DM811

Heuristics for Combinatorial Optimization

Lecture 6

SAT

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Outline
Assignment 1

Outline saT

1. Assignment 1
Results
Writing Code

2. SAT

Outline

Recap

@ Combinatorial Optimization and Terminology

@ Basic Concepts in Algorithmics
Graphs e Notation and runtime e Machine model e Pseudo-code o
Computational Complexity e Analysis of Algorithms

o Construction Heuristics + Local Search + Metaheuristics

o Software systems and Working Environment
[Comet, EasyLocal++, unix]

o Assignment 1 + Analysis of Results in R
[RStudio, Cheat Sheet, My Notes, script]

o Construction Heuristics (search tree, variable + value model)
[from complete (DFS, Best first, A*) to incomplete search (greedy)]

@ Metaheuristics on CH

Outline
Assignment 1

Outline saT

1. Assignment 1
Results
Writing Code

Outline
Assignment 1

Outline saT

1. Assignment 1
Results

10 20 30 40 50

1

1

1

1

1

10 20 30 40 50

I N N
9.txt

1

111

q

=

een7_7.txt

1) I N |
ueen5_5.txt | queen6_6.txt
D

) S |
queen8_8.txt
0
:

queen9

Seastel

Assignment 1

queen30_30.tx

gqueen31_31.tx

queend_4.txt

gqueen32_32.tx

gueen28_28.txi

queen29_29.tx

*¢ee
*%ee

e

.
[

o
o

.
o |
o |e
o e

.
.
H
.

queen27_27.tx

Queen23 23.tx

queen24 24.tx

queen25

N

5.tx

gqueen26_26.tx

gueen22_22.txi

.
ALY
ces ol

e,

. o
.

queen2

L

1

21.txi

queenl!

19.txtgueen20_20.tx

gueen

6_16.txigueenl?7_17.tx{

queenl8 18.tx

e foe

o
.
o
.
o
ry

*oeaee

sy

eese(©Ofe

o
.
o

.
.

o

.

.
.
o
o
.

queenl5_ 15.tx

gueenl0_10.txi

gueenl3 13.tx

gueenl4 14.tx

gueenll 11.tx

queenl2 12.tx

.
.

T

T T

T T T T
10 20 30 40 50

Nate the flaor /ceilino effect an the emal

T T T 17T

10 20 30 40 50

col

| inctancec

T T

10 20 30 40 50

Outline
Assignment 1
SAT

230190 R e { N oo ;
160783 R e { . oo ;
100387 boooocoonoo-- { . foeeeeee- ;
060511 REEEEEEEEEE { . boememeeee - ;
040885 R EEEEE { . boemeeee e .
280881 REEEEEEEEEE { . b--eeee-- ;
290786 beccoonooo- { . f-eeee-- :
080986 ettt { . oo ;
o I S T— |
200975 R { . R :
T T T T T
10 20 30 40 50
col

Different ccaleec amono inctancece hide differencec

Outline
Assignment 1
SAT

230190 o EREEEEEEEE E
060511 A EEEEEEE]

: s NN
R I SRS ;
040885 o oo e - Lo
280881 B o R

290786 t----- S -

080986 foocooo-- { %

200e7s I TEE— o o
I e SR ; -

time

30

20

10

30

20

10

Outline

Assignment 1

SAT
0 200 400 600 8001000
L1 I R N N B |
290786
WEseostes e et oo-o0-0-0 r
160783 200975 230190 280881
040885 060511 080986 100387

T T T T T T
0 200 400 600 8001000

T

T

T

T

T

T

0 200 400 600 8001000

size

T

T T

T

T

T

T

T T T T

30

20

10

Outline
Assignment 1

SAT
105 10025
1 1 1 1 1 1 1
290786 rlf
10N o—ooo-oooosmsccmmmemmn L
100 -
1071 -
1072 pre s
1073 -
160783 200975 230190 280881
5 - 10n
© s t 1070
£ B /W - 101
e wf/ WJW - 10n-2
. 103
040885 060511 080986 100387

