
DM811

Heuristics for Combinatorial Optimization

Lecture 4
Construction Heuristics and Metaheuristics

—
Intro to Experimental Analysis

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleOutline

1. Construction Heuristics
Complete Search Methods
Incomplete Search Methods

2. Metaheuristics
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP
Adaptive Iterated Construction Search

3. Experimental Analysis
Definitions
Performance Measures
Sample Statistics

4. Example

2

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleOutline

1. Construction Heuristics
Complete Search Methods
Incomplete Search Methods

2. Metaheuristics
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP
Adaptive Iterated Construction Search

3. Experimental Analysis
Definitions
Performance Measures
Sample Statistics

4. Example

3

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleOutline

1. Construction Heuristics
Complete Search Methods
Incomplete Search Methods

2. Metaheuristics
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP
Adaptive Iterated Construction Search

3. Experimental Analysis
Definitions
Performance Measures
Sample Statistics

4. Example

4

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
Example

1) Which variable should we assign next,
and in what order should its values be tried?

Select-Initial-Unassigned-Variable

Select-Unassigned-Variable
most constrained first = fail-first heuristic
= Minimum remaining values (MRV) heuristic
(tend to reduce the branching factor and to speed up pruning)
least constrained last

Eg.: max degree, farthest, earliest due date, etc.

Order-Domain-Values
greedy
least constraining value heuristic
(leaves maximum flexibility for subsequent variable assignments)
maximal regret
implements a kind of look ahead

5

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
Example

2) What are the implications of the current variable assignments for the
other unassigned variables?

Propagating information through constraints:

Implicit in Select-Unassigned-Variable

Forward checking (coupled with Minimum Remaining Values)

Constraint propagation in CSP
arc consistency: force all (directed) arcs uv to be consistent:
∃ a value in D(v) : ∀ values in D(u), otherwise detects inconsistency

can be applied as preprocessing or as propagation step after each
assignment (Maintaining Arc Consistency)

Applied repeatedly

9

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExamplePropagation: An Example

10

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
Example

3) When a path fails – that is, a state is reached in which a variable has no
legal values can the search avoid repeating this failure in subsequent
paths?

Backtracking-Search
chronological backtracking, the most recent decision point is revisited
backjumping, backtracks to the most recent variable in the conflict set
(set of previously assigned variables connected to X by constraints).

11

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleAn Empirical Comparison

Median number of consistency checks

12

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleDealing with Objectives

Optimization Problems

A∗ search
The priority assigned to a node x is determined by the function

f (x) = g(x) + h(x)

g(x): cost of the path so far
h(x): heuristic estimate of the minimal cost to reach the goal from x.
It is optimal if h(x) is an

admissible heuristic: never overestimates the cost to reach the goal
consistent: h(n) ≤ c(n, a, n′) + h(n′)

13

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
Example

A∗ best-first search

14

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
Example

A∗ search

Possible choices for admissible heuristic functions

optimal solution to an easily solvable relaxed problem
optimal solution to an easily solvable subproblem
learning from experience by gathering statistics on state features
preferred heuristics functions with higher values (provided they do not
overestimate)
if several heuristics available h1, h2, . . . , hm and not clear which is the
best then:

h(x) = max{h1(x), . . . , hm(x)}

15

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
Example

A∗ search
Drawbacks

Time complexity: In the worst case, the number of nodes expanded is
exponential,
(but it is polynomial when the heuristic function h meets the following
condition:

|h(x)− h∗(x)| ≤ O(log h∗(x))

h∗ is the optimal heuristic, the exact cost of getting from x to the goal.)

Memory usage: In the worst case, it must remember an exponential
number of nodes.
Several variants: including iterative deepening A∗ (IDA∗),
memory-bounded A∗ (MA∗) and simplified memory bounded A∗ (SMA∗)
and recursive best-first search (RBFS)

16

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleOutline

1. Construction Heuristics
Complete Search Methods
Incomplete Search Methods

2. Metaheuristics
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP
Adaptive Iterated Construction Search

3. Experimental Analysis
Definitions
Performance Measures
Sample Statistics

4. Example

17

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleIncomplete Search

Complete search is often better suited when ...

proofs of insolubility or optimality are required;
time constraints are not critical;
problem-specific knowledge can be exploited.

Incomplete search is the necessary choice when ...

non linear constraints and non linear objective function;
reasonably good solutions are required within a short time;
problem-specific knowledge is rather limited.

19

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleIncomplete Search

Complete search is often better suited when ...

proofs of insolubility or optimality are required;
time constraints are not critical;
problem-specific knowledge can be exploited.

Incomplete search is the necessary choice when ...

non linear constraints and non linear objective function;
reasonably good solutions are required within a short time;
problem-specific knowledge is rather limited.

19

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleGreedy algorithms

Greedy algorithms (derived from best-first)

Strategy: always make the choice that is best at the moment
They are not generally guaranteed to find globally optimal solutions
(but sometimes they do: Minimum Spanning Tree, Single Source
Shortest Path, etc.)

We will see problem sepcific examples

21

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleOutline

1. Construction Heuristics
Complete Search Methods
Incomplete Search Methods

2. Metaheuristics
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP
Adaptive Iterated Construction Search

3. Experimental Analysis
Definitions
Performance Measures
Sample Statistics

4. Example

22

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleMetaheuristics

On backtracking framework
(beyond best-first search)

Random Restart

Bounded backtrack

Credit-based search

Limited Discrepancy Search

Barrier Search

Randomization in Tree Search

Outside the exact framework
(beyond greedy search)

Random Restart

Rollout/Pilot Method

Beam Search

Iterated Greedy

GRASP

(Adaptive Iterated Construction
Search)

(Multilevel Refinement)

23

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleOutline

1. Construction Heuristics
Complete Search Methods
Incomplete Search Methods

2. Metaheuristics
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP
Adaptive Iterated Construction Search

3. Experimental Analysis
Definitions
Performance Measures
Sample Statistics

4. Example

24

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleRandomization in Tree Search

The idea comes from complete search: the important decisions are made up
in the search tree (backdoors) random selections + restart strategy

Random selections
randomization in variable ordering:

breaking ties at random
use heuristic to rank and randmly pick from small factor from the best
random pick among heuristics
random pick variable with probability depending on heuristic value

randomization in value ordering:
just select random from the domain

Restart strategy

Example: Su = (1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 4, 8, 1, . . .)

