhoods Cyclic Exchange Neighborhoods

Graph Partitioning

Given: G = (V, E), weighted function $\omega : V \to \mathbf{R}$, a positive number *p*: $0 < w_i \le p, \forall i$ and a connectivity matrix $C = [c_{ij}] \in \mathbf{R}^{|V| \times |V|}$.

Task: A k-partition of G, V_1, V_2, \ldots, V_k : $\bigcup_{i=1}^n V_i = G$ such that:

- it is admissible, ie, $|V_i| \leq p$ for all *i* and
- it has minimum cost, ie, the sum of c_{ij} , i, j that belong to different subsets is mimimal

VLSN for the Traveling Salesman E Problem de Contraction de la ching Neighborhoods

Variable Depth Search Ejection Chains

• *k*-exchange heuristics

- 2-opt [Flood, 1956, Croes, 1958]
- 2.5-opt or 2H-opt
- Or-opt [Or, 1976]
- 3-opt [Block, 1958]
- *k*-opt [Lin 1965]

VLSN for the Traveling Salesman E Hoperator

Variable Depth Search Ejection Chains

• *k*-exchange heuristics

- 2-opt [Flood, 1956, Croes, 1958]
- 2.5-opt or 2H-opt
- Or-opt [Or, 1976]
- 3-opt [Block, 1958]
- *k*-opt [Lin 1965]
- complex neighborhoods
 - Lin-Kernighan [Lin and Kernighan, 1965]
 - Helsgaun's Lin-Kernighan
 - Dynasearch
 - Ejection chains approach

The Lin-Kernighan (LK) Algorithm for the TSP (1)

• Complex search steps correspond to sequences of 2-exchange steps and are constructed from sequences of *Hamiltonian paths*

The Lin-Kernighan (LK) Algorithm for the TSP (1)

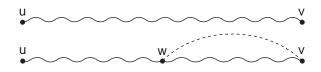
- Complex search steps correspond to sequences of 2-exchange steps and are constructed from sequences of *Hamiltonian paths*
- δ -path: Hamiltonian path p + 1 edge connecting one end of p to interior node of p

The Lin-Kernighan (LK) Algorithm for the TSP (1)

- Complex search steps correspond to sequences of 2-exchange steps and are constructed from sequences of *Hamiltonian paths*
- δ -path: Hamiltonian path p + 1 edge connecting one end of p to interior node of p

The Lin-Kernighan (LK) Algorithm for the TSP (1)

- Complex search steps correspond to sequences of 2-exchange steps and are constructed from sequences of *Hamiltonian paths*
- δ -path: Hamiltonian path p + 1 edge connecting one end of p to interior node of p



Basic LK exchange step:

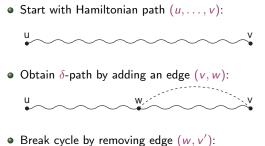
• Start with Hamiltonian path (u, \ldots, v) :

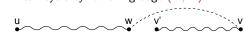
Basic LK exchange step:

• Start with Hamiltonian path (u, \ldots, v) :

Obtain δ-path by adding an edge (v, w):
 u
 w

Basic LK exchange step:





Basic LK exchange step:

• Start with Hamiltonian path (u, \ldots, v) :

• Obtain δ -path by adding an edge (v, w):

- Break cycle by removing edge (w, v'):
 u
 w
 v'
 v'
- Note: Hamiltonian path can be completed into Hamiltonian cycle by adding edge (v', u):

Construction of complex LK steps:

 start with current candidate solution (Hamiltonian cycle) s; set t* := s; set p := s

- start with current candidate solution (Hamiltonian cycle) s; set t* := s; set p := s
- 2. obtain δ -path p' by replacing one edge in p

- start with current candidate solution (Hamiltonian cycle) s; set t* := s; set p := s
- 2. obtain δ -path p' by replacing one edge in p
- 3. consider Hamiltonian cycle *t* obtained from *p* by (uniquely) defined edge exchange

- start with current candidate solution (Hamiltonian cycle) s; set t* := s; set p := s
- 2. obtain δ -path p' by replacing one edge in p
- consider Hamiltonian cycle t obtained from p by (uniquely) defined edge exchange
- 4. if $w(t) < w(t^*)$ then set $t^* := t$; p := p'; go to step 2

