DM811
Heuristics for Combinatorial Optimization

Lecture 6

SAT

Marco Chiarandini

Department of Mathematics \& Computer Science University of Southern Denmark

- Combinatorial Optimization and Terminology
- Basic Concepts in Algorithmics Graphs • Notation and runtime • Machine model • Pseudo-code • Computational Complexity • Analysis of Algorithms
- Construction Heuristics + Local Search + Metaheuristics
- Software systems and Working Environment
[Comet, EasyLocal++, unix]
- Assignment $1+$ Analysis of Results in R [RStudio, Cheat Sheet, My Notes, script]
- Construction Heuristics (search tree, variable + value model) [from complete (DFS, Best first, A*) to incomplete search (greedy)]
- Metaheuristics on CH

Outline

Outline
 Assignment SAT

1. Assignment 1
Results
Writing Code
2. Assignment 1

Results
Writing Code

Note the floor/ceiling effect on the small instances

size

Ios-los transformation \rightsquigarrow nolvnomial is a straioth line
Outline
Outline
Assignme
Outine
Assignment 1
SAT

1. Assignment 1

Results
Writing Code

Examples

import cotls;
include "loadDIMACS"
// int nv;
// floot alpha;
// bool adj/nv,nv];
range Vertices $=1 . . n v$
range Colors $=1 . . n v ;$
int nbc $=$ Colors. getUp()
int nbc $=$ Colors.getUp()
Solver<LS> m();
var\{int $\}$ col [Vertices] $[m$, Colors $):=\mathbf{1 ;}$
ConstraintSystem<LS> $S(m) ;$
forall (\mathbf{i} in Vertices, j in Vertices: $\mathrm{j}>\mathrm{i}$ \& \& adj $[\mathrm{i}, \mathrm{j}]$)
S.post(col[i] != col[j]);
s.close();
m.close();
// CONSTRUCTION HEURISTIC
set \{int\} $\operatorname{dom}[v$ in Vertices] $=$ setof(c in Colors) true;
set $\{$ int $\}$ dom $[V$ in Vertices] $=$ setof(c
RandomPermutation perm(Vertices);
Randompermutation
forall (i in $1 . . n v$) $\{$
int $v=$ in
int $\mathrm{v}=$ perm.get();
selectMin(cin $\operatorname{dom}[\mathrm{v}])(\mathrm{c})$ \{
selectMin(c in
col[ry]:= c;
forall(\mathbf{w} in Vertic
dom[w].delete(c);
3^{3}
nbc $=\max (v$ in Vertices) col[v];
Colors $=\mathbf{1} . . \mathrm{nbc}$;
cout<<"Construction heuristic, done: u " \ll nbc<<" " colors" \ll end

Where do speedups come from?

Code Tuning

Outline Assignment 1

- Caution: proceed carefully! Let the optimizing compiler do its work!
- Expression Rules: Recode for smaller instruction counts.
- Loop and procedure rules: Recode to avoid loop or procedure call overhead.
- Hidden costs of high-level languages
- String comparisons in C : proportional to length of the string, not constant
- Object construction / de-allocation: very expensive
- Matrix access: row-major order \neq column-major order
- Exploit algebraic identities
- Avoid unnecessary computations inside the loops

McGeoch reports conventional wisdom, based on studies in the literature

- Concurrency is tricky: bad $-7 x$ to good 500x
- Classic algorithms: to 1trillion and beyond
- Data-aware: up to $100 x$
- Memory-aware: up to 20x
- Algorithm tricks: up to 200x
- Code tuning: up to $10 x$
- Change platforms: up to $10 x$

Bentley, Writing Efficient Programs; Programming Pearls (Chapter 8

 Code Tuning)Kernighan and Pike, The Practice of Programming (Chapter 7
Performance).
Shirazi, Java Performance Tuning, O'Reilly
McCluskey, Thirty ways to improve the performance of your Java
program. Manuscript and website: www.glenmcci.com/jperf
Randal E. Bryant e David R. O'Hallaron: Computer Systems: A
Programmer's Perspective, Prentice Hall, 2003, (Chapter 5)

