
DM811

Heuristics for Combinatorial Optimization

Lecture 6
SAT

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Outline
Assignment 1
SATOutline

1. Assignment 1
Results
Writing Code

2. SAT

2

Outline
Assignment 1
SATRecap

Combinatorial Optimization and Terminology

Basic Concepts in Algorithmics
Graphs • Notation and runtime • Machine model • Pseudo-code •
Computational Complexity • Analysis of Algorithms

Construction Heuristics + Local Search + Metaheuristics

Software systems and Working Environment
[Comet, EasyLocal++, unix]

Assignment 1 + Analysis of Results in R
[RStudio, Cheat Sheet, My Notes, script]

Construction Heuristics (search tree, variable + value model)
[from complete (DFS, Best first, A∗) to incomplete search (greedy)]

Metaheuristics on CH

3

Outline
Assignment 1
SATOutline

1. Assignment 1
Results
Writing Code

2. SAT

4

Outline
Assignment 1
SATOutline

1. Assignment 1
Results
Writing Code

2. SAT

5

Outline
Assignment 1
SAT

col

200975rlf
080986290786280881040885060511100387160783230190

10 20 30 40 50

●
●
●
●
●
●
●
●
●
●

queen10_10.txt

●
●
●
●
●
●
●
●
●
●

queen11_11.txt

10 20 30 40 50

●
●
●
●
●

●
●
●
●
●

queen12_12.txt

●
●
●
●
●
●

●
●
●
●

queen13_13.txt

10 20 30 40 50

●
●
●
●

●
●

●
●
●
●

queen14_14.txt

●
●
●
●
●
●
●

●
●
●

queen15_15.txt
200975rlf
080986290786280881040885060511100387160783230190

●
●
●
●
●
●
●
●
●
●

queen16_16.txt

●
●
●
●
●
●
●
●
●
●

queen17_17.txt

●
●
●
●
●
●
●
●
●
●

queen18_18.txt

●
●
●
●
●
●
●
●
●
●

queen19_19.txt

●
●
●
●
●
●

●
●
●
●

queen20_20.txt

●
●
●
●
●
●

●
●
●
●

queen21_21.txt
200975rlf
080986290786280881040885060511100387160783230190

●
●
●
●
●
●
●
●
●
●

queen22_22.txt

●
●
●
●
●
●
●
●
●

●
queen23_23.txt

●
●
●
●
●

●
●

●
●
●

queen24_24.txt

●
●
●
●
●
●

●
●
●
●

queen25_25.txt

●
●
●
●
●

●
●

●
●
●

queen26_26.txt

●
●
●
●
●

●
●

●
●
●

queen27_27.txt
200975rlf
080986290786280881040885060511100387160783230190

●
●
●
●
●

●
●

●
●
●

queen28_28.txt

●
●
●
●
●

●
●

●
●
●

queen29_29.txt

●
●
●
●
●

●
●

●
●

●
queen30_30.txt

●
●

●
●
●

●
●

●
●
●

queen31_31.txt

●
●
●
●
●

●
●

●
●
●

queen32_32.txt

●
●
●
●
●
●
●
●
●
●
queen4_4.txt

200975rlf
080986290786280881040885060511100387160783230190

●
●

●
●
●

●
●
●
●
●
queen5_5.txt

10 20 30 40 50

●
●
●
●
●
●

●
●
●

●
queen6_6.txt

●
●

●
●

●
●
●
●
●
●

queen7_7.txt

10 20 30 40 50

●
●
●
●
●
●
●
●
●
●

queen8_8.txt

●
●
●
●
●
●
●
●
●
●

queen9_9.txt

Note the floor/ceiling effect on the small instances 6

Outline
Assignment 1
SAT

col

200975

rlf

080986

290786

280881

040885

060511

100387

160783

230190

10 20 30 40 50

●

●

●

●

●

●

●

●

●

●

Different scales among instances hide differences 6

Outline
Assignment 1
SAT

rank

rlf

200975

080986

290786

280881

040885

100387

160783

060511

230190

2 4 6 8 10

●

●

●

●

●

●

●

●

●

●

●●

●●●

● ●

● ●

●

●

●

6

Outline
Assignment 1
SAT

size

tim
e

0

10

20

30

0 200 400 600 800 1000

●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●

040885