- start with current candidate solution (Hamiltonian cycle) s; set t* := s; set p := s
- 2. obtain δ -path p' by replacing one edge in p
- consider Hamiltonian cycle t obtained from p by (uniquely) defined edge exchange
- 4. if w(t) < w(t*) then
 set t* := t; p := p'; go to step 2
 else accept t* as new current candidate solution s

Construction of complex LK steps:

- start with current candidate solution (Hamiltonian cycle) s; set t* := s; set p := s
- 2. obtain δ -path p' by replacing one edge in p
- consider Hamiltonian cycle t obtained from p by (uniquely) defined edge exchange

```
4. if w(t) < w(t*) then</li>
set t* := t; p := p'; go to step 2
else accept t* as new current candidate solution s
```

Note: This can be interpreted as sequence of 1-exchange steps that alternate between δ -paths and Hamiltonian cycles.

Mechanisms used by LK algorithm:

- *Pruning exact rule:* If a sequence of numbers has a positive sum, there is a cyclic permutation of these numbers such that every partial sum is positive.
 - ➡ need to consider only gains whose partial sum remains positive
- *Tabu restriction:* Any edge that has been added cannot be removed and any edge that has been removed cannot be added in the same LK step. *Note:* This limits the number of simple steps in a complex LK step.
- *Limited form of backtracking* ensures that local minimum found by the algorithm is optimal w.r.t. standard 3-exchange neighborhood
- (For further details, see original article)

[LKH Helsgaun's implementation http://www.akira.ruc.dk/~keld/research/LKH/ (99 pages report)]

Outline

- 1. Variable Depth Search
- 2. Ejection Chains
- 3. Dynasearch
- 4. Weighted Matching Neighborhoods
- 5. Cyclic Exchange Neighborhoods

Ejection Chains

- Attempt to use large neighborhoods without examining them exhaustively
- Sequences of successive steps each influenced by the precedent and determined by myopic choices
- Limited in length
- Local optimality in the large neighborhood is not guaranteed.

Ejection Chains

Variable Depth Search Ejection Chains Dynasearch Weighted Matching Neighborhoods Cyclic Exchange Neighborhoods

- Attempt to use large neighborhoods without examining them exhaustively
- Sequences of successive steps each influenced by the precedent and determined by myopic choices
- Limited in length
- Local optimality in the large neighborhood is not guaranteed.

Example (on TSP):

successive 2-exchanges where each exchange involves one edge of the previous exchange

Example (on GCP):

successive 1-exchanges: a vertex v_1 changes color from $\varphi(v_1) = c_1$ to c_2 , in turn forcing some vertex v_2 with color $\varphi(v_2) = c_2$ to change to another color c_3 (which may be different or equal to c_1) and again forcing a vertex v_3 with color $\varphi(v_3) = c_3$ to change to color c_4 .

Outline

- 1. Variable Depth Search
- 2. Ejection Chains
- 3. Dynasearch
- 4. Weighted Matching Neighborhoods
- 5. Cyclic Exchange Neighborhoods

Dynasearch

- Iterative improvement method based on building complex search steps from combinations of mutually independent search steps
- Mutually independent search steps do not interfere with each other wrt effect on evaluation function and feasibility of candidate solutions.

Example: Independent 2-exchange steps for the TSP:

$$\underbrace{\bullet}_{u_1} \underbrace{\bullet}_{u_{j+1}} \underbrace{\bullet}_{u_$$

Therefore: Overall effect of complex search step = sum of effects of constituting simple steps; complex search steps maintain feasibility of candidate solutions.

• **Key idea:** Efficiently find optimal combination of mutually independent simple search steps using *Dynamic Programming*.

