DM811

Heuristics for Combinatorial Optimization

Lecture 6

SAT

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Outline
Assignment 1

Recap SaT

@ Combinatorial Optimization and Terminology

@ Basic Concepts in Algorithmics
Graphs e Notation and runtime e Machine model e Pseudo-code e
Computational Complexity e Analysis of Algorithms

@ Construction Heuristics + Local Search + Metaheuristics

@ Software systems and Working Environment
[Comet, EasyLocal++, unix]

@ Assignment 1 + Analysis of Results in R
[RStudio, Cheat Sheet, My Notes, script]

o Construction Heuristics (search tree, variable + value model)
[from complete (DFS, Best first, A*) to incomplete search (greedy)]

@ Metaheuristics on CH

Outline

1. Assignment 1
Results
Writing Code

2. SAT

Outline

1. Assignment 1
Results
Writing Code

Outline
Assignment 1
SAT

Outline
Assignment 1
SAT

Outline

1. Assignment 1
Results

Outline
Assignment 1
SAT

Outline
Assignment 1
SAT

230190

160783

100387

060511

040885

280881

290786

080986

rlf

200975

30 40 50

Different scales amone instances hide differences

10 20 30 40 50

Outline
Assignment 1
SAT

10 20 30 40 50
| I | I

N OWODHN) N OWNODHAN N ONEDN N ONODHN)

) N S -) I N I) N S
queen5 5.txt | queen6_6.txt | queen7_7.txt | queen8 8.txt | queen9 9.txt
D D 0 0 D
§§ ; : ? i :
K & H & Py
H : H : s
% H b <)
gueen28 28.txigueen29 29.txigueen30_30.txiqueen31_31.txigueen32_ 32.tx{ queend 4.txt
P o ‘e o HH
‘e ‘e . ‘e ‘e |o
o . . . M
gg ;i ; K K Kl
gueen22_22.txjqueen23_23.txigueen24 24.txiqgueen25_25.txigueen26_26.txiqueen27_27.tx1
“ ‘e o o “ J
& : s . - P
0‘ l. .‘ l.
$ 3 H . Y $
gueenl6 16.txiqueenl?7_17.txigueenl8 18.txigueenl9 19.txigueen20 20.txigueen2l 21.tx1
S H H H : g
Py o H o o o
o J Py P o P4
5 H H 5 5 5
gueenl0 10.txigueenll 11.txtgueenl2 12.txigueenl3 13.txigueenld 14.txiqueenl5 15.tx{
. < D g g 0
“ k) K S H ¢
$ K Py o o 3
g% s)) $ ¥ $
) . H) H e
T T T T 7T T T 1T 1 7T T T T 7T T 1T T 7T T T T 7T T 1T T 7T
10 20 30 40 50 10 20 30 40 50 10 20 30 40 50
col
Note the floor/ceiling effect an the amall instances
Outline
Assignment 1
SAT

230190

060511

160783 °

100387

040885 °

280881

e I R —

o | oo

o] R S—

rank

time

rank.time

Outline Outline
Assignment 1 Assignment 1
SAT SAT
0 200 400 600 8001000 1075 10725
| | | | | | | | | | | | | | | | | | |
290786 rlf 290786 rlf
30 B [0S RS II— ~
20 + 1070 =
1071 -
10 - @mxeecpscocesvevoeovoos r 10n-2 - - W [
0 @mmEResosoTTTeTT ST oD |- 10"-3 -
160783 200975 230190 280881 160783 200975 230190 280881
3 8 - 10M
L 20 ° B - 10%0
£ B //M - 10n-1
_‘,/ e 1 m/ /,JW [
-0 B - 1073
040885 060511 080986 100387 040885 060511 080986 100387
30 - 10 4 L
20 L 1070 — -
1001 - /B.,M i
10 [1072 r
04 = 107-3 -
T T
0 200 400 600 8001000 0 200 400 600 8001000 1075 1012.5 10M.5 10°2.5
size size
6 loo-loo transfarmation ~~ nolvnomial is a straioth line
Outline Outline
Assignment 1 . Assignment 1
saT Outline SaT
290786
8 080986 -
200975 1. Assignment 1
6 040885 r .
060590 Writing Code
4 - L
280881
24 160783 -
rif
T T T T
2 4 6 8
rank