●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●

060511

0 200 400 600 800 1000

●

●

●●●●
●

●●

●●
●

●
●

●

●

●●
●

●

● ● ●●●

●
●

●

●

080986 100387
●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●

160783

●●●●●●●●●●●●●●●●●●●●
●

●
●

●●●●●●

200975

●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●

230190

0

10

20

30

●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●

280881
0

10

20

30

●●●●●●●●●●●●●●●●●●●●● ● ●
●●●●●●

290786

0 200 400 600 800 1000

●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●

rlf

6

Outline
Assignment 1
SAT

size

tim
e

10^−3

10^−2

10^−1

10^0

10^1

10^1.5 10^2.5

●●●●●●●●●●●●●●●●●●●
●●●●

●
●

●
● ●

●

040885

●●●●●●●●●●●●●●●●●●
●●●●●

●
● ● ● ●

●

060511

10^1.5 10^2.5

●

●

●

●

●

●

●
●●

●
●
●

●

●
●

●

●
●

●

●

●

●
●

●
●

● ●

●

●

080986 100387

●●●
●●●

●●●
●●●

●●●●
●●●●●

160783

●●
●●

●●
●●●

●●●
●●

●●
●●
●●
●●●

●

● ● ● ●●

200975

●●●●●●●●●●●●●●●●●●
●●●●●

●
● ● ● ●

●

230190

10^−3

10^−2

10^−1

10^0

10^1

●●
●●●

●●●●
●
●
●
●
●●●●●●●●

●●

●
● ●●

280881
10^−3

10^−2

10^−1

10^0

10^1 ●●●●●●●●●●●●●●●●●●●●●●●● ● ● ● ●●

290786

10^1.5 10^2.5

●●● ●
●●●

●●
●●
●●
●
●●

rlf

log-log transformation polynomial is a straigth line 6

Outline
Assignment 1
SAT

rank

ra
nk

.ti
m

e

2

4

6

8

2 4 6 8

6

Outline
Assignment 1
SATOutline

1. Assignment 1
Results
Writing Code

2. SAT

7

Outline
Assignment 1
SATExamples

import cotls;
include "loadDIMACS";
// int nv;
// int me;
// float alpha;
// bool adj[nv,nv];
range Vertices = 1..nv;
range Colors = 1..nv;
int nbc = Colors.getUp();

Solver<LS> m();

var{int} col[Vertices](m,Colors) := 1;
ConstraintSystem<LS> S(m);

forall (i in Vertices, j in Vertices: j>i && adj[i,j])
S.post(col[i] != col[j]);
S.close();

m.close();

// CONSTRUCTION HEURISTIC
set{int} dom[v in Vertices] = setof(c in Colors) true;
RandomPermutation perm(Vertices);
forall (i in 1..nv) {

int v = perm.get();
selectMin(c in dom[v])(c) {
col[v] := c;
forall(w in Vertices: adj[v,w])
dom[w].delete(c);

}
}
nbc = max(v in Vertices) col[v];
Colors = 1..nbc;
cout<<"Construction␣heuristic,␣done:␣"<<nbc<<"␣colors"<< endl; 8

Outline
Assignment 1
SAT

code1.java/png code3.cpp

9

Outline
Assignment 1
SATWhere do speedups come from?

Where can maximum speedup be achieved?
How much speedup should you expect?

10

Outline
Assignment 1
SATCode Tuning

Caution: proceed carefully! Let the optimizing compiler do its work!

Expression Rules: Recode for smaller instruction counts.

Loop and procedure rules: Recode to avoid loop or procedure call
overhead.

Hidden costs of high-level languages

String comparisons in C: proportional to length of the string, not
constant

Object construction / de-allocation: very expensive

Matrix access: row-major order 6= column-major order

Exploit algebraic identities

Avoid unnecessary computations inside the loops

11

Outline
Assignment 1
SATWhere Speedups Come From?

McGeoch reports conventional wisdom, based on studies in the literature.