25

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleOutline

1. Construction Heuristics
Complete Search Methods
Incomplete Search Methods

2. Metaheuristics
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP
Adaptive Iterated Construction Search

3. Experimental Analysis
Definitions
Performance Measures
Sample Statistics

4. Example

26

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleRollout/Pilot Method

Derived from A∗

Each candidate solution is a collection of m components
S = (s1, s2, . . . , sm).
Master process adds components sequentially to a partial solution
Sk = (s1, s2, . . . sk)

At the k-th iteration the master process evaluates feasible components
to add based on an heuristic look-ahead strategy.
The evaluation function H(Sk+1) is determined by sub-heuristics that
complete the solution starting from Sk

Sub-heuristics are combined in H(Sk+1) by
weighted sum
minimal value

27

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
Example

Speed-ups:

halt whenever cost of current partial solution exceeds current upper
bound
evaluate only a fraction of possible components

28

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleOutline

1. Construction Heuristics
Complete Search Methods
Incomplete Search Methods

2. Metaheuristics
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP
Adaptive Iterated Construction Search

3. Experimental Analysis
Definitions
Performance Measures
Sample Statistics

4. Example

29

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleBeam Search

Again based on tree search:
maintain a set B of bw (beam width) partial candidate solutions

at each iteration extend each solution from B in fw (filter width)
possible ways

rank each bw × fw candidate solutions and take the best bw partial
solutions

complete candidate solutions obtained by B are maintained in Bf

Stop when no partial solution in B is to be extended

30

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleOutline

1. Construction Heuristics
Complete Search Methods
Incomplete Search Methods

2. Metaheuristics
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP
Adaptive Iterated Construction Search

3. Experimental Analysis
Definitions
Performance Measures
Sample Statistics

4. Example

31

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleIterated Greedy

Key idea: use greedy construction

alternation of construction and deconstruction phases
an acceptance criterion decides whether the search continues from the
new or from the old solution.

Iterated Greedy (IG):
determine initial candidate solution s
while termination criterion is not satisfied do

r := s
(randomly or heuristically) destruct part of s
greedily reconstruct the missing part of s
based on acceptance criterion,

keep s or revert to s := r

32

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleExtension: Squeaky Wheel

Key idea: solutions can reveal problem structure which maybe worth to
exploit.

Use a greedy heuristic repeatedly by prioritizing the elements that create
troubles.

Squeaky Wheel
Constructor: greedy algorithm on a sequence of problem elements.
Analyzer: assign a penalty to problem elements that contribute to flaws
in the current solution.
Prioritizer: uses the penalties to modify the previous sequence of problem
elements. Elements with high penalty are moved toward the front.

Possible to include a local search phase between one iteration and the other

33

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleOutline

1. Construction Heuristics
Complete Search Methods
Incomplete Search Methods

2. Metaheuristics
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP
Adaptive Iterated Construction Search

3. Experimental Analysis
Definitions
Performance Measures
Sample Statistics

4. Example

34

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleGRASP

Greedy Randomized Adaptive Search Procedure

Key Idea: Combine randomized constructive search with subsequent local
search.

Motivation:

Candidate solutions obtained from construction heuristics can often be
substantially improved by local search.

Local search methods often require substantially fewer steps to reach
high-quality solutions when initialized using greedy constructive search
rather than random picking.

By iterating cycles of constructive + local search, further performance
improvements can be achieved.

35

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleGRASP

Greedy Randomized Adaptive Search Procedure

Key Idea: Combine randomized constructive search with subsequent local
search.

Motivation:

Candidate solutions obtained from construction heuristics can often be
substantially improved by local search.

Local search methods often require substantially fewer steps to reach
high-quality solutions when initialized using greedy constructive search
rather than random picking.

By iterating cycles of constructive + local search, further performance
improvements can be achieved.

35

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleGRASP

Greedy Randomized Adaptive Search Procedure

Key Idea: Combine randomized constructive search with subsequent local
search.

Motivation:

Candidate solutions obtained from construction heuristics can often be
substantially improved by local search.

Local search methods often require substantially fewer steps to reach
high-quality solutions when initialized using greedy constructive search
rather than random picking.

By iterating cycles of constructive + local search, further performance
improvements can be achieved.

35

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
Example

Greedy Randomized “Adaptive” Search Procedure (GRASP):
while termination criterion is not satisfied do

generate candidate solution s using
subsidiary greedy randomized constructive search

perform subsidiary local search on s

Randomization in constructive search ensures that a large number of
good starting points for subsidiary local search is obtained.
Constructive search in GRASP is ‘adaptive’ (or dynamic):
Heuristic value of solution component to be added to
a given partial candidate solution may depend on
solution components present in it.
Variants of GRASP without local search phase
(aka semi-greedy heuristics) typically do not reach
the performance of GRASP with local search.

36

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
Example

Greedy Randomized “Adaptive” Search Procedure (GRASP):
while termination criterion is not satisfied do

generate candidate solution s using
subsidiary greedy randomized constructive search

perform subsidiary local search on s

Randomization in constructive search ensures that a large number of
good starting points for subsidiary local search is obtained.
Constructive search in GRASP is ‘adaptive’ (or dynamic):
Heuristic value of solution component to be added to
a given partial candidate solution may depend on
solution components present in it.
Variants of GRASP without local search phase
(aka semi-greedy heuristics) typically do not reach
the performance of GRASP with local search.

36

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
Example

Greedy Randomized “Adaptive” Search Procedure (GRASP):
while termination criterion is not satisfied do

generate candidate solution s using
subsidiary greedy randomized constructive search

perform subsidiary local search on s

Randomization in constructive search ensures that a large number of
good starting points for subsidiary local search is obtained.

Constructive search in GRASP is ‘adaptive’ (or dynamic):
Heuristic value of solution component to be added to
a given partial candidate solution may depend on
solution components present in it.
Variants of GRASP without local search phase
(aka semi-greedy heuristics) typically do not reach
the performance of GRASP with local search.