107 -

100 -
10/_1 — {B/JB@W |-
1072 -
10n-3 | -

T T T T T T T T T T T T T T T T
1005 10%25 1005 10%25
size

lao-lao trancformation - nolvnomial ic a ctraiocth line

rank.time

Assignment 1

230786

080986

200975

rif

280881

040885

280590

160783

rank

Outline
Assignment 1

Outline saT

1. Assignment 1

Writing Code

Assignment 1

Examples

import cotls;

include "loadDIMACS";
// int nv;

// int me;

// float alpha;

// bool adj[nv,nv];
range Vertices = 1..nv;
range Colors = 1..nv;

int nbe = Colors.getUp();

Solver<LS> m();

var{int} col[Vertices](m,Colors) := 1;
ConstraintSystem<LS> S(m);

forall (i in Vertices, j in Vertices: j>i && adj[i,j])
S.post(col[i] != col[il);
S.close();

m.close();

// CONSTRUCTION HEURISTIC
set{int} dom[v in Vertices] = setof(c in Colors) true;
RandomPermutation perm(Vertices);
forall (i in 1..nv) {
int v = perm.get();
selectMin(c in dom[v])(<) {
col[v] := <
forall(w in Vertices: adj[v,w])
dom[w].delete(c);

R max(VlinVertcas)[esl[u];
Colors = 1..nbc;
cout< < "Construction heuristic, done: "< <nbe< <" colors" < < endl;

Assignment 1

codel.java/png code3.cpp

Where do speedups come from?

Where can maximum speedup be achieved?
How much speedup should you expect?

Outline
Assignment 1
SAT

10

Code Tuning

Assignment 1

Caution: proceed carefully! Let the optimizing compiler do its work!
Expression Rules: Recode for smaller instruction counts.

Loop and procedure rules: Recode to avoid loop or procedure call
overhead.

Hidden costs of high-level languages

String comparisons in C: proportional to length of the string, not
constant

Object construction / de-allocation: very expensive
Matrix access: row-major order # column-major order
Exploit algebraic identities

Avoid unnecessary computations inside the loops

11

Assignment 1

Where Speedups Come From?

McGeoch reports conventional wisdom, based on studies in the literature.

Concurrency is tricky: bad -7x to good 500x
Classic algorithms: to 1trillion and beyond
Data-aware: up to 100x

Memory-aware: up to 20x

Algorithm tricks: up to 200x

®© 6 6 o o o

Code tuning: up to 10x
o Change platforms: up to 10x

12

Assignment 1

Relevant Literature

Bentley, Writing Efficient Programs; Programming Pearls (Chapter 8
Code Tuning)

Kernighan and Pike, The Practice of Programming (Chapter 7
Performance).
Shirazi, Java Performance Tuning, O'Reilly

McCluskey, Thirty ways to improve the performance of your Java
program. Manuscript and website: www.glenmcci.com/jpert

Randal E. Bryant e David R. O'Hallaron: Computer Systems: A
Programmer’s Perspective, Prentice Hall, 2003, (Chapter 5)

13

www.glenmcci.com/jperf

Outline

2. SAT

Outline
Assignment 1
SAT

14

SAT P roblem QZST;g'nimm 1

Satisfiability problem in propositional logic

(X5VX8\/)_(2)/\(X2\/)_(1\/)_(3)/\()_(3\/)_(3V)_(7)/\()_(5\/X3\/X3)
()_(6\/)_(1\/)_(5)/\(Xg\/)_(g\/X:;)/\(XQ\/XlVX3)/\()_(1VX8\/X4)
()_(gV)_(ﬁ\/Xg)/\(Xg\/X3\/)_(g)/\(XQV)_(3VX8)/\(X6V)_(Q\/X5)
(XQ\/)_(g\/)_(g)/\(Xg\/)_(6\/)_(3)/\(Xg\/)_(g\/)_(l)/\()_(g\/Xﬁ\/)_(Q)
(X7\/Xg\/)_(2)/\(X3V)_(g\/Xz)/\()_(l\/)_(QVX4)/\(X8VX1\/)_(2)
(X3V)_(4\/)_(6)/\()_(1\/)_(TVX5)/\()_(7VX1VX(,)/\()_(5VX4V)_(6)
()_(4\/Xg\/)_(3)/\(X2\/Xg\/Xl)/\(Xs\/)_(7\/X1)/\()_(7V)_(g\/)_(ﬁ)
(Xz\/X5\/X4)/\(Xg\/)_(4\/X5)/\(Xs\/Xg\/X3)/\()_(5V)_(7\/Xg)
(XQV)_(g\/Xl)/\()_(Tf\/XIVX5)/\(X1\/X4\/X3)/\(X1V)_(g\/)_(4)
(X3VX5VX6)/\()_(6VX3V)_(9)/\()_(7VX5VX9)/\(X7V)_(5V)_(2)
(X4VX7\/X3)/\(X4V)_(gV)_(7)/\(X5V)_(lVXT)/\(X5\/)_(1\/X7)
(Xﬁ\/XT\/)_(g)/\()_(g\/)_(6\/)_(7)/\(Xﬁ\/XQ\/X3)/\()_(8VX2\/X5)

