
DM811

Heuristics for Combinatorial Optimization

Lecture 5
Construction Heuristics, TSP and SAT

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Outline
ExercisesOutline

1. Exercises
Heuristics for TSP
Heuristics for GCP

2

Outline
ExercisesRecap

Combinatorial Optimization and Terminology

Basic Concepts in Algorithmics
Graphs • Notation and runtime • Machine model • Pseudo-code •
Computational Complexity • Analysis of Algorithms

Construction Heuristics + Local Search + Metaheuristics

Software systems and Working Environment
[Comet, EasyLocal++, unix]

Assignment 1 + Analysis of Results in R
[RStudio, Cheat Sheet, My Notes, script]

Construction Heuristics (search tree, variable + value model)
[from complete (DFS, Best first, A∗) to incomplete search (greedy)]

Metaheuristics on CH

3

Outline
ExercisesOutline

1. Exercises
Heuristics for TSP
Heuristics for GCP

4



Outline
ExercisesConstruction Heuristics

Construction heuristics specific for TSP
Heuristics that Grow Fragments

Nearest neighborhood heuristics
Double-Ended Nearest Neighbor heuristic
Multiple Fragment heuristic (aka, greedy heuristic)

Heuristics that Grow Tours
Nearest Addition
Farthest Addition
Random Addition

Clarke-Wright savings heuristic

Nearest Insertion
Farthest Insertion
Random Insertion

Heuristics based on Trees
Minimum spanning tree heuristic
Christofides’ heuristics
Fast recursive partitioning heuristic

6

Outline
ExercisesConstruction Heuristics for TSP

7

Outline
ExercisesConstruction Heuristics for TSP

8

Outline
ExercisesConstruction Heuristics for TSP

9



Outline
ExercisesConstruction Heuristics for TSP

10

Outline
ExercisesConstruction Heuristics for TSP

11

Outline
ExercisesConstruction Heuristics for TSP

12

Outline
ExercisesConstruction Heuristics for TSP

13



Outline
ExercisesConstruction Heuristics

sequential heuristics
1. choose a variable (vertex)

a) static order: random (ROS),
largest degree first, smallest degree last

b) dynamic order: saturation degree (DSATUR) [?]
2. choose a value (color): greedy heuristic

Procedure ROS
RandomPermutation π(Vertices);
forall i in 1, . . . , n do

v := π(i);
select min{c : c not in saturated[v]};
col[v] := c;
add c in saturated[w] for all w adjacent v;

O(nk +m) O(n2)

Procedure DSATUR
select vertex v uncolored with max degree;
while uncolored vertices do

select min{c : c not in saturated[v]};
col[v] := c;
add c in saturated[w] for all w adjacent v;
select uncolored v with max size of

saturated[v];

O(n(n+ k) +m) O(n2)

partitioning heuristics
recursive largest first (RLF) [?]
iteratively extract stable sets

16

Outline
Exercises

Alternative form of pseudo-code

Procedure ROS
RandomPermutation π(Vertices);
forall i in 1, . . . , n do

v := π(i);
selectMin {c : c not in saturated[v]} do

col[v] := c;
forall w in Vertices: adj[v,w] do

saturated[w].insert(c);

Procedure DSATUR
RandomPermutation π(Vertices);
forall i in 1, . . . , n do

v := π(i);
selectMin {c : c not in saturated[v]} do

col[v] := c;
forall w in Vertices: adj[v,w] do

saturated[w].insert(c);

17

Outline
ExercisesRLF [?]

Procedure Recursive Largest First(G)
In G = (V,E) : input graph;
Out k : upper bound on χ(G);
Out c : a coloring c : V 7→ K of G;

k ← 0 while |V | > 0 do
k ← k + 1 /* Use an additional color */
FindStableSet(V,E, k) /* G = (V,E) is reduced */

return k

18

Outline
ExercisesRLF

Key idea: extract stable sets trying to maximize edges removed.

Procedure FindStableSet(G, k)
In G = (V,E) : input graph
In k : color for current stable set
Var P : set of potential vertices for stable set
Var U : set of vertices that cannot go in current stable set

P ← V ; U ← ∅;
forall v ∈ P do dU (v)← 0; /* degree induced by U */
while P not empty do

select v in P with max dU ;
move v from P to Ck; V ← V \ {v}
forall w ∈ δP (v) do /* neighbors of v in P */

move w from P to U ; E ← E \ {v, w}
forall u ∈ δP (w) do

dU (u)← dU (u) + 1

O(m+ n∆2) O(n3)

U

CkP

19


