
DM811

Heuristics for Combinatorial Optimization

Lecture 2
Introductory Topics

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Outline

1. Search Paradigms
Construction Heuristics
Local Search

2. Software Tools
Constraint-Based Local Search with CometTM

2

Outline

1. Search Paradigms
Construction Heuristics
Local Search

2. Software Tools
Constraint-Based Local Search with CometTM

3

Construction Heuristics

Construction heuristics

(aka, single pass heuristics or dispatching rules in scheduling)
They are closely related to tree search techniques but correspond to a single
path from root to leaf

search space = partial candidate solutions
search step = extension with one or more solution components

Construction Heuristic (CH):
s := ∅
while s is not a complete candidate solution do

choose a solution component (Xi = vj)
add the solution component to s

5

Designing Constr. Heuristics

Which variable should we assign next,
and in what order should its values be tried?

Select-Unassigned-Variable

Static: Degree heuristic (reduces the branching factor) also used as tie
breaker

Dynamic: Most constrained variable = Fail-first heuristic = Minimum
remaining values heuristic

Order-Domain-Values
eg, least-constraining-value heuristic (leaves maximum flexibility for
subsequent variable assignments)

6

Designing Constr. Heuristics

Ideas for variable selection
with smallest min value
with largest min value
with smallest max value
with largest max value

with smallest domain size
with largest domain size

The degree of a variable is defined as the number of constraints it is
involved in.

with smallest degree. In case of ties, variable with smallest domain.
with largest degree. In case of ties, variable with smallest domain.
with smallest domain size divided by degree
with largest domain size divided by degree

The min-regret of a variable is the difference between the smallest and
second-smallest value still in the domain.

with smallest min-regret: i = argmin ∆f
(2)
i − ∆f

(1)
i

with largest min-regret: i = argmax ∆f
(2)
i − ∆f

(1)
i

with smallest max-regret: i = argmin ∆f
(n)
i − ∆f

(1)
i

with largest max-regret: i = argmax ∆f
(n)
i − ∆f

(1)
i

7

Designing Constr. Heuristics

Ideas for value selection
Select smallest value
Select median value
Select maximal value

Look-ahead:
Select value that leaves the largest number of feasible values at to the
other variables
Select value that leaves the smallest number of feasible values at to the
other variables (fail early)

8

Greedy best-first search

9

Sometimes greedy heuristics can be proved to be optimal
minimum spanning tree,
single source shortest path,
total weighted sum completion time in single machine scheduling,
single machine maximum lateness scheduling

Other times an approximation ratio can be proved

10

Local Search Paradigm

search space = complete candidate solutions
search step = modification of one or more solution components

neighborhood candidate solutions in the search space reachable in a step

iteratively generate and evaluate candidate solutions
decision problems: evaluation = test if solution
optimization problems: evaluation = check objective function value

Iterative Improvement (II):
determine initial candidate solution s
while s has better neighbors do

choose a neighbor s′ of s such that f(s′) < f(s)
s := s′

12

Local Search Algorithm

Basic Components:

solution representation search space

initial solution

neighborhood relation (determines the move operator)

evaluation function

13

Outline

1. Search Paradigms
Construction Heuristics
Local Search

2. Software Tools
Constraint-Based Local Search with CometTM

14

Software Tools

Modeling languages
interpreted languages with a precise syntax and semantics

Software libraries
collections of subprograms used to develop software

Software frameworks
set of abstract classes and their interactions

frozen spots (remain unchanged in any instantiation of the framework)

hot spots (parts where programmers add their own code)

15

Software Tools

No well established software tool for Local Search:

the apparent simplicity of Local Search induces to build applications
from scratch.

crucial roles played by delta/incremental updates which is problem
dependent

the development of Local Search is in part a craft,
beside engineering and science.

lack of a unified view of Local Search.

16

Software Tools

EasyLocal++ C++, Java Local Search
ParadisEO C++ Local Search, Evolutionary Algorithm
OpenTS Java Tabu Search
Comet – Language

EasyLocal++ http://tabu.diegm.uniud.it/EasyLocal++/
ParadisEO http://paradiseo.gforge.inria.fr
OpenTS http://www.coin-or.org/Ots
Comet http://dynadec.com/

17

A Framework

http://tabu.diegm.uniud.it/EasyLocal++/

18

Comet is

A programming language

Syntax inspired by C++
Object-oriented
Operator overloading
Filestreams

Interpreted or Just-in-Time compiled
Garbage collection
High-level features

Invariants (one-way-constraints)
Closures
Functional programming-like constructions

List comprehension
sum, select, selectMin, selectMax

Sets, dictionaries, etc. are builtin types
Events

20

Workflow

21

Workflow

22

Workflow

23

Source Organization

24

Source Organization

25

Source Organization

26

Comet is

A runtime environment
With integrated optimization solvers

Constraint-Based Local Search
Constraint Programming
Linear Programming (COIN-OR CLP)
Mixed Integer Programming

2D graphics library
Available for many platforms

Mac OS X (32 and 64 bit)
Windows
Linux (32 and 64 bit)

Ubuntu
SuSE
RedHat/Fedora

27

Comet is

Unfortunately not Open Source

Maintained and owned by Pascal Van Hentenryck (Brown University),
Laurent Michel (University of Connecticut), Dynadec.

In active development

Syntax is changing (faster than the documentation)
Small bugs will be fixed fast
Large bugs will be fixed
Feature requests are always considered

28

Constraint Programming is

Model
Variables

Domains

Objective Function
Constraints

Search
Branching

Variable selection
Value selection

Search strategy
BFS
DFS
LDS

29

Constraint-Based Local Search is

Model
Incremental variables
Invariants
Differentiable objects

Functions
Constraints
Constraint Systems

Search
Local Search

Iterative Improvement
Tabu Search
Simulated Annealing
Guided Local Search

30

Incremental variables

var{int}, var{float}, var{bool}, var{set{int}}, ...