Outline

1. Assignment 1

Results
Writing Code

SAT Problem

Satisfiability problem in propositional logic
$\left(x_{5} \vee x_{8} \vee \bar{x}_{2}\right) \wedge\left(x_{2} \vee \bar{x}_{1} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{8} \vee \bar{x}_{3} \vee \bar{x}_{7}\right) \wedge\left(\bar{x}_{5} \vee x_{3} \vee x_{8}\right) \wedge$
$\left(\bar{x}_{6} \vee \bar{x}_{1} \vee \bar{x}_{5}\right) \wedge\left(x_{8} \vee \bar{x}_{9} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{1} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{8} \vee x_{4}\right) \wedge$
$\left(\bar{x}_{9} \vee \bar{x}_{6} \vee x_{8}\right) \wedge\left(x_{8} \vee x_{3} \vee \bar{x}_{9}\right) \wedge\left(x_{9} \vee \bar{x}_{3} \vee x_{8}\right) \wedge\left(x_{6} \vee \bar{x}_{9} \vee x_{5}\right) \wedge$
$\left(x_{2} \vee \bar{x}_{3} \vee \bar{x}_{8}\right) \wedge\left(x_{8} \vee \bar{x}_{6} \vee \bar{x}_{3}\right) \wedge\left(x_{8} \vee \bar{x}_{3} \vee \bar{x}_{1}\right) \wedge\left(\bar{x}_{8} \vee x_{6} \vee \bar{x}_{2}\right) \wedge$
$\left(x_{7} \vee x_{9} \vee \bar{x}_{2}\right) \wedge\left(x_{8} \vee \bar{x}_{9} \vee x_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{9} \vee x_{4}\right) \wedge\left(x_{8} \vee x_{1} \vee \bar{x}_{2}\right) \wedge$
$\left(x_{3} \vee \bar{x}_{4} \vee \bar{x}_{6}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{7} \vee x_{5}\right) \wedge\left(\bar{x}_{7} \vee x_{1} \vee x_{6}\right) \wedge\left(\bar{x}_{5} \vee x_{4} \vee \bar{x}_{6}\right) \wedge$
$\left(\bar{x}_{4} \vee x_{9} \vee \bar{x}_{8}\right) \wedge\left(x_{2} \vee x_{9} \vee x_{1}\right) \wedge\left(x_{5} \vee \bar{x}_{7} \vee x_{1}\right) \wedge\left(\bar{x}_{7} \vee \bar{x}_{9} \vee \bar{x}_{6}\right) \wedge$
$\left(x_{2} \vee x_{5} \vee x_{4}\right) \wedge\left(x_{8} \vee \bar{x}_{4} \vee x_{5}\right) \wedge\left(x_{5} \vee x_{9} \vee x_{3}\right) \wedge\left(\bar{x}_{5} \vee \bar{x}_{7} \vee x_{9}\right) \wedge$
$\left(x_{2} \vee \bar{x}_{8} \vee x_{1}\right) \wedge\left(\bar{x}_{7} \vee x_{1} \vee x_{5}\right) \wedge\left(x_{1} \vee x_{4} \vee x_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{9} \vee \bar{x}_{4}\right) \wedge$
$\left(x_{3} \vee x_{5} \vee x_{6}\right) \wedge\left(\bar{x}_{6} \vee x_{3} \vee \bar{x}_{9}\right) \wedge\left(\bar{x}_{7} \vee x_{5} \vee x_{9}\right) \wedge\left(x_{7} \vee \bar{x}_{5} \vee \bar{x}_{2}\right) \wedge$
$\left(x_{4} \vee x_{7} \vee x_{3}\right) \wedge\left(x_{4} \vee \bar{x}_{9} \vee \bar{x}_{7}\right) \wedge\left(x_{5} \vee \bar{x}_{1} \vee x_{7}\right) \wedge\left(x_{5} \vee \bar{x}_{1} \vee x_{7}\right) \wedge$
$\left(x_{6} \vee x_{7} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{8} \vee \bar{x}_{6} \vee \bar{x}_{7}\right) \wedge\left(x_{6} \vee x_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{8} \vee x_{2} \vee x_{5}\right)$