36

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
Example

Greedy Randomized “Adaptive” Search Procedure (GRASP):
while termination criterion is not satisfied do

generate candidate solution s using
subsidiary greedy randomized constructive search

perform subsidiary local search on s

Randomization in constructive search ensures that a large number of
good starting points for subsidiary local search is obtained.
Constructive search in GRASP is ‘adaptive’ (or dynamic):
Heuristic value of solution component to be added to
a given partial candidate solution may depend on
solution components present in it.

Variants of GRASP without local search phase
(aka semi-greedy heuristics) typically do not reach
the performance of GRASP with local search.

36

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
Example

Greedy Randomized “Adaptive” Search Procedure (GRASP):
while termination criterion is not satisfied do

generate candidate solution s using
subsidiary greedy randomized constructive search

perform subsidiary local search on s

Randomization in constructive search ensures that a large number of
good starting points for subsidiary local search is obtained.
Constructive search in GRASP is ‘adaptive’ (or dynamic):
Heuristic value of solution component to be added to
a given partial candidate solution may depend on
solution components present in it.
Variants of GRASP without local search phase
(aka semi-greedy heuristics) typically do not reach
the performance of GRASP with local search.

36

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
Example

Restricted candidate lists (RCLs)

Each step of constructive search adds a solution component selected
uniformly at random from a restricted candidate list (RCL).

RCLs are constructed in each step using a heuristic function h.

RCLs based on cardinality restriction comprise the k best-ranked solution
components. (k is a parameter of the algorithm.)

RCLs based on value restriction comprise all solution components l for
which h(l) ≤ hmin + α · (hmax − hmin),
where hmin = minimal value of h and hmax = maximal value
of h for any l . (α is a parameter of the algorithm.)

Possible extension: reactive GRASP (e.g., dynamic adaptation of α
during search)

37

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
Example

Restricted candidate lists (RCLs)

Each step of constructive search adds a solution component selected
uniformly at random from a restricted candidate list (RCL).

RCLs are constructed in each step using a heuristic function h.

RCLs based on cardinality restriction comprise the k best-ranked solution
components. (k is a parameter of the algorithm.)

RCLs based on value restriction comprise all solution components l for
which h(l) ≤ hmin + α · (hmax − hmin),
where hmin = minimal value of h and hmax = maximal value
of h for any l . (α is a parameter of the algorithm.)

Possible extension: reactive GRASP (e.g., dynamic adaptation of α
during search)

37

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
Example

Restricted candidate lists (RCLs)

Each step of constructive search adds a solution component selected
uniformly at random from a restricted candidate list (RCL).

RCLs are constructed in each step using a heuristic function h.

RCLs based on cardinality restriction comprise the k best-ranked solution
components. (k is a parameter of the algorithm.)

RCLs based on value restriction comprise all solution components l for
which h(l) ≤ hmin + α · (hmax − hmin),
where hmin = minimal value of h and hmax = maximal value
of h for any l . (α is a parameter of the algorithm.)

Possible extension: reactive GRASP (e.g., dynamic adaptation of α
during search)

37

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
Example

Restricted candidate lists (RCLs)

Each step of constructive search adds a solution component selected
uniformly at random from a restricted candidate list (RCL).

RCLs are constructed in each step using a heuristic function h.

RCLs based on cardinality restriction comprise the k best-ranked solution
components. (k is a parameter of the algorithm.)

RCLs based on value restriction comprise all solution components l for
which h(l) ≤ hmin + α · (hmax − hmin),
where hmin = minimal value of h and hmax = maximal value
of h for any l . (α is a parameter of the algorithm.)

Possible extension: reactive GRASP (e.g., dynamic adaptation of α
during search)

37

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
Example

Restricted candidate lists (RCLs)

Each step of constructive search adds a solution component selected
uniformly at random from a restricted candidate list (RCL).

RCLs are constructed in each step using a heuristic function h.

RCLs based on cardinality restriction comprise the k best-ranked solution
components. (k is a parameter of the algorithm.)

RCLs based on value restriction comprise all solution components l for
which h(l) ≤ hmin + α · (hmax − hmin),
where hmin = minimal value of h and hmax = maximal value
of h for any l . (α is a parameter of the algorithm.)

Possible extension: reactive GRASP (e.g., dynamic adaptation of α
during search)

37

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleOutline

1. Construction Heuristics
Complete Search Methods
Incomplete Search Methods

2. Metaheuristics
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP
Adaptive Iterated Construction Search

3. Experimental Analysis
Definitions
Performance Measures
Sample Statistics

4. Example

38

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleAdaptive Iterated Construction Search

Key Idea: Alternate construction and local search phases as in GRASP,
exploiting experience gained during the search process.

Realisation:

Associate weights with possible decisions made during constructive
search.

Initialize all weights to some small value τ0 at beginning of search
process.

After every cycle (= constructive + local local search phase), update
weights based on solution quality and solution components of current
candidate solution.

39

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleAdaptive Iterated Construction Search

Key Idea: Alternate construction and local search phases as in GRASP,
exploiting experience gained during the search process.

Realisation:

Associate weights with possible decisions made during constructive
search.

Initialize all weights to some small value τ0 at beginning of search
process.

After every cycle (= constructive + local local search phase), update
weights based on solution quality and solution components of current
candidate solution.

39

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleAdaptive Iterated Construction Search

Key Idea: Alternate construction and local search phases as in GRASP,
exploiting experience gained during the search process.

Realisation:

Associate weights with possible decisions made during constructive
search.

Initialize all weights to some small value τ0 at beginning of search
process.

After every cycle (= constructive + local local search phase), update
weights based on solution quality and solution components of current
candidate solution.

39

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleAdaptive Iterated Construction Search

Key Idea: Alternate construction and local search phases as in GRASP,
exploiting experience gained during the search process.

Realisation:

Associate weights with possible decisions made during constructive
search.

Initialize all weights to some small value τ0 at beginning of search
process.

After every cycle (= constructive + local local search phase), update
weights based on solution quality and solution components of current
candidate solution.