Does there exists a truth assignment satisfying all clauses?
Search for a satisfying assignment (or prove none exists)

>>>>>>>>>>>

15

SAT Problem Rasgnment 1

Satisfiability problem in propositional logic

(x5 Vs VX)) A (o Vi V) A(Rg Vs Vig) A (X Vs Vi)
(X6 VX1 VX)) A (g Vg Vo) Ao Vxy Vo) A (X Vs Vxg)
(%o V X5 V 2x3) A (x5 Vs VXg) A (50 VX3 Vo) A (36 V X V X5)
(o VEVX)A (e VXVX)A (e Vs V)A (X V X VX)
(x7 Vo VX)) A (e VX Vo)A (0 VX Vxg) A (X V Xy VX))
(3 VI V) AV V) A Vxg Vos) A (X V xg V Xg)
(X_1VX VXg)/\(X V Xg VXl)/\(X5V)_<7VX1)/\()_ﬁ-\/)_(g\/X6)
(6o Vs V) ADe Vi Vxs)A (s Vo Vi) (X VXV x)
(o VX Vx) AV Vxs) A(xg Vxg Vos) A (xg Vg V)
(55 Vxs Vxe) A (X6 V3 VXo) A7 Vs Vo) A(xz VX V X)
(x4 V7 Vo)A (g VX V) A (6 VX VX)) A(Xs VXV xy)
(6 Vxs VR3) A (Rg Ve Vi) A (e Voo Vo) A (Xg Voo Vxs)

Does there exists a truth assignment satisfying all clauses?
Search for a satisfying assignment (or prove none exists)

>>>>>>>>>>>

15

Motivation saT

o From 100 variables, 200 constraints (early 90s)
to 1,000,000 vars. and 20,000,000 cls. in 20 years.

o Applications:
Hardware and Software Verification, Planning, Scheduling, Optimal
Control, Protocol Design, Routing, Combinatorial problems, Equivalence
Checking, etc.

@ SAT used to solve many other problems!

16

Outline

SAT Problem Rasgnment 1

Satisfiability problem in propositional logic

Definitions:

@ Formula in propositional logic: well-formed string that may contain

o propositional variables xi, x2, ..., Xn;

o truth values T (‘true’), L (‘false’);

e operators = (‘not’), A (‘and’), V (‘or’);
o parentheses (for operator nesting).

17

Outline
Assignment 1

SAT Problem A

Satisfiability problem in propositional logic

Definitions:

@ Formula in propositional logic: well-formed string that may contain
o propositional variables xi, x2, ..., Xn;
o truth values T (‘true’), L (‘false’);
o operators — (‘not’), A (‘and’), V (‘or');
o parentheses (for operator nesting).

o Model (or satisfying assignment) of a formula F: Assignment of truth
values to the variables in F under which F becomes true (under the
usual interpretation of the logical operators)

17

Outline

SAT P rObIem ézfli_gnmcnt 1

Satisfiability problem in propositional logic

Definitions:

@ Formula in propositional logic: well-formed string that may contain

o propositional variables xi, x2, ..., Xn;

o truth values T (‘true’), L (‘false’);

e operators = (‘not’), A (‘and’), V (‘or’);
o parentheses (for operator nesting).

o Model (or satisfying assignment) of a formula F: Assignment of truth
values to the variables in F under which F becomes true (under the
usual interpretation of the logical operators)

o Formula F is satisfiable iff there exists at least one model of F,
unsatisfiable otherwise.

