
DM811

Heuristics for Combinatorial Optimization

Lecture 3
Construction Heuristics and Metaheuristics

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Outline

1. Work Environment
Organization

2. Complete Search Methods
Constraint Satisfaction Problems

2Outline

1. Work Environment
Organization

2. Complete Search Methods
Constraint Satisfaction Problems

3

Building a Work Environment

What will you need during the project? How will you organize it? How will
you make things work together?

src/ code that implements the algorithm (likely, several versions)
bin/ place where to put your executables
data/ input: Instances for the algorithm, parameters to guide the
algorithm, instructions for reporting.
res/ output: The result, the performance measurements
R/ Analysis tools: statistics, data analysis, visualization
doc/ journal: A record of your experiments and findings.
log/ other log files produced by the run of the algorithm

5



Example

Input controls on command line

comet queens.co -i instance.in -o output.sol -l run.log > data.out

Output on stdout, self-describing

#stat instance.in 30 90
seed: 9897868
Parameter1: 30
Parameter2: A
Read instance. Time: 0.016001
begin try 1
best 0 col 22 time 0.004000 iter 0 par_iter 0
best 3 col 21 time 0.004000 iter 0 par_iter 0
best 1 col 21 time 0.004000 iter 0 par_iter 0
best 0 col 21 time 0.004000 iter 1 par_iter 1
best 6 col 20 time 0.004000 iter 3 par_iter 1
best 4 col 20 time 0.004000 iter 4 par_iter 2
best 2 col 20 time 0.004000 iter 6 par_iter 4
exit iter 7 time 1.000062
end try 1

7

Example

If a single program that implements many heuristics

re-compile for new versions but take old versions with a journal in
archive.

use command line parameters to choose among the heuristics

C: getopt, getopt_long, opag (option parser generator)
Java: package org.apache.commons.cli
Comet: see example provided loadDIMACS.co

comet queens.co -i instance.in -o output.sol -l run.log -solver 2-opt > data.out

use identifying labels in naming file outputs
Example:
c0010.i0002.t0001.s02010.log

8Example

You will need:
multiple runs, multiple instances, multiple classes and multiple
algorithms.
Arrange this outside of your program: è unix scripts (eg, bash one line
program, perl, php)

Parse outputfiles:
Example
grep #stat | cut -f 2 -d " "

See http://www.gnu.org/software/coreutils/manual/ for shell tools.

Data in form of matrix or data frame goes directly into R imported by
read.table(), untouched by human hands!
alg instance run sol time
ROS le450_15a.col 3 21 0.00267
ROS le450_15b.col 3 21 0
ROS le450_15d.col 3 31 0.00267
RLF le450_15a.col 3 17 0.00533
RLF le450_15b.col 3 16 0.008
...

9

Graphics

Visualization helps understanding

Problem visualization (graphviz, igraph)

Algorithm animation: (comet visualize)

Results visualization: recommended R (more on this later)

10



Program Profiling

Check the correctness of your solutions many times

Plot the development of
best visited solution quality
current solution quality

over time and compare with other features of the algorithm.

11

Code Optimization

Profile time consumption per program components

under Linux: gprof

1. add flag -pg in compilation
2. run the program
3. gprof gmon.out > a.txt

Java VM profilers (plugin for eclipse)

12
Software Development
Extreme Programming & Scrum

Planning

Release planning creates the schedule • Make frequent small releases • The
project is divided into iterations

Designing

Simplicity • No functionality is added early • Refactor: eliminate unused
functionality and redundancy

Coding

Code must be written to agreed standards • Code the unit test first • All
production code is pair programmed • Leave optimization till last • No
overtime

Testing

All code must have unit tests • All code must pass all unit tests before it can
be released • When a bug is found tests are created

13

Outline

1. Work Environment
Organization

2. Complete Search Methods
Constraint Satisfaction Problems

14



Constraint Statisfaction Problem

Constraint Satisfaction Problem (CSP)

A CSP is a finite set of variables X, together with a finite set of constraints
C, each on a subset of X. A solution to a CSP is an assignment of a value
d ∈ D(x) to each x ∈ X, such that all constraints are satisfied
simultaneously.

Constraint Optimization Problem (COP)

A COP is a CSP P defined on the variables x1, . . . , xn, together with an
objective function f : D(x1)× · · · ×D(xn)→ Q that assigns a value to each
assignment of values to the variables. An optimal solution to a minimization
(maximization) COP is a solution d to P that minimizes (maximizes) the
value of f(d).

15

Search Methods

initial state: the empty assignment in which all variables are unassigned
successor function: a value can be assigned to any unassigned variable,
provided that it does not conflict with previously assigned variables
goal test: the current assignment is complete
path cost: a constant cost

Types of problems:

Assignment
Sequencing
Subset
Routing
...

16Complete Tree Search

Uninformed

Search Space

tree with branching factor at the top level nd
at the next level (n− 1)d.
The tree has n! · dn even if only dn possible complete assignments.

Informed

CSP is commutative in the order of application of any given set of
action. (we reach same partial solution regardless of the order)

Hence generate successors by considering possible assignments for only a
single variable at each node in the search tree.

look-ahead, best first, etc.

18

Dealing with Constraints

Backtracking search

depth-first search that chooses one variable at a time and backtracks when a
variable has no legal values left to assign.

20



Backtrack Search

No need to copy solutions all the times but rather extensions and undo
extensions

Since CSP is standard then the alg is also standard and can use general
purpose algorithms for initial state, successor function and goal test.

Backtracking is uninformed and complete. Other search algorithms may
use information in form of heuristics.

21

Backtracking
General Concepts

Decisions in general purpose methods:

1) Which variable should we assign next, and in what order should its
values be tried?

2) What are the implications of the current variable assignments for the
other unassigned variables?

3) When a path fails – that is, a state is reached in which a variable has no
legal values can the search avoid repeating this failure in subsequent
paths?

Search (1) + Inference (2) + Backtracking (3) = Constraint Programming

In the general case, at point 1) we use heuristic rules.

If we do not backtrack (point 3) then we have a construction heuristic.

22