Examples

import cotls;

include "loadDIMACS";
// int nv;

// int me;

// foat alpha;

// bool adj[nv,nv];
range Vertices = 1..nv;
range Colors = 1..nv;

int nbc = Colors.getUp();

Solver<LS> m();

var{int} col[Vertices](m,Colors) := 1;
ConstraintSystem<LS> S(m);

forall (i in Vertices, j in Vertices: j>i && adj[i,j])
S.post(col[i] != col[i]);
S.close();

m.close();

// CONSTRUCTION HEURISTIC
set{int} dom[v in Vertices] = setof(c in Colors) true;
RandomPermutation perm(Vertices);
forall (i in 1..nv) {
int v = perm.get();
selectMin(c in dom[v])(<c) {
col[v] := ¢;
forall(w in Vertices: adj[v,w])
dom[w].delete(c);

3
nbec = max(v in Vertices) col[v];
Colors = 1..nbg;

cout< < "Construction heuristic, done: ;)" < <nbc< <" colors" < < endl;

Where do speedups come from?

Where can maximum speedup be achieved?
How much speedup should you expect?

Assignment 1

Assignment 1

10

Assignment 1

codel.java/png code3.cpp

0
Code Tuning sipmmen
o Caution: proceed carefully! Let the optimizing compiler do its work!
o Expression Rules: Recode for smaller instruction counts.
@ Loop and procedure rules: Recode to avoid loop or procedure call
overhead.
o Hidden costs of high-level languages
@ String comparisons in C: proportional to length of the string, not
constant
@ Object construction / de-allocation: very expensive
@ Matrix access: row-major order # column-major order
o Exploit algebraic identities
@ Avoid unnecessary computations inside the loops
11

Assignment 1 Assignment 1

Where Speedups Come From? Relevant Literature

McGeoch reports conventional wisdom, based on studies in the literature. Bentley, Writing Efficient Programs; Programming Pearls (Chapter 8

Concurrency is tricky: bad -7x to good 500x Code Tuning)

Kernighan and Pike, The Practice of Programming (Chapter 7
Performance).
Shirazi, Java Performance Tuning, O'Reilly

Classic algorithms: to 1trillion and beyond

Data-aware: up to 100x

McCluskey, Thirty ways to improve the performance of your Java

Algorithm tricks: up to 200x program. Manuscript and website: www.glenmcci.com/jpert

Code tuning: up to 10x
Randal E. Bryant e David R. O'Hallaron: Computer Systems: A

o
o
o
o Memory-aware: up to 20x
°
°
° Programmer’s Perspective, Prentice Hall, 2003, (Chapter 5)

Change platforms: up to 10x

12 13

Outline Assi SAT Problem Assi

Satisfiability problem in propositional logic

(X5\/Xg\/)_(2)/\(X2\/)_(1\/)_(3)/\()_(8\/>_(3V)_(7)/\(X5\/X3\/Xg)/\
()_(5\/)_(1V)_<5)/\(X8V)_(9VX3)/\(X2VX1 VX3)/\(X1VX8\/X4)/\
()_(g\/)_(5\/Xg)/\(Xg\/X3\/)_(g)A(X9V>_(3VX3)/\(X6\/)_(Q\/X5)/\
(X2\/)_(3\/)_(3)/\(Xg\/)_(5\/)_(3)/\(Xg\/)_(g,\/)_(l)/\(Xg\/Xﬁ\/)_(z)/\
(X7\/Xg\/)_(g)/\(Xg\/)_(g\/Xz)/\()_(l\/)?g\/Xar)/\(Xg\/Xl\/)_Q)/\
(X3\/)_(4\/)_(6)/\()_(1\/)_(7\/X5)/\()_(7\/X1 \/X@)/\(X5\/X4\/)_(5)/\
()_(4\/Xg\/)_(g)/\(Xg\/Xg\/Xl)/\(X5\/)_(7\/X1)/\(X7\/)_(g\/)_(5)/\
(X2\/X5\/X4)/\(Xg\/)_(4\/X5)/\(X5VX9\/X3)/\(X5V)_(7\/XQ)/\
2 SAT (X2\/)_(BVXl)/\()_(7VX1VX5)/\(X1\/X4\/X3)/\(X1V)_(g\/)_(4)/\
(X3\/X5\/Xg)/\()_(6\/X3\/)_(g)/\()_(7VX5\/X9)/\(X7\/)_(5\/)_(2)/\
(X4\/X7VX3)/\(X4V)_(QV)_(7)/\(X5V)_(1 VX7)/\(X5V)_(1\/X7)/\
(Xﬁ\/X7\/)_(3)/\()_(8\/)_(6\/)_(7)/\(X6\/X2\/X3) (Xg\/Xz\/X5)