39

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
Example

Adaptive Iterated Construction Search (AICS):
initialise weights

while termination criterion is not satisfied: do
generate candidate solution s using
subsidiary randomized constructive search

perform subsidiary local search on s
adapt weights based on s

40

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
Example

Adaptive Iterated Construction Search (AICS):
initialise weights
while termination criterion is not satisfied: do

generate candidate solution s using
subsidiary randomized constructive search

perform subsidiary local search on s
adapt weights based on s

40

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
Example

Adaptive Iterated Construction Search (AICS):
initialise weights
while termination criterion is not satisfied: do

generate candidate solution s using
subsidiary randomized constructive search

perform subsidiary local search on s

adapt weights based on s

40

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
Example

Adaptive Iterated Construction Search (AICS):
initialise weights
while termination criterion is not satisfied: do

generate candidate solution s using
subsidiary randomized constructive search

perform subsidiary local search on s
adapt weights based on s

40

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
Example

Subsidiary constructive search:

The solution component to be added in each step of constructive search
is based on i) weights and ii) heuristic function h.

h can be standard heuristic function as, e.g., used by
greedy heuristics

It is often useful to design solution component selection in constructive
search such that any solution component may be chosen (at least with
some small probability) irrespective of its weight and heuristic value.

41

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
Example

Subsidiary constructive search:

The solution component to be added in each step of constructive search
is based on i) weights and ii) heuristic function h.

h can be standard heuristic function as, e.g., used by
greedy heuristics

It is often useful to design solution component selection in constructive
search such that any solution component may be chosen (at least with
some small probability) irrespective of its weight and heuristic value.

41

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
Example

Subsidiary constructive search:

The solution component to be added in each step of constructive search
is based on i) weights and ii) heuristic function h.

h can be standard heuristic function as, e.g., used by
greedy heuristics

It is often useful to design solution component selection in constructive
search such that any solution component may be chosen (at least with
some small probability) irrespective of its weight and heuristic value.

41

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
Example

Subsidiary local search:

As in GRASP, local search phase is typically important for achieving
good performance.

Can be based on Iterative Improvement or more advanced LS method
(the latter often results in better performance).

Tradeoff between computation time used in construction phase vs local
search phase (typically optimized empirically, depends on problem
domain).

42

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
Example

Subsidiary local search:

As in GRASP, local search phase is typically important for achieving
good performance.

Can be based on Iterative Improvement or more advanced LS method
(the latter often results in better performance).

Tradeoff between computation time used in construction phase vs local
search phase (typically optimized empirically, depends on problem
domain).

42

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
Example

Subsidiary local search:

As in GRASP, local search phase is typically important for achieving
good performance.

Can be based on Iterative Improvement or more advanced LS method
(the latter often results in better performance).

Tradeoff between computation time used in construction phase vs local
search phase (typically optimized empirically, depends on problem
domain).

42

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
Example

Weight updating mechanism:

Typical mechanism: increase weights of all solution components
contained in candidate solution obtained from local search.

Can also use aspects of search history;
e.g., current candidate solution can be used as basis for
weight update for additional intensification.

43

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
Example

Weight updating mechanism:

Typical mechanism: increase weights of all solution components
contained in candidate solution obtained from local search.

Can also use aspects of search history;
e.g., current candidate solution can be used as basis for
weight update for additional intensification.

43

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
Example

Example: A simple AICS algorithm for the TSP (1/2)
[Based on Ant System for the TSP, Dorigo et al. 1991]

Search space and solution set as usual (all Hamiltonian cycles in given
graph G). However represented in a construction tree T .

Associate weight τij with each edge (i , j) in G and T

Use heuristic values ηij := 1/wij .

Initialize all weights to a small value τ0 (parameter).

Constructive search start with randomly chosen vertex
and iteratively extend partial round trip φ by selecting vertex
not contained in φ with probability

[τij]
α · [ηij]

β∑
l∈N′(i)[τil]

α · [ηij]β

44

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
Example

Example: A simple AICS algorithm for the TSP (1/2)
[Based on Ant System for the TSP, Dorigo et al. 1991]

Search space and solution set as usual (all Hamiltonian cycles in given
graph G). However represented in a construction tree T .

Associate weight τij with each edge (i , j) in G and T

Use heuristic values ηij := 1/wij .

Initialize all weights to a small value τ0 (parameter).

Constructive search start with randomly chosen vertex
and iteratively extend partial round trip φ by selecting vertex
not contained in φ with probability

[τij]
α · [ηij]

β∑
l∈N′(i)[τil]

α · [ηij]β

44

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
Example

Example: A simple AICS algorithm for the TSP (1/2)
[Based on Ant System for the TSP, Dorigo et al. 1991]

Search space and solution set as usual (all Hamiltonian cycles in given
graph G). However represented in a construction tree T .

Associate weight τij with each edge (i , j) in G and T

Use heuristic values ηij := 1/wij .

Initialize all weights to a small value τ0 (parameter).

Constructive search start with randomly chosen vertex
and iteratively extend partial round trip φ by selecting vertex
not contained in φ with probability

[τij]
α · [ηij]

β∑
l∈N′(i)[τil]

α · [ηij]β

44

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
Example

Example: A simple AICS algorithm for the TSP (1/2)
[Based on Ant System for the TSP, Dorigo et al. 1991]

Search space and solution set as usual (all Hamiltonian cycles in given
graph G). However represented in a construction tree T .

Associate weight τij with each edge (i , j) in G and T

Use heuristic values ηij := 1/wij .

Initialize all weights to a small value τ0 (parameter).

Constructive search start with randomly chosen vertex
and iteratively extend partial round trip φ by selecting vertex
not contained in φ with probability

[τij]
α · [ηij]

β∑
l∈N′(i)[τil]

α · [ηij]β

44

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
Example

Example: A simple AICS algorithm for the TSP (1/2)
[Based on Ant System for the TSP, Dorigo et al. 1991]

Search space and solution set as usual (all Hamiltonian cycles in given
graph G). However represented in a construction tree T .

Associate weight τij with each edge (i , j) in G and T

Use heuristic values ηij := 1/wij .

Initialize all weights to a small value τ0 (parameter).