Concurrency is tricky: bad -7x to good 500x
Classic algorithms: to 1trillion and beyond
Data-aware: up to 100x
Memory-aware: up to 20x
Algorithm tricks: up to 200x
Code tuning: up to 10x
Change platforms: up to 10x

12

Outline
Assignment 1
SATRelevant Literature

Bentley, Writing Efficient Programs; Programming Pearls (Chapter 8
Code Tuning)

Kernighan and Pike, The Practice of Programming (Chapter 7
Performance).
Shirazi, Java Performance Tuning, O’Reilly

McCluskey, Thirty ways to improve the performance of your Java
program. Manuscript and website: www.glenmcci.com/jperf

Randal E. Bryant e David R. O’Hallaron: Computer Systems: A
Programmer’s Perspective, Prentice Hall, 2003, (Chapter 5)

13

Outline
Assignment 1
SATOutline

1. Assignment 1
Results
Writing Code

2. SAT

14

Outline
Assignment 1
SATSAT Problem

Satisfiability problem in propositional logic

Does there exists a truth assignment satisfying all clauses?
Search for a satisfying assignment (or prove none exists)

15

Outline
Assignment 1
SATSAT Problem

Satisfiability problem in propositional logic

Does there exists a truth assignment satisfying all clauses?
Search for a satisfying assignment (or prove none exists)

15

Outline
Assignment 1
SATMotivation

From 100 variables, 200 constraints (early 90s)
to 1,000,000 vars. and 20,000,000 cls. in 20 years.

Applications:
Hardware and Software Verification, Planning, Scheduling, Optimal
Control, Protocol Design, Routing, Combinatorial problems, Equivalence
Checking, etc.

SAT used to solve many other problems!

16

Outline
Assignment 1
SATSAT Problem

Satisfiability problem in propositional logic

Definitions:

Formula in propositional logic: well-formed string that may contain
propositional variables x1, x2, . . . , xn;
truth values > (‘true’), ⊥ (‘false’);
operators ¬ (‘not’), ∧ (‘and’), ∨ (‘or’);
parentheses (for operator nesting).

Model (or satisfying assignment) of a formula F : Assignment of truth
values to the variables in F under which F becomes true (under the
usual interpretation of the logical operators)

Formula F is satisfiable iff there exists at least one model of F ,
unsatisfiable otherwise.

17

Outline
Assignment 1
SATSAT Problem

Satisfiability problem in propositional logic

Definitions:

Formula in propositional logic: well-formed string that may contain
propositional variables x1, x2, . . . , xn;
truth values > (‘true’), ⊥ (‘false’);
operators ¬ (‘not’), ∧ (‘and’), ∨ (‘or’);
parentheses (for operator nesting).

Model (or satisfying assignment) of a formula F : Assignment of truth
values to the variables in F under which F becomes true (under the
usual interpretation of the logical operators)

Formula F is satisfiable iff there exists at least one model of F ,
unsatisfiable otherwise.

17

Outline
Assignment 1
SATSAT Problem

Satisfiability problem in propositional logic

Definitions:

Formula in propositional logic: well-formed string that may contain
propositional variables x1, x2, . . . , xn;
truth values > (‘true’), ⊥ (‘false’);
operators ¬ (‘not’), ∧ (‘and’), ∨ (‘or’);
parentheses (for operator nesting).

Model (or satisfying assignment) of a formula F : Assignment of truth
values to the variables in F under which F becomes true (under the
usual interpretation of the logical operators)

Formula F is satisfiable iff there exists at least one model of F ,
unsatisfiable otherwise.

17

Outline
Assignment 1
SAT

SAT Problem (decision problem, search variant):

Given: Formula F in propositional logic
Task: Find an assignment of truth values to variables in F that renders
F true, or decide that no such assignment exists.

SAT: A simple example

Given: Formula F := (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2)

Task: Find an assignment of truth values to variables x1, x2 that renders
F true, or decide that no such assignment exists.

18

Outline
Assignment 1
SAT

SAT Problem (decision problem, search variant):

Given: Formula F in propositional logic
Task: Find an assignment of truth values to variables in F that renders
F true, or decide that no such assignment exists.

SAT: A simple example

Given: Formula F := (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2)

Task: Find an assignment of truth values to variables x1, x2 that renders
F true, or decide that no such assignment exists.

18

Outline
Assignment 1
SAT

Definitions:

A formula is in conjunctive normal form (CNF) iff it is of the form

m∧

i=1

ki∨

j=1

lij = (l11 ∨ . . . ∨ l1k1) ∧ . . . ∧ (lm1 ∨ . . . ∨ lmkm)

where each literal lij is a propositional variable or its negation. The
disjunctions ci = (li1 ∨ . . . ∨ liki) are called clauses.

A formula is in k-CNF iff it is in CNF and all clauses contain exactly k
literals (i.e., for all i , ki = k).