Does there exists a truth assignment satisfying all clauses?
Search for a satisfying assignment (or prove none exists)

```
\(\left(x_{5} \vee x_{8} \vee \bar{x}_{2}\right) \wedge\left(x_{2} \vee \bar{x}_{1} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{8} \vee \bar{x}_{3} \vee \bar{x}_{7}\right) \wedge\left(\bar{x}_{5} \vee x_{3} \vee x_{8}\right) \wedge\)
\(\left(\bar{x}_{6} \vee \bar{x}_{1} \vee \bar{x}_{5}\right) \wedge\left(x_{8} \vee \bar{x}_{9} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{1} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{8} \vee x_{4}\right) \wedge\)
\(\left(\bar{x}_{9} \vee \bar{x}_{6} \vee x_{8}\right) \wedge\left(x_{8} \vee x_{3} \vee \bar{x}_{9}\right) \wedge\left(x_{9} \vee \bar{x}_{3} \vee x_{8}\right) \wedge\left(x_{6} \vee \bar{x}_{9} \vee x_{5}\right) \wedge\)
\(\left(x_{2} \vee \bar{x}_{3} \vee \bar{x}_{8}\right) \wedge\left(x_{8} \vee \bar{x}_{6} \vee \bar{x}_{3}\right) \wedge\left(x_{8} \vee \bar{x}_{3} \vee \bar{x}_{1}\right) \wedge\left(\bar{x}_{8} \vee x_{6} \vee \bar{x}_{2}\right) \wedge\)
\(\left(x_{7} \vee x_{9} \vee \bar{x}_{2}\right) \wedge\left(x_{8} \vee \bar{x}_{9} \vee x_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{9} \vee x_{4}\right) \wedge\left(x_{8} \vee x_{1} \vee \bar{x}_{2}\right) \wedge\)
\(\left(x_{3} \vee \bar{x}_{4} \vee \bar{x}_{6}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{7} \vee x_{5}\right) \wedge\left(\bar{x}_{7} \vee x_{1} \vee x_{6}\right) \wedge\left(\bar{x}_{5} \vee x_{4} \vee \bar{x}_{6}\right) \wedge\)
\(\left(\bar{x}_{4} \vee x_{9} \vee \bar{x}_{8}\right) \wedge\left(x_{2} \vee x_{9} \vee x_{1}\right) \wedge\left(x_{5} \vee \bar{x}_{7} \vee x_{1}\right) \wedge\left(\bar{x}_{7} \vee \bar{x}_{9} \vee \bar{x}_{6}\right) \wedge\)
\(\left(x_{2} \vee x_{5} \vee x_{4}\right) \wedge\left(x_{8} \vee \bar{x}_{4} \vee x_{5}\right) \wedge\left(x_{5} \vee x_{9} \vee x_{3}\right) \wedge\left(\bar{x}_{5} \vee \bar{x}_{7} \vee x_{9}\right) \wedge\)
\(\left(x_{2} \vee \bar{x}_{8} \vee x_{1}\right) \wedge\left(\bar{x}_{7} \vee x_{1} \vee x_{5}\right) \wedge\left(x_{1} \vee x_{4} \vee x_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{9} \vee \bar{x}_{4}\right) \wedge\)
\(\left(x_{3} \vee x_{5} \vee x_{6}\right) \wedge\left(\bar{x}_{6} \vee x_{3} \vee \bar{x}_{9}\right) \wedge\left(\bar{x}_{7} \vee x_{5} \vee x_{9}\right) \wedge\left(x_{7} \vee \bar{x}_{5} \vee \bar{x}_{2}\right) \wedge\)
\(\left(x_{4} \vee x_{7} \vee x_{3}\right) \wedge\left(x_{4} \vee \bar{x}_{9} \vee \bar{x}_{7}\right) \wedge\left(x_{5} \vee \bar{x}_{1} \vee x_{7}\right) \wedge\left(x_{5} \vee \bar{x}_{1} \vee x_{7}\right) \wedge\)
\(\left(x_{6} \vee x_{7} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{8} \vee \bar{x}_{6} \vee \bar{x}_{7}\right) \wedge\left(x_{6} \vee x_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{8} \vee x_{2} \vee x_{5}\right)\)
```

Does there exists a truth assignment satisfying all clauses?
Search for a satisfying assignment (or prove none exists)

SAT Problem

Satisfiability problem in propositional logic

Definitions:

- Formula in propositional logic: well-formed string that may contain
- propositional variables $x_{1}, x_{2}, \ldots, x_{n}$;
- truth values T ('true'), \perp ('false');
- operators \neg ('not'), \wedge ('and'), \vee ('or')
- parentheses (for operator nesting).
- From 100 variables, 200 constraints (early 90s) to $1,000,000$ vars. and $20,000,000$ cls. in 20 years.
- Applications:

Hardware and Software Verification, Planning, Scheduling, Optimal
Control, Protocol Design, Routing, Combinatorial problems, Equivalence Checking, etc.

- SAT used to solve many other problems!

Satisfiability problem in propositional logic

Definitions:

- Formula in propositional logic: well-formed string that may contain
- propositional variables $x_{1}, x_{2}, \ldots, x_{n}$;
- truth values \top ('true'), \perp ('false');
- operators \neg ('not'), \wedge ('and'), \vee ('or');
- parentheses (for operator nesting)
- Model (or satisfying assignment) of a formula F: Assignment of truth values to the variables in F under which F becomes true (under the usual interpretation of the logical operators)

Definitions:

- Formula in propositional logic: well-formed string that may contain
- propositional variables $x_{1}, x_{2}, \ldots, x_{n}$;
- truth values T ('true'), \perp ('false');
- operators \neg ('not'), \wedge ('and'), \vee ('or');
- parentheses (for operator nesting).
- Model (or satisfying assignment) of a formula F: Assignment of truth values to the variables in F under which F becomes true (under the usual interpretation of the logical operators)
- Formula F is satisfiable iff there exists at least one model of F, unsatisfiable otherwise.