Constructive search start with randomly chosen vertex
and iteratively extend partial round trip φ by selecting vertex
not contained in φ with probability

[τij]
α · [ηij]

β∑
l∈N′(i)[τil]

α · [ηij]β

44

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
Example

Example: A simple AICS algorithm for the TSP (2/2)

Subsidiary local search = typical iterative improvement

Weight update according to

τij := (1− ρ) · τij + ∆(ij , s ′)

where ∆(i , j , s ′) := 1/f (s ′), if edge ij is contained in
the cycle represented by s ′, and 0 otherwise.

Criterion for weight increase is based on intuition that edges contained in
short round trips should be preferably used in subsequent constructions.

Decay mechanism (controlled by parameter ρ) helps to avoid unlimited
growth of weights and lets algorithm forget past experience reflected in
weights.

(Just add a population of cand. solutions and you have
an Ant Colony Optimization Algorithm!)

45

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
Example

Example: A simple AICS algorithm for the TSP (2/2)

Subsidiary local search = typical iterative improvement

Weight update according to

τij := (1− ρ) · τij + ∆(ij , s ′)

where ∆(i , j , s ′) := 1/f (s ′), if edge ij is contained in
the cycle represented by s ′, and 0 otherwise.

Criterion for weight increase is based on intuition that edges contained in
short round trips should be preferably used in subsequent constructions.

Decay mechanism (controlled by parameter ρ) helps to avoid unlimited
growth of weights and lets algorithm forget past experience reflected in
weights.

(Just add a population of cand. solutions and you have
an Ant Colony Optimization Algorithm!)

45

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
Example

Example: A simple AICS algorithm for the TSP (2/2)

Subsidiary local search = typical iterative improvement

Weight update according to

τij := (1− ρ) · τij + ∆(ij , s ′)

where ∆(i , j , s ′) := 1/f (s ′), if edge ij is contained in
the cycle represented by s ′, and 0 otherwise.

Criterion for weight increase is based on intuition that edges contained in
short round trips should be preferably used in subsequent constructions.

Decay mechanism (controlled by parameter ρ) helps to avoid unlimited
growth of weights and lets algorithm forget past experience reflected in
weights.

(Just add a population of cand. solutions and you have
an Ant Colony Optimization Algorithm!)

45

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
Example

Example: A simple AICS algorithm for the TSP (2/2)

Subsidiary local search = typical iterative improvement

Weight update according to

τij := (1− ρ) · τij + ∆(ij , s ′)

where ∆(i , j , s ′) := 1/f (s ′), if edge ij is contained in
the cycle represented by s ′, and 0 otherwise.

Criterion for weight increase is based on intuition that edges contained in
short round trips should be preferably used in subsequent constructions.

Decay mechanism (controlled by parameter ρ) helps to avoid unlimited
growth of weights and lets algorithm forget past experience reflected in
weights.

(Just add a population of cand. solutions and you have
an Ant Colony Optimization Algorithm!)

45

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
Example

Example: A simple AICS algorithm for the TSP (2/2)

Subsidiary local search = typical iterative improvement

Weight update according to

τij := (1− ρ) · τij + ∆(ij , s ′)

where ∆(i , j , s ′) := 1/f (s ′), if edge ij is contained in
the cycle represented by s ′, and 0 otherwise.

Criterion for weight increase is based on intuition that edges contained in
short round trips should be preferably used in subsequent constructions.

Decay mechanism (controlled by parameter ρ) helps to avoid unlimited
growth of weights and lets algorithm forget past experience reflected in
weights.

(Just add a population of cand. solutions and you have
an Ant Colony Optimization Algorithm!)

45

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleOutline

1. Construction Heuristics
Complete Search Methods
Incomplete Search Methods

2. Metaheuristics
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP
Adaptive Iterated Construction Search

3. Experimental Analysis
Definitions
Performance Measures
Sample Statistics

4. Example

46

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleFairness Principle

Fairness principle: being completely fair is perhaps impossible but try to
remove any possible bias

possibly all algorithms must be implemented with the same style, with
the same language and sharing common subprocedures and data
structures
the code must be optimized, e.g., using the best possible data structures
running times must be comparable, e.g., by running experiments on the
same computational environment (or redistributing them randomly)

47

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleOutline

1. Construction Heuristics
Complete Search Methods
Incomplete Search Methods

2. Metaheuristics
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP
Adaptive Iterated Construction Search

3. Experimental Analysis
Definitions
Performance Measures
Sample Statistics

4. Example

48

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleDefinitions

The most typical scenario considered in analysis of search heuristics

Asymptotic heuristics with time (or iteration) limit decided a priori

The algorithm A∞ is halted when time expires.

Deterministic case: A∞ on π
returns a solution of cost x .

The performance of A∞ on π is a
scalar y = x .

Randomized case: A∞ on π returns
a solution of cost X , where X is a
random variable.

The performance of A∞ on π is the
univariate Y = X .

[This is not the only relevant scenario: to be refined later]

49

Random Variables and Probability
Statistics deals with random (or stochastic) variables.

A variable is called random if, prior to observation, its outcome cannot be
predicted with certainty.

The uncertainty is described by a probability distribution.

Discrete variables

Probability distribution:

pi = P[x = vi]

Cumulative Distribution Function (CDF)

F (v) = P[x ≤ v] =
∑

i

pi

Mean

µ = E [X] =
∑

xipi

Variance

σ2 = E [(X − µ)2] =
∑

(xi − µ)2pi

Continuous variables

Probability density function (pdf):

f (v) =
dF (v)

dv

Cumulative Distribution Function (CDF):

F (v) =

∫ v

−∞
f (v)dv

Mean

µ = E [X] =

∫
xf (x)dx

Variance

σ2 = E [(X − µ)2] =

∫
(x − µ)2f (x) dx

Random Variables and Probability
Statistics deals with random (or stochastic) variables.

A variable is called random if, prior to observation, its outcome cannot be
predicted with certainty.

The uncertainty is described by a probability distribution.

Discrete variables

Probability distribution:

pi = P[x = vi]

Cumulative Distribution Function (CDF)

F (v) = P[x ≤ v] =
∑

i

pi

Mean

µ = E [X] =
∑

xipi

Variance

σ2 = E [(X − µ)2] =
∑

(xi − µ)2pi

Continuous variables

Probability density function (pdf):

f (v) =
dF (v)

dv

Cumulative Distribution Function (CDF):

F (v) =

∫ v

−∞
f (v)dv

Mean

µ = E [X] =

∫
xf (x)dx

Variance

σ2 = E [(X − µ)2] =

∫
(x − µ)2f (x) dx

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleGeneralization

For each general problem Π (e.g., TSP, GCP) we denote by CΠ a set
(or class) of instances and by π ∈ CΠ a single instance.