Does there exists a truth assignment satisfying all clauses?
Search for a satisfying assignment (or prove none exists)

14 15

Outline

SAT Problem Assgnment 1

Satisfiability problem in propositional logic

(xs Ve Vo)A (Vi VX)) A (VX Vi) A (s VsV xg
(%6 VX V)A(aVXVxa)A(oVx Va)A(G VgV
(X% VX Vxs)A(eVixaVX)A(xVXVx)A(%VXVxs
(oVX3VX)A(a VX VX)) A (VX VX)A(XV X VX
(7 VxoVX)A(e VX Vo)A (VX Vx) A(eVx Vi
(aVVX) ANV VX)AGG VXV xe)A (% V x VX
(%2 Vxo VX)) A (0 Vo V) A(xs Vi Vx)A(X VX VX
(o Vs Vxg) A (e VixeVxs)A(xsVxVis)A (s VXV x
(CoVXVx) A VX Vxs)A(x VX Vxs)A(x VXV
(CaVxs V)N (X Vs VX)) A7 Vxs Vo)A (Vs Vx
(e VxzVs)A(xa VX ViZ) A6V Vx)A(xs VXV
(%6 Vxs VX)) A (VX Vi) A(x Vo Vx)A(XV oV xs

Does there exists a truth assignment satisfying all clauses?
Search for a satisfying assignment (or prove none exists)

Outline

SAT Problem Assgnment 1

Satisfiability problem in propositional logic

Definitions:

@ Formula in propositional logic: well-formed string that may contain
propositional variables x1,x2, ..., x,;

truth values T (‘true’), L (‘false’);

operators = (‘not’), A (‘and’), V (‘or');

parentheses (for operator nesting).

>>>>>>>>>> >

Outline
Assignment 1

Motivation saT

e From 100 variables, 200 constraints (early 90s)
to 1,000,000 vars. and 20,000,000 cls. in 20 years.

@ Applications:
Hardware and Software Verification, Planning, Scheduling, Optimal

Control, Protocol Design, Routing, Combinatorial problems, Equivalence

Checking, etc.

@ SAT used to solve many other problems!

15

Outline

SAT Problem Rasgnment 1

Satisfiability problem in propositional logic

Definitions:

@ Formula in propositional logic: well-formed string that may contain
propositional variables x1, x2, ..., xs;

truth values T (‘true’), L (‘false’);

operators — (‘not’), A (‘and’), V (‘or’);

parentheses (for operator nesting).

e Model (or satisfying assignment) of a formula F: Assignment of truth
values to the variables in F under which F becomes true (under the
usual interpretation of the logical operators)

16

17

17

Outline

SAT Problem Assgnment 1

Satisfiability problem in propositional logic

Definitions:

o Formula in propositional logic: well-formed string that may contain
e propositional variables xi, x2, . .., xp;
o truth values T (‘true’), L (‘false’);
e operators = (‘not’), A (‘and’), V (‘or');
o parentheses (for operator nesting).
@ Model (or satisfying assignment) of a formula F: Assignment of truth
values to the variables in F under which F becomes true (under the
usual interpretation of the logical operators)

o Formula F is satisfiable iff there exists at least one model of F,
unsatisfiable otherwise.