17
SAT Problem (decision problem, search variant):

- Given: Formula F in propositional logic
- Task: Find an assignment of truth values to variables in F that renders F true, or decide that no such assignment exists.

$$
\begin{aligned}
& \text { Outline } \\
& \text { Assignment 1 } \\
& \text { SAT }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Outline } \\
& \text { Asssignment } 1 \\
& \text { SAT }
\end{aligned}
$$

Definitions:

- A formula is in conjunctive normal form (CNF) iff it is of the form

$$
\bigwedge_{i=1}^{m} \bigvee_{j=1}^{k_{i}} I_{i j}=\left(I_{11} \vee \ldots \vee I_{1 k_{1}}\right) \wedge \ldots \wedge\left(I_{m 1} \vee \ldots \vee I_{m k_{m}}\right)
$$

where each literal $l_{i j}$ is a propositional variable or its negation. The disjunctions $c_{i}=\left(l_{i 1} \vee \ldots \vee I_{i k_{i}}\right)$ are called clauses.

- A formula is in k-CNF iff it is in CNF and all clauses contain exactly k literals (i.e., for all $i, k_{i}=k$).

Definitions:

- A formula is in conjunctive normal form (CNF) iff it is of the form

$$
\wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right)
$$

$$
\bigwedge_{i=1}^{m} \bigvee_{j=1}^{k_{i}} I_{i j}=\left(I_{11} \vee \ldots \vee I_{1 k_{1}}\right) \wedge \ldots \wedge\left(I_{m 1} \vee \ldots \vee I_{m k_{m}}\right)
$$

$$
\wedge\left(x_{1} \vee x_{2}\right)
$$

$$
\wedge\left(\neg x_{4} \vee x_{3}\right)
$$

$$
\wedge\left(\neg x_{5} \vee x_{3}\right)
$$

where each literal $l_{i j}$ is a propositional variable or its negation. The disjunctions $c_{i}=\left(l_{i 1} \vee \ldots \vee I_{i k_{i}}\right)$ are called clauses

- A formula is in k-CNF iff it is in CNF and all clauses contain exactly k literals (i.e., for all $i, k_{i}=k$)
- In many cases, the restriction of SAT to CNF formulae is considered.
- For every propositional formula, there is an equivalent formula in 3-CNF.

19

Outline
Assignment
Assign

Pre-processing rules: low polynimial time procedures to decrease the size of the problem instance.

Typically applied in cascade until no rule is effective anymore.

Example:

$$
F:=\wedge\left(\neg x_{2} \vee x_{1}\right)
$$

- F is in CNF.
- Is F satisfiable?

Example:

$$
\begin{aligned}
F:= & \wedge\left(\neg x_{2} \vee x_{1}\right) \\
& \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \\
& \wedge\left(x_{1} \vee x_{2}\right) \\
& \wedge\left(\neg x_{4} \vee x_{3}\right) \\
& \wedge\left(\neg x_{5} \vee x_{3}\right)
\end{aligned}
$$

- F is in CNF
- Is F satisfiable?

Yes, e.g., $x_{1}:=x_{2}:=\top, x_{3}:=x_{4}:=x_{5}:=\perp$ is a model of F.

MAX-SAT (optimization problem)
Which is the maximal number of clauses satisfiable in a propositional logic formula F ?
\square

Examples

\qquad
Outline
Assign

Construction heuristics

 OutlineAssignment 1
SAT

- Variable selection heuristics
aim: minimize the search space
plus: could compensate a bad value selection

2. tautologies: $x_{1} \vee \neg x_{1} \ldots$
3. subsumed clauses
4. pure literals
5. unit clauses
6. unit propagation

Construction heuristics

Construction heuristics

Outline
Assignment
SAT

- Variable selection heuristics
aim: minimize the search space
plus: could compensate a bad value selection
- Value selection heuristics
aim: guide search towards a solution (or conflict)
plus: could compensate a bad variable selection
- Restart strategies
aim: avoid heavy-tail behavior [GomesSelmanCrato'97]
plus: focus search on recent conflicts when combined with dynamic heuristics
- Maximal Occurrence in clauses of Minimal Size (Jeroslow-Wang)
- Variable State Independent Decaying Sum (VSIDS) original idea (zChaff): for each conflict, increase the score of involved variables by 1 , half all scores each 256 conflicts [MoskewiczMZZM2001]
- improvement (MiniSAT): for each conflict, increase the score of involved variables by δ and increase $\delta:=1.05 \delta$ [EenS"orensson2003]
- Based on the occurrences in the (reduced) formula examples: Jeroslow-Wang, Maximal Occurrence in clauses of Minimal Size (MOMS), look-aheads
- Based on the encoding / consequently negative branching (early MiniSAT)
- Based on the last implied value (phase-saving)