On a specific instance, the random variable Y that defines the performance
measure of an algorithm is described by its probability distribution/density
function

Pr(Y = y | π)

It is often more interesting to generalize the performance
on a class of instances CΠ, that is,

Pr(Y = y ,CΠ) =
∑
π∈Π

Pr(Y = y | π)Pr(π)

52

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleGeneralization

For each general problem Π (e.g., TSP, GCP) we denote by CΠ a set
(or class) of instances and by π ∈ CΠ a single instance.

On a specific instance, the random variable Y that defines the performance
measure of an algorithm is described by its probability distribution/density
function

Pr(Y = y | π)

It is often more interesting to generalize the performance
on a class of instances CΠ, that is,

Pr(Y = y ,CΠ) =
∑
π∈Π

Pr(Y = y | π)Pr(π)

52

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleGeneralization

For each general problem Π (e.g., TSP, GCP) we denote by CΠ a set
(or class) of instances and by π ∈ CΠ a single instance.

On a specific instance, the random variable Y that defines the performance
measure of an algorithm is described by its probability distribution/density
function

Pr(Y = y | π)

It is often more interesting to generalize the performance
on a class of instances CΠ, that is,

Pr(Y = y ,CΠ) =
∑
π∈Π

Pr(Y = y | π)Pr(π)

52

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleSampling

In experiments,

1. we sample the population of instances and
2. we sample the performance of the algorithm on each sampled instance

If on an instance π we run the algorithm r times then we have r replicates of
the performance measure Y , denoted Y1, . . . ,Yr , which are independent and
identically distributed (i.i.d.), i.e.

Pr(y1, . . . , yr |π) =
r∏

j=1

Pr(yj | π)

Pr(y1, . . . , yr) =
∑
π∈CΠ

Pr(y1, . . . , yr | π)Pr(π).

53

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleInstance Selection

In real-life applications a simulation of p(π) can be obtained by
historical data.

In simulation studies instances may be:

real world instances
random variants of real world-instances
online libraries
randomly generated instances

They may be grouped in classes according to some features whose impact
may be worth studying:

type (for features that might impact performance)
size (for scaling studies)
hardness (focus on hard instances)
application (e.g., CSP encodings of scheduling problems), ...

Within the class, instances are drawn with uniform probability p(π) = c

54

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleInstance Selection

In real-life applications a simulation of p(π) can be obtained by
historical data.

In simulation studies instances may be:

real world instances
random variants of real world-instances
online libraries
randomly generated instances

They may be grouped in classes according to some features whose impact
may be worth studying:

type (for features that might impact performance)
size (for scaling studies)
hardness (focus on hard instances)
application (e.g., CSP encodings of scheduling problems), ...

Within the class, instances are drawn with uniform probability p(π) = c

54

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleInstance Selection

In real-life applications a simulation of p(π) can be obtained by
historical data.

In simulation studies instances may be:

real world instances
random variants of real world-instances
online libraries
randomly generated instances

They may be grouped in classes according to some features whose impact
may be worth studying:

type (for features that might impact performance)
size (for scaling studies)
hardness (focus on hard instances)
application (e.g., CSP encodings of scheduling problems), ...

Within the class, instances are drawn with uniform probability p(π) = c

54

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleInstance Selection

In real-life applications a simulation of p(π) can be obtained by
historical data.

In simulation studies instances may be:

real world instances
random variants of real world-instances
online libraries
randomly generated instances

They may be grouped in classes according to some features whose impact
may be worth studying:

type (for features that might impact performance)
size (for scaling studies)
hardness (focus on hard instances)
application (e.g., CSP encodings of scheduling problems), ...

Within the class, instances are drawn with uniform probability p(π) = c
54

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleStatistical Methods

The analysis of performance is based on finite-sized sampled data.
Statistics provides the methods and the mathematical basis to

describe, summarizing, the data (descriptive statistics)
make inference on those data (inferential statistics)

Statistics helps to

guarantee reproducibility
make results reliable
(are the observed results enough to justify the claims?)
extract relevant results from large amount of data

In the practical context of heuristic design and implementation (i.e.,
engineering), statistics helps to take correct design decisions with the least
amount of experimentation

55

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleStatistical Methods

The analysis of performance is based on finite-sized sampled data.
Statistics provides the methods and the mathematical basis to

describe, summarizing, the data (descriptive statistics)
make inference on those data (inferential statistics)

Statistics helps to

guarantee reproducibility
make results reliable
(are the observed results enough to justify the claims?)
extract relevant results from large amount of data

In the practical context of heuristic design and implementation (i.e.,
engineering), statistics helps to take correct design decisions with the least
amount of experimentation

55

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleStatistical Methods

The analysis of performance is based on finite-sized sampled data.
Statistics provides the methods and the mathematical basis to

describe, summarizing, the data (descriptive statistics)
make inference on those data (inferential statistics)

Statistics helps to

guarantee reproducibility
make results reliable
(are the observed results enough to justify the claims?)
extract relevant results from large amount of data

In the practical context of heuristic design and implementation (i.e.,
engineering), statistics helps to take correct design decisions with the least
amount of experimentation

55

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleObjectives of the Experiments

Comparison:
bigger/smaller, same/different,
Algorithm Configuration,
Component-Based Analysis

Standard statistical methods:
experimental designs, test
hypothesis and estimation

Characterization:
Interpolation: fitting models to data
Extrapolation: building models of
data, explaining phenomena

Standard statistical methods: linear
and non linear regression
model fitting

Response
−2 0 2

0.0

0.1

0.2

0.3

0.4

Alg. 1 Alg. 2 Alg. 3 Alg. 4 Alg. 5

Response
−2 0 2

Alg. 1

Alg. 2

Alg. 3

Alg. 4

Alg. 5

56

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleObjectives of the Experiments

Comparison:
bigger/smaller, same/different,
Algorithm Configuration,
Component-Based Analysis