In many cases, the restriction of SAT to CNF formulae
is considered.
For every propositional formula, there is an equivalent formula in 3-CNF.

19

Outline
Assignment 1
SAT

Definitions:

A formula is in conjunctive normal form (CNF) iff it is of the form

m∧

i=1

ki∨

j=1

lij = (l11 ∨ . . . ∨ l1k1) ∧ . . . ∧ (lm1 ∨ . . . ∨ lmkm)

where each literal lij is a propositional variable or its negation. The
disjunctions ci = (li1 ∨ . . . ∨ liki) are called clauses.

A formula is in k-CNF iff it is in CNF and all clauses contain exactly k
literals (i.e., for all i , ki = k).

In many cases, the restriction of SAT to CNF formulae
is considered.
For every propositional formula, there is an equivalent formula in 3-CNF.

19

Outline
Assignment 1
SAT

Example:

F := ∧ (¬x2 ∨ x1)
∧ (¬x1 ∨ ¬x2 ∨ ¬x3)
∧ (x1 ∨ x2)
∧ (¬x4 ∨ x3)
∧ (¬x5 ∨ x3)

F is in CNF.
Is F satisfiable?

Yes, e.g., x1 := x2 := >, x3 := x4 := x5 := ⊥ is a model of F .

MAX-SAT (optimization problem)

Which is the maximal number of clauses satisfiable in a propositional logic
formula F?

20

Outline
Assignment 1
SAT

Example:

F := ∧ (¬x2 ∨ x1)
∧ (¬x1 ∨ ¬x2 ∨ ¬x3)
∧ (x1 ∨ x2)
∧ (¬x4 ∨ x3)
∧ (¬x5 ∨ x3)

F is in CNF.
Is F satisfiable?
Yes, e.g., x1 := x2 := >, x3 := x4 := x5 := ⊥ is a model of F .

MAX-SAT (optimization problem)

Which is the maximal number of clauses satisfiable in a propositional logic
formula F?

20

Outline
Assignment 1
SATPre-processing

Pre-processing rules: low polynimial time procedures to decrease the size of
the problem instance.

Typically applied in cascade until no rule is effective anymore.

21

Outline
Assignment 1
SATExamples

1. eliminate duplicate literals
2. tautologies: x1 ∨ ¬x1...

3. subsumed clauses
4. pure literals
5. unit clauses
6. unit propagation

22

Outline
Assignment 1
SATConstruction heuristics

Variable selection heuristics
aim: minimize the search space
plus: could compensate a bad value selection

Value selection heuristics
aim: guide search towards a solution (or conflict)
plus: could compensate a bad variable selection

Restart strategies
aim: avoid heavy-tail behavior [GomesSelmanCrato’97]
plus: focus search on recent conflicts when combined with dynamic
heuristics

23

Outline
Assignment 1
SATConstruction heuristics

Variable selection heuristics
aim: minimize the search space
plus: could compensate a bad value selection

Value selection heuristics
aim: guide search towards a solution (or conflict)
plus: could compensate a bad variable selection

Restart strategies
aim: avoid heavy-tail behavior [GomesSelmanCrato’97]
plus: focus search on recent conflicts when combined with dynamic
heuristics

23

Outline
Assignment 1
SATConstruction heuristics

Variable selection heuristics
aim: minimize the search space
plus: could compensate a bad value selection

Value selection heuristics
aim: guide search towards a solution (or conflict)
plus: could compensate a bad variable selection

Restart strategies
aim: avoid heavy-tail behavior [GomesSelmanCrato’97]
plus: focus search on recent conflicts when combined with dynamic
heuristics

23

Outline
Assignment 1
SATVariable selection heuristics

Maximal Occurrence in clauses of Minimal Size (Jeroslow-Wang)

Variable State Independent Decaying Sum (VSIDS) original idea
(zChaff): for each conflict, increase the score of involved variables by 1,
half all scores each 256 conflicts [MoskewiczMZZM2001]

improvement (MiniSAT): for each conflict, increase the score of involved
variables by δ and increase δ := 1.05δ [EenS”orensson2003]

24

Outline
Assignment 1
SATValue selection heuristics

Based on the occurrences in the (reduced) formula
examples: Jeroslow-Wang, Maximal Occurrence in clauses of Minimal
Size (MOMS), look-aheads

Based on the encoding / consequently
negative branching (early MiniSAT)

Based on the last implied value (phase-saving)

25