Outline

- 1. Variable Depth Search
- 2. Ejection Chains
- 3. Dynasearch
- 4. Weighted Matching Neighborhoods
- 5. Cyclic Exchange Neighborhoods

Weighted Matching Neighborhoods Weighted Matching Neighborhoods

- Key idea use basic polynomial time algorithms, example: weighted matching in bipartied graphs, shortest path, minimum spanning tree.
- Neighborhood defined by finding a minimum cost matching on a (non-)bipartite improvement graph

Example (TSP) Neighborhood: Eject k nodes and reinsert them optimally

Outline

- 1. Variable Depth Search
- 2. Ejection Chains
- 3. Dynasearch
- 4. Weighted Matching Neighborhoods
- 5. Cyclic Exchange Neighborhoods

Cyclic Exchange Neighborhoods

• Possible for problems where solution can be represented as form of partitioning

Variable Depth Search

Cyclic Exchange Neighborhoods

- Possible for problems where solution can be represented as form of partitioning
- Definition of a partitioning problem:

Given: a set W of n elements, a collection $\mathcal{T} = \{T_1, T_2, \ldots, T_k\}$ of subsets of W, such that $W = T_1 \cup \ldots \cup T_k$ and $T_i \cap T_j = \emptyset$, and a cost function $c : \mathcal{T} \to \mathbf{R}$:

Variable Depth Search

Task: Find another partition \mathcal{T}' of W by means of single exchanges between the sets such that

$$\min\sum_{i=1}^k c(T_i)$$

Cyclic Exchange Neighborhoods Cyclic Exchange Neighborhoods

- Possible for problems where solution can be represented as form of partitioning
- Definition of a partitioning problem:

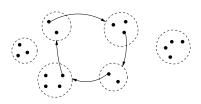
Given: a set W of n elements, a collection $\mathcal{T} = \{T_1, T_2, \ldots, T_k\}$ of subsets of W, such that $W = T_1 \cup \ldots \cup T_k$ and $T_i \cap T_j = \emptyset$, and a cost function $c : \mathcal{T} \to \mathbf{R}$:

Variable Depth Search

Task: Find another partition \mathcal{T}' of W by means of single exchanges between the sets such that

$$\min\sum_{i=1}^k c(T_i)$$

• Cyclic exchange:

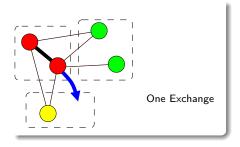


Neighborhood search

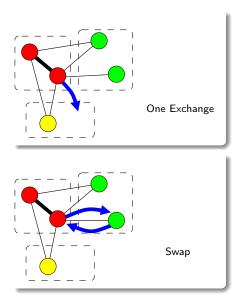
- Define an improvement graph
- Solve the relative
 - Subset Disjoint Negative Cost Cycle Problem
 - Subset Disjoint Minimum Cost Cycle Problem

Example (GCP)

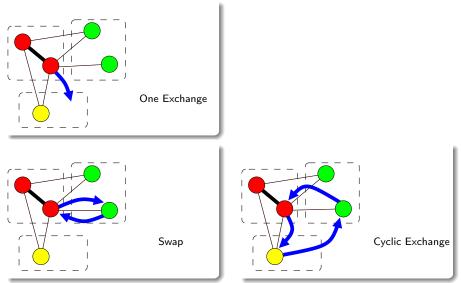
Neighborhood Structures: Very Large Scale Neighborhood



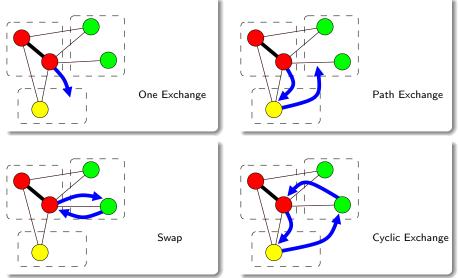
Example (GCP)



Example (GCP)



Example (GCP) Neighborhood Structures: Very Large Scale Neighborhood

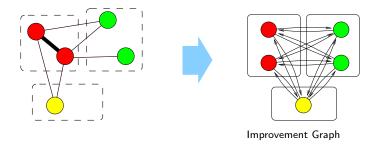


Variable Depth Search

Example (GCP) Examination of the Very Large Scale Neighborhood

Variable Depth Search Ejection Chains Dynasearch Weighted Matching Neighborhoods Cyclic Exchange Neighborhoods

Exponential size but can be searched efficiently



A Subset Disjoint Negative Cost Cycle Problem in the Improvement Graph can be solved by dynamic programming in $\mathcal{O}(|V|^2 2^k |D'|)$. Yet, heuristic rules can be adopted to reduce the complexity to $\mathcal{O}(|V'|^2)$