Standard statistical methods:
experimental designs, test
hypothesis and estimation

Characterization:
Interpolation: fitting models to data
Extrapolation: building models of
data, explaining phenomena

Standard statistical methods: linear
and non linear regression
model fitting

0.010.01

0.1

1

10

100

1000
3600

20 40 80 200 400 800 1600

Uniform random graphs

+

+

+

++

+++
++

+
+
+++

+
+
+++

+++++

+

++
++

+++
+++++

+++++ +++++

+++++

+++++

+++++++++++++
++++++++++

++++++
++++++++++++++

+++++

+++++

+++++

+++++++++++++++++++++
+++++

+++++

+++++++++++++++

Size

Se
co

nd
s

p=0 p=0.1 p=0.2 p=0.5

p=0.9

56

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleOutline

1. Construction Heuristics
Complete Search Methods
Incomplete Search Methods

2. Metaheuristics
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP
Adaptive Iterated Construction Search

3. Experimental Analysis
Definitions
Performance Measures
Sample Statistics

4. Example

57

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleMeasures and Transformations

On a single instance

Computational effort indicators

number of elementary operations/algorithmic iterations
(e.g., search steps, objective function evaluations, number of visited
nodes in the search tree, consistency checks, etc.)
total CPU time consumed by the process
(sum of user and system times returned by getrusage)

Solution quality indicators

value returned by the cost function
error from optimum/reference value

(optimality) gap |UB−LB|
UB

ranks

58

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleMeasures and Transformations

On a single instance

Computational effort indicators

number of elementary operations/algorithmic iterations
(e.g., search steps, objective function evaluations, number of visited
nodes in the search tree, consistency checks, etc.)
total CPU time consumed by the process
(sum of user and system times returned by getrusage)

Solution quality indicators

value returned by the cost function
error from optimum/reference value

(optimality) gap |UB−LB|
UB

ranks

58

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleMeasures and Transformations

On a class of instances

Computational effort indicators

no transformation if the interest is in studying scaling
standardization if a fixed time limit is used
geometric mean (used for a set of numbers whose values are meant to
be multiplied together or are exponential in nature),
otherwise, better to group homogeneously the instances

Solution quality indicators

Different instances imply different scales ⇒ need for an invariant measure

(However, many other measures can be taken both on the algorithms and on
the instances [McGeoch, 1996])

59

Measures and Transformations

On a class of instances (cont.)

Solution quality indicators

Distance or error from a reference value
(assume minimization case):

e1(x , π) =
x(π)− x̄(π)√

ˆσ(π)
standard score

e2(x , π) =
x(π)− xopt(π)

xopt(π)
relative error

e3(x , π) =
x(π)− xopt(π)

xworst(π)− xopt(π)
invariant [Zemel, 1981]

optimal value computed exactly or known by construction
surrogate value such bounds or best known values

Rank (no need for standardization but loss of information)

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleOutline

1. Construction Heuristics
Complete Search Methods
Incomplete Search Methods

2. Metaheuristics
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP
Adaptive Iterated Construction Search

3. Experimental Analysis
Definitions
Performance Measures
Sample Statistics

4. Example

61

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleSummary Measures

Measures to describe or characterize a population

Measure of central tendency, location
Measure of dispersion

One such a quantity is

a parameter if it refers to the population (Greek letters)
a statistics if it is an estimation of a population parameter from the
sample (Latin letters)

62

Measures of central tendency

Arithmetic Average (Sample mean)

X̄ =

∑
xi

n

Quantile: value above or below which lie a fractional part of the data
(used in nonparametric statistics)

Median

M = x(n+1)/2

Quartile

Q1 = x(n+1)/4 Q3 = x3(n+1)/4

q-quantile

q of data lies below and 1− q lies above

Mode

value of relatively great concentration of data
(Unimodal vs Multimodal distributions)

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
Example

Measure of dispersion

Sample range

R = x(n) − x(1)

Sample variance

s2 =
1

n − 1

∑
(xi − X̄)2

Standard deviation

s =
√

s2

Inter-quartile range

IQR = Q3 − Q1

64

Boxplot and a probability density function (pdf) of a Normal N(0,1s2) Population.
(source: Wikipedia)
[see also: http://informationandvisualization.de/blog/box-plot]

http://informationandvisualization.de/blog/box-plot

Histogram

95 100 105 110 115

0.00
0.05
0.10
0.15
0.20
0.25
0.30

95 100 105 110 115

0.0

0.2

0.4

0.6

0.8

1.0

100 105 110 11595 100 105 110 115

Boxplot

95

D
e

n
s
it
y

F
n

(x
)

Empirical cumulative distribution function

Median

outliers

Q3 MaxMin
Q1

IQR

Q1−1.5*IQR

Average

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleIn R

> x<-runif(10,0,1)
mean(x), median(x), quantile(x), quantile(x,0.25)
range(x), var(x), sd(x), IQR(x)
> fivenum(x)
#(minimum, lower-hinge, median, upper-hinge, maximum)
[1] 0.18672 0.26682 0.28927 0.69359 0.92343
> summary(x)
> aggregate(x,list(factors),median)
> boxplot(x)

67

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleOutline

1. Construction Heuristics
Complete Search Methods
Incomplete Search Methods

2. Metaheuristics
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP
Adaptive Iterated Construction Search

3. Experimental Analysis
Definitions
Performance Measures
Sample Statistics

4. Example

68

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
Example

On a class of instances

●

● ● ●

●●

TS1

TS2

TS3

−3 −2 −1 0 1 2 3

Standard error:
x −− x

σσ

TS1

TS2

TS3

0.2 0.4 0.6 0.8 1.0 1.2 1.4

Relative error:
x −− x((opt))

x((opt))

● ●

TS1

TS2

TS3

0.1 0.2 0.3 0.4 0.5

Invariant error:
x −− x((opt))

x((worst)) −− x((opt))

TS1

TS2

TS3

0 5 10 15 20 25 30

Ranks

69

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
Example

On a class of instances

−3 −2 −1 0 1 2 3

0.0

0.2

0.4

0.6

0.8

1.0

Standard error:
x −− x

σσ

$((T5,, values))