Attached to a model object
Has a domain
Has a value

Examples
Solver<LS> m();

var{int} x(m, 1..100);
var{bool} b[1..7](m);
var{set{int}} S(m);

x := 7;
S := {1,3,6,8};

31

Invariants

var <- expr
Also known as one-way constraints
Defined over incremental variables
Implicitly attached to a model object
LHS variable value is maintained incrementally under changes to RHS
variable values
Can be user defined (by implementing Invariant<LS>)

Examples
var{int} x(m) := 7
var{int} y(m) <- (x+5)*x;
x <- y; // not allowed!!!
y := 3; // not allowed!!!
var{int} c[i in 1..n](m) := (i % 6);
var{int} C(m) <- sum(i in 1..n)(c[i]);
var{set{int}} Z(m) <- collect(i in n : c[i] == 0)(i);
var{int} q(m) <- c[x];

32

Differentiable objects

Constraint<LS>

ConstraintSystem<LS>

Function<LS>

Defined over incremental variables
Implicitly attached to a model object
Has a value (or a number of violations)
Maintains value incrementally under changes to variable values
Supports delta evaluations
Can be user defined (by extending UserConstraint<LS>)

33

Constraint<LS>

Interface
int getAssignDelta(var{int},int)
int getAssignDelta(var{int}[],int[])
int getSwapDelta(var{int},var{int})
var{int}[] getVariables()
var{boolean} isTrue()
var{int} violations()
var{int} violations(var{int})

34

ConstraintSystem<LS> extends Constraint<LS>

A conjunction of constraints

Interface
Constraint<LS> post(expr{boolean})
Constraint<LS> post(expr{boolean},int)
Constraint<LS> post(Constraint<LS>)
Constraint<LS> post(Constraint<LS>,int)

35

ConstraintSystem<LS> extends Constraint<LS>

Examples
Solver<LS> m();
var{int} x[1..10](m);
var{int} y[1..10](m, 1..2);
int w[i in 1..10] = 2*i;
int C[1..2] = 95;

ConstraintSystem<LS> S(m);
S.post(x[1] >= 7);
S.post(sum(i in 3..7)(x[i]*x[i] <= x[10]);
S.post(AllDifferent<LS>(x));
S.post(Knapsack<LS>(y, w, C));

36

Function<LS>

Interface
int getAssignDelta(var{int},int)
int getSwapDelta(var{int},var{int})
var{int} flipDelta(var{boolean})
var{int} evaluation()
var{int} value()
var{int}[] getVariables()
var{int} increase(var{int})
var{int} decrease(var{int})

37

Function<LS>

Examples
Solver<LS> m();

var{int} x(m, 1..10);

FunctionWrapper<LS> f1(x[1]*(7-x[2]);
FunctionWrapper<LS> f2(x[5]);
FunctionPower<LS> f3(f2, 3);
FunctionTimes<LS> f4(f2, f3);
FunctionSum<LS> f5(m);
F.post(f1);
F.post(f2);
F.post(f3, 17);
F.post(x[10]-10);
F.close();
MinNbDistinct<LS> f6(x);

38

Overview

39

Example

N -Queens problem

Input: A chessboard of size N ×N

Task: Find a placement of n queens
on the board such that no two queens
are on the same row, column, or
diagonal.

40

A CP Example
import cotfd;

int t0 = System.getCPUTime();
Solver<CP> m();
int n = 8;
range S = 1..n;
var<CP>{int} q[i in S](m,S);
Integer c(0);
solve<m> {
m.post(alldifferent(all(i in S) q[i] + i));
m.post(alldifferent(all(i in S) q[i] - i));
m.post(alldifferent(q));

} using {
forall(i in S : !q[i].bound()) by (q[i].getSize())
tryall<m>(v in S : q[i].memberOf(v))

m.post(q[i] == v);
onFailure m.post(q[i]!=v);
cout << q << endl;
c := c + 1;

}

cout << "Nb␣=␣" << c << endl;
cout << "Time␣=␣" << System.getCPUTime() - t0 << endl;
cout << "#choices␣=␣" << m.getNChoice() << endl;
cout << "#fail␣=␣" << m.getNFail() << endl; 41

An LS Example

import cotls;
int n = 16;
range Size = 1..n;
UniformDistribution distr(Size);

Solver<LS> m();
var{int} queen[Size](m,Size) := distr.get();
ConstraintSystem<LS> S(m);

S.post(alldifferent(queen));
S.post(alldifferent(all(i in Size) queen[i] + i));
S.post(alldifferent(all(i in Size) queen[i] - i));
m.close();

int it = 0;
while (S.violations() > 0 && it < 50 * n) {
select(q in Size,v in Size : S.getAssignDelta(queen[q],v) < 0) {
queen[q] := v;
cout<<"change:␣queen["<<q<<"]␣:=␣"<<v<<"␣viol:␣"<<S.violations() <<endl;

}
it = it + 1;

}
cout << queen << endl;

42

How to learn more

Comet Tutorial
in the Comet distribution

Constraint-Based Local Search
P. Van Hentenryck, L. Michel
MIT Press, 2005
ISBN-10: 0-262-22077-6

Implement, experiment, fail, think, try again!
See: http://www.imada.sdu.dk/ marco/Misc/comet.html
Ask: http://forums.dynadec.com

43

Summary

Modeling (from previous lecture)

(High level) Construction Heuristics

(High level) Local Search

Development framework

Comet

44

Outlook

Working Environment

Construction Heuristics

Examples for the TSP

45