Outline
Assignment 1
SAT

SAT Problem (decision problem, search variant):

o Given: Formula F in propositional logic

@ Task: Find an assignment of truth values to variables in F that renders
F true, or decide that no such assignment exists.

17

SAT: A simple example
e Given: Formula F = (x1 V x2) A (—x1 V —1x0)

o Task: Find an assignment of truth values to variables x;, x> that renders
F true, or decide that no such assignment exists.

v

18

Outline
Assignment 1
SAT

SAT Problem (decision problem, search variant):

e Given: Formula F in propositional logic

o Task: Find an assignment of truth values to variables in F that renders
F true, or decide that no such assignment exists.

Outline
Assignment 1
SAT

Definitions:

@ A formula is in conjunctive normal form (CNF) iff it is of the form

m k,‘
AVili=av. Vi) A A VooV g,)

i=1j=1
where each literal /;; is a propositional variable or its negation. The

disjunctions ¢; = (/i1 V...V ly,) are called clauses.

o A formula is in k-CNF iff it is in CNF and all clauses contain exactly k
literals (i.e., for all i, k; = k).

18

19

Outline
Assignment 1
SAT

Definitions:

@ A formula is in conjunctive normal form (CNF) iff it is of the form

AV ili=0aV. Vi) A AU VeV h,)

where each literal /;; is a propositional variable or its negation. The
disjunctions ¢; = (/i1 V...V ly,) are called clauses.

o A formula is in k-CNF iff it is in CNF and all clauses contain exactly k
literals (i.e., for all i, ki = k).

@ In many cases, the restriction of SAT to CNF formulae
is considered.

o For every propositional formula, there is an equivalent formula in 3-CNF.

19

Outline
Assignment 1
SAT

Example:

F:= A(—xVx)
A (—x1 V X V —x3)
N (X]_ V X2)
A (ﬁX4 V X3)
N (ﬁX5 V X3)

e Fisin CNF.

o Is F satisfiable?
Yes, e.g., x1 ;= xo := T, x3:= x4 := x5 := | is a model of F.

MAX-SAT (optimization problem)

Which is the maximal number of clauses satisfiable in a propositional logic
formula F?

20

Outline
Assignment 1
SAT

Example:

e Fisin CNF.
o s F satisfiable?

20

Outline
Assignment 1

Pre-processing saT

Pre-processing rules: low polynimial time procedures to decrease the size of
the problem instance.

Typically applied in cascade until no rule is effective anymore.

21

Examples

eliminate duplicate literals
tautologies: x; V —xq...
subsumed clauses

pure literals

unit clauses

IS e

unit propagation

Construction heuristics

@ Variable selection heuristics
aim: minimize the search space
plus: could compensate a bad value selection

@ Value selection heuristics
aim: guide search towards a solution (or conflict)
plus: could compensate a bad variable selection

SAT

SAT

Construction heuristics saT

o Variable selection heuristics
aim: minimize the search space
plus: could compensate a bad value selection

22 23

Construction heuristics saT

@ Variable selection heuristics
aim: minimize the search space
plus: could compensate a bad value selection

@ Value selection heuristics
aim: guide search towards a solution (or conflict)
plus: could compensate a bad variable selection

o Restart strategies
aim: avoid heavy-tail behavior [GomesSelmanCrato'97]
plus: focus search on recent conflicts when combined with dynamic
heuristics

23 23

Variable selection heuristics saT

@ Maximal Occurrence in clauses of Minimal Size (Jeroslow-Wang)
@ Variable State Independent Decaying Sum (VSIDS) original idea
(zChaff): for each conflict, increase the score of involved variables by 1,

half all scores each 256 conflicts [MoskewiczMZZM?2001]

e improvement (MiniSAT): for each conflict, increase the score of involved
variables by ¢ and increase § := 1.059 [EenS"orensson2003]

24

Value selection heuristics saT

@ Based on the occurrences in the (reduced) formula
examples: Jeroslow-Wang, Maximal Occurrence in clauses of Minimal
Size (MOMS), look-aheads

@ Based on the encoding / consequently
negative branching (early MiniSAT)

@ Based on the last implied value (phase-saving)

25