P
ro

po
rt

io
n

<
=

 x

n:300 m:0

TS1

TS2

TS3

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.2

0.4

0.6

0.8

1.0

Relative error:
x −− x((opt))

x((opt))

$((G,, err2))

P
ro

po
rt

io
n

<
=

 x
n:300 m:0

TS1
TS2

TS3

0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0

Invariant error:
x −− x((opt))

x((worst)) −− x((opt))

P
ro

po
rt

io
n

<
=

 x

TS1

TS2

TS3

0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

0.8

1.0

Ranks

P
ro

po
rt

io
n

<
=

 x

TS1

TS2

TS3

69

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
ExampleStochastic Dominance

Definition: Algorithm A1 probabilistically dominates algorithm A2 on a
problem instance, iff its CDF is always "below" that of A2, i.e.:

F1(x) ≤ F2(x), ∀x ∈ X

15 20 25 30 35 40 45

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

F
(x

)

20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

F
(x

)

70

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
Example

R code behind the previous plots

We load the data and plot the comparative boxplot for each instance.
> load("TS.class-G.dataR")
> G[1:5,]
alg inst run sol time.last.imp tot.iter parz.iter exit.iter exit.time opt

1 TS1 G-1000-0.5-30-1.1.col 1 59 9.900619 5955 442 5955 10.02463 30
2 TS1 G-1000-0.5-30-1.1.col 2 64 9.736608 3880 130 3958 10.00062 30
3 TS1 G-1000-0.5-30-1.1.col 3 64 9.908618 4877 49 4877 10.03263 30
4 TS1 G-1000-0.5-30-1.1.col 4 68 9.948622 6996 409 6996 10.07663 30
5 TS1 G-1000-0.5-30-1.1.col 5 63 9.912620 3986 52 3986 10.04063 30
>
> library(lattice)
> bwplot(alg ~ sol | inst,data=G)

If we want to make an aggregate analysis we have the following choices:
maintain the raw data,
transform data in standard error,
transform the data in relative error,
transform the data in an invariant error,
transform the data in ranks.

71

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
Example

R code behind the previous plots

We load the data and plot the comparative boxplot for each instance.
> load("TS.class-G.dataR")
> G[1:5,]
alg inst run sol time.last.imp tot.iter parz.iter exit.iter exit.time opt

1 TS1 G-1000-0.5-30-1.1.col 1 59 9.900619 5955 442 5955 10.02463 30
2 TS1 G-1000-0.5-30-1.1.col 2 64 9.736608 3880 130 3958 10.00062 30
3 TS1 G-1000-0.5-30-1.1.col 3 64 9.908618 4877 49 4877 10.03263 30
4 TS1 G-1000-0.5-30-1.1.col 4 68 9.948622 6996 409 6996 10.07663 30
5 TS1 G-1000-0.5-30-1.1.col 5 63 9.912620 3986 52 3986 10.04063 30
>
> library(lattice)
> bwplot(alg ~ sol | inst,data=G)

If we want to make an aggregate analysis we have the following choices:
maintain the raw data,
transform data in standard error,
transform the data in relative error,
transform the data in an invariant error,
transform the data in ranks.

71

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
Example

Maintain the raw data

> par(mfrow=c(3,2),las=1,font.main=1,mar=c(2,3,3,1))
> #original data
> boxplot(sol~alg,data=G,horizontal=TRUE,main="Original data")

72

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
Example

Transform data in standard error

> #standard error
> T1 <- split(G$sol,list(G$inst))
> T2 <- lapply(T1,scale,center=TRUE,scale=TRUE)
> T3 <- unsplit(T2,list(G$inst))
> T4 <- split(T3,list(G$alg))
> T5 <- stack(T4)
> boxplot(values~ind,data=T5,horizontal=TRUE,main=expression(paste("

Standard error: ",frac(x-bar(x),sqrt(sigma)))))
> library(latticeExtra)
> ecdfplot(~values,group=ind,data=T5,main=expression(paste("Standard error:
",frac(x-bar(x),sqrt(sigma)))))

> #standard error
> G$scale <- 0
> split(G$scale, G$inst) <- lapply(split(Gsol, Ginst), scale,center=TRUE,

scale=TRUE)

73

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
Example

Transform the data in relative error

> #relative error
> G$err2 <- (G$sol-G$opt)/G$opt
> boxplot(err2~alg,data=G,horizontal=TRUE,main=expression(paste("Relative

error: ",frac(x-x^(opt),x^(opt)))))
> ecdfplot(G$err2,group=G$alg,main=expression(paste("Relative error: ",frac

(x-x^(opt),x^(opt)))))

74

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
Example

Transform the data in an invariant error
We use as surrogate of xworst the median solution returned by the simplest
algorithm for the graph coloring, that is, the ROS heuristic.

> #error 3
> load("ROS.class-G.dataR")
> F1 <- aggregate(F$sol,list(inst=F$inst),median)
> F2 <- split(F1$x,list(F1$inst))
> G$ref <- sapply(G$inst,function(x) F2[[x]])
> G$err3 <- (G$sol-G$opt)/(G$ref-G$opt)
> boxplot(err3~alg,data=G,horizontal=TRUE,main=expression(paste("Invariant

error: ",frac(x-x^(opt),x^(worst)-x^(opt)))))
> ecdfplot(G$err3,group=G$alg,main=expression(paste("Invariant error: ",

frac(x-x^(opt),x^(worst)-x^(opt)))))

75

Outline
Construction Heuristics
Metaheuristics
Experimental Analysis
Example

Transform the data in ranks

> #rank
> G$rank <- G$sol
> split(G$rank, G$inst) <- lapply(split(Gsol, Dinst), rank)
> bwplot(rank~reorder(alg,rank,median),data=G,horizontal=TRUE,main="Ranks")
> ecdfplot(rank,group=alg,data=G,main="Ranks")

76

	Outline
	Construction Heuristics
	Complete Search Methods
	Incomplete Search Methods

	Metaheuristics
	Random Restart
	Rollout/Pilot Method
	Beam Search
	Iterated Greedy
	GRASP
	Adaptive Iterated Construction Search

	Experimental Analysis
	Definitions
	Performance Measures
	Sample Statistics

	Example