17

Outline
Assignment 1
SAT

SAT Problem (decision problem, search variant):
o Given: Formula F in propositional logic

o Task: Find an assignment of truth values to variables in F that renders
F true, or decide that no such assignment exists.

18

Outline
Assignment 1
SAT

SAT Problem (decision problem, search variant):
o Given: Formula F in propositional logic

o Task: Find an assignment of truth values to variables in F that renders
F true, or decide that no such assignment exists.

SAT: A simple example
o Given: Formula F := (x1 V x2) A (—x1 V —x2)

o Task: Find an assignment of truth values to variables x;, x> that renders
F true, or decide that no such assignment exists.

v

18

Outline
Assignment 1

SAT

Definitions:

o A formula is in conjunctive normal form (CNF) iff it is of the form

m ki
/\\//,--:(/11\/...\//1kl)A.../\(/m1\/...\//mkm)
i=1j=1

where each literal /;; is a propositional variable or its negation. The
disjunctions ¢; = (/i1 V...V ly,) are called clauses.

o A formula is in k-CNF iff it is in CNF and all clauses contain exactly k
literals (i.e., for all i, k; = k).

19

Outline
Assignment 1

SAT
Definitions:

o A formula is in conjunctive normal form (CNF) iff it is of the form

m ki

/\\//,--:(/11\/...v/1k1)A.../\(/m1\/...\//mkm)

i=1j=1

where each literal /;; is a propositional variable or its negation. The
disjunctions ¢; = (/i1 V...V ly,) are called clauses.

o A formula is in k-CNF iff it is in CNF and all clauses contain exactly k
literals (i.e., for all i, k; = k).

@ In many cases, the restriction of SAT to CNF formulae
is considered.

o For every propositional formula, there is an equivalent formula in 3-CNF.

19

Example:

o Fisin CNF.
o |Is F satisfiable?

Outline
Assignment 1
SAT

20

Outline
Assignment 1
SAT

Example:

o Fisin CNF.

o |Is F satisfiable?
Yes, e.g., x1 ;= x2 := [, x3 := x4 := x5 := | is a model of F.

MAX-SAT (optimization problem)

Which is the maximal number of clauses satisfiable in a propositional logic
formula F?

20

Pre-processing saT

Pre-processing rules: low polynimial time procedures to decrease the size of
the problem instance.

Typically applied in cascade until no rule is effective anymore.

21

Examples
1. eliminate duplicate literals
2. tautologies: x; V —ixy...
3. subsumed clauses
4. pure literals
5. unit clauses
6. unit propagation

Outline
Assignment 1

SAT

22

Construction heuristics

@ Variable selection heuristics
aim: minimize the search space
plus: could compensate a bad value selection

Outline
Assignment 1
SAT

23

Construction heuristics

@ Variable selection heuristics
aim: minimize the search space
plus: could compensate a bad value selection

o Value selection heuristics
aim: guide search towards a solution (or conflict)
plus: could compensate a bad variable selection

SAT

23

Construction heuristics saT

@ Variable selection heuristics
aim: minimize the search space
plus: could compensate a bad value selection

o Value selection heuristics
aim: guide search towards a solution (or conflict)
plus: could compensate a bad variable selection

o Restart strategies
aim: avoid heavy-tail behavior [GomesSelmanCrato'97]
plus: focus search on recent conflicts when combined with dynamic
heuristics

23

Outline
Assignment 1
SAT

Variable selection heuristics

@ Maximal Occurrence in clauses of Minimal Size (Jeroslow-Wang)
@ Variable State Independent Decaying Sum (VSIDS) original idea
(zChaff): for each conflict, increase the score of involved variables by 1,

half all scores each 256 conflicts [MoskewiczMZZM2001]

@ improvement (MiniSAT): for each conflict, increase the score of involved
variables by ¢ and increase 0 := 1.050 [EenS"orensson2003]

24

Value selection heuristics saT

o Based on the occurrences in the (reduced) formula
examples: Jeroslow-Wang, Maximal Occurrence in clauses of Minimal
Size (MOMS), look-aheads

@ Based on the encoding / consequently
negative branching (early MiniSAT)

@ Based on the last implied value (phase-saving)

25

	Outline
	Assignment 1
	Results
	Writing Code

	SAT

