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Combinatorial Optimization and Terminology

Basic Concepts in Algorithmics
Graphs • Notation and runtime • Machine model • Pseudo-code •
Computational Complexity • Analysis of Algorithms

Construction Heuristics + Local Search + Metaheuristics

Software systems and Working Environment
[Comet, EasyLocal++, unix]

Assignment 1 + Analysis of Results in R
[RStudio, Cheat Sheet, My Notes, script]

Construction Heuristics (search tree, variable + value model)
[from complete (DFS, Best first, A∗) to incomplete search (greedy)]

Metaheuristics on CH
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Construction heuristics specific for TSP
Heuristics that Grow Fragments

Nearest neighborhood heuristics
Double-Ended Nearest Neighbor heuristic
Multiple Fragment heuristic (aka, greedy heuristic)

Heuristics that Grow Tours
Nearest Addition
Farthest Addition
Random Addition

Clarke-Wright savings heuristic

Nearest Insertion
Farthest Insertion
Random Insertion

Heuristics based on Trees
Minimum spanning tree heuristic
Christofides’ heuristics
Fast recursive partitioning heuristic
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sequential heuristics
1. choose a variable (vertex)

a) static order: random (ROS),
largest degree first, smallest degree last

b) dynamic order: saturation degree (DSATUR) [?]
2. choose a value (color): greedy heuristic

Procedure ROS
RandomPermutation π(Vertices);
forall i in 1, . . . , n do

v := π(i);
select min{c : c not in saturated[v]};
col[v] := c;
add c in saturated[w] for all w adjacent v;

O(nk +m) O(n2)

Procedure DSATUR
select vertex v uncolored with max degree;
while uncolored vertices do

select min{c : c not in saturated[v]};
col[v] := c;
add c in saturated[w] for all w adjacent v;
select uncolored v with max size of

saturated[v];

O(n(n+ k) +m) O(n2)

partitioning heuristics
recursive largest first (RLF) [?]
iteratively extract stable sets
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Alternative form of pseudo-code

Procedure ROS
RandomPermutation π(Vertices);
forall i in 1, . . . , n do

v := π(i);
selectMin {c : c not in saturated[v]} do

col[v] := c;
forall w in Vertices: adj[v,w] do

saturated[w].insert(c);

Procedure DSATUR
RandomPermutation π(Vertices);
forall i in 1, . . . , n do

v := π(i);
selectMin {c : c not in saturated[v]} do

col[v] := c;
forall w in Vertices: adj[v,w] do

saturated[w].insert(c);
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Procedure Recursive Largest First(G)
In G = (V,E) : input graph;
Out k : upper bound on χ(G);
Out c : a coloring c : V 7→ K of G;

k ← 0 while |V | > 0 do
k ← k + 1 /* Use an additional color */
FindStableSet(V,E, k) /* G = (V,E) is reduced */

return k
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Key idea: extract stable sets trying to maximize edges removed.

Procedure FindStableSet(G, k)
In G = (V,E) : input graph
In k : color for current stable set
Var P : set of potential vertices for stable set
Var U : set of vertices that cannot go in current stable set

P ← V ; U ← ∅;
forall v ∈ P do dU (v)← 0; /* degree induced by U */
while P not empty do

select v in P with max dU ;
move v from P to Ck; V ← V \ {v}
forall w ∈ δP (v) do /* neighbors of v in P */

move w from P to U ; E ← E \ {v, w}
forall u ∈ δP (w) do

dU (u)← dU (u) + 1

O(m+ n∆2) O(n3)

U

CkP
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