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Summary: Local Search Algorithms
(as in [Hoos, Stiitzle, 2005])

For given problem instance 7:

1. search space S,

2. neighborhood relation N, C S, x S

3. evaluation function f, : S — R

4. set of memory states M,

5. initialization function init : () — S, x M)
6. step function step: S; x M, — S, x M,

7. termination predicate terminate : S; x M, — {T, L}

LS Algorithm Components

Search Space

Defined by the solution representation:

@ permutations

o linear (scheduling)
o circular (TSP)

@ arrays (assignment problems: GCP)

@ sets or lists (partition problems: Knapsack)
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Local Search Revisited

LS Algorithm Components Evameics

Neighborhood function
Also defined as: V' : S x S — {T . F}or N C S xS

@ neighborhood (set) of candidate solution s: N(s) := {s" € S| N(s,s")}
@ neighborhood size is | N (s)]
@ neighborhood is symmetric if: ' € N(s) — s € N(s)

@ neighborhood graph of (S, f, N, ) is a directed vertex-weighted graph:
Gy, == (V,A) with V =5, and (uv) € A & v € N(u)

(if symmetric neighborhood ~~ undirected graph)

Notation: N when set, A/ when collection of sets or function

Local Search Revisited

LS Algorithm Components Evameics

Definition:

@ Local minimum: search position without improving neighbors wrt given
evaluation function [ and neighborhood
i.e., position s € S such that f(s) < f(s') for all s" € N(s).

@ Strict local minimum: search position s € S such that
f(s) < f(s') forall s € N(s).

o Local maxima and strict local maxima: defined analogously.

Local Search Revisited
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A neighborhood function is also defined by means of an operator.

An operator A is a collection of operator functions ¢ : S — S such that

ss€N(s) = dJIeAds)=5s

Definition

k-exchange neighborhood: candidate solutions s, s” are neighbors iff s differs
from s’ in at most £ solution components

Examples:

o 1l-exchange (flip) neighborhood for SAT
(solution components = single variable assignments)

@ 2-exchange neighborhood for TSP
(solution components = edges in given graph)
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LS Algorithm Components e

Note:
@ Local search implements a walk through the neighborhood graph

o Procedural versions of init, step and terminate implement sampling
from respective probability distributions.

@ Memory state m can consist of multiple independent attributes, i.e.,
My =My X My x ... x M;_.

@ Local search algorithms are often Markov processes:
behavior in any search state {s,m} depends only
on current position s
higher order if (limited) memory .
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LS Algorithm Components e

Search step (or move):

pair of search positions s, s’ for which

s’ can be reached from s in one step, i.e., N(s,s’) and
step({s,m},{s’,m'}) > 0 for some memory states m,m’ € M.

@ Search trajectory: finite sequence of search positions < sg, s1,...,5; >
such that (s;_1,s;) is a search step for any i € {1,... k}
and the probability of initializing the search at s
is greater than zero, i.e., init({sy,m}) >0
for some memory state m € M.

@ Search strategy: specified by init and step function; to some extent
independent of problem instance and other components of LS algorithm.

e random
o based on evaluation function
e based on memory
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Outline Exermeles

2. Examples
Indirect Solution Representation

Iterative Improvement

Resume

Local Search Revisited

LS Algorithm Components Evameles

Evaluation (or cost) function:

e function f; : S, — R that maps candidate solutions of
a given problem instance 7 onto real numbers,
such that global optima correspond to solutions of 7;

@ used for ranking or assessing neighbors of current
search position to provide guidance to search process.

Evaluation vs objective functions:
@ Evaluation function: part of LS algorithm.
o Objective function: integral part of optimization problem.

@ Some LS methods use evaluation functions different from given objective
function (e.g., guided local search).
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@ does not use memory
@ init: uniform random choice from S or construction heuristic

@ step: uniform random choice from improving neighbors

Pr(s, s') 1/|1(s)|if s’ € I(s)
r(s,s =
' 0 otherwise

where I(s) :={s' € S| N(s,s’) and f(s") < f(s)}

@ terminates when no improving neighbor available

Note: Iterative improvement is also known as iterative descent or
hill-climbing.

12

13



Iterative Improvement (cntd) Local SerchFeviced

Resume

Pivoting rule decides which neighbors go in I(s)

@ Best Improvement (aka gradient descent, steepest descent, greedy
hill-climbing): Choose maximally improving neighbors,
e, I(s):={s e N(s)| f(s') =g"},
where ¢* := min{f(s") | s € N(s)}.

Note: Requires evaluation of all neighbors in each step!

o First Improvement: Evaluate neighbors in fixed order,
choose first improving one encountered.

Note: Can be more efficient than Best Improvement but not in the worst
case; order of evaluation can impact performance.
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Random order first improvement for SAT

URW-for-SAT(F',maxSteps)
input: propositional formula F', integer maxSteps
output: a model for F' or ()

choose assignment ¢ of truth values to all variables in F’
uniformly at random;
steps := 0;
while —(¢ satisfies F') and (steps < maxSteps) do
select = uniformly at random from {z’|z’ is a variable in £ and
L changing value of 2/ in ¢ decreases the number of unsatisfied clauses}
steps := steps+1;

if ¢ satisfies I then

| return ¢
else

L return (
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Exa m ples Examples

Iterative Improvement for SAT

@ search space S: set of all truth assignments to variables in given formula F'
(solution set S’: set of all models of F)

@ neighborhood relation \/: 1-flip neighborhood
@ memory: not used, i.e., M = {0}

@ initialization: uniform random choice from S, i.e., init((),{a}) := 1/|S5] for
all assignments a

@ evaluation function: f(a) := number of clauses in F'
that are unsatisfied under assignment a
(Note: f(a) =0 iff a is a model of F.)

@ step function: uniform random choice from improving neighbors, i.e.,
step(a,a’) := 1/|I(a)| if ' € I(a),
and 0 otherwise, where I(a) := {a' | N(a,a’) A f(a) < f(a)}

@ termination: when no improving neighbor is available
i.e., terminate(a, 1) := 1 if I(a) = (), and 0 otherwise.
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Iterative Improvement for TSP

TSP-2opt-first(s)
input: an initial candidate tour s € S(€)
output: a local optimum s € S,
A=0;
fori =1ton—2do
ifi=1 thenn =n—1lelsen =n
for j =i+2ton’ do
Aij = d(ci, ¢;) +d(civ1, ¢ip1) — d(ci, civ1) — d(cj, ¢jt1)
if A;; <0 then
| UpdateTour(s,i,j)

is it really?
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Iterative Improvement for TSP Random-order first improvement for the TSP
TSP-2opt-first(s) ) _ _ .
input: an initial candidate tour s € S(€) @ Given: TSP instance (G with vertices vi,vs,...,v,.

output: a local optimum s € S,
A =0;

Improvement=TRUE;

while Improvement==TRUE do

search space: Hamiltonian cycles in G}

neighborhood relation N: standard 2-exchange neighborhood

o Initialization:
ém;)/.rczi/elrnen,tzFAQI,ZE,' search position := fixed canonical tour < vy,v2,...,v,,v1 >
or Ilf_7 _ti) r:h::n 77,0_ 0 1else n’ —n P := random permutation of {1,2,...,n}
forj=i+2ton'd . C e
or JAw?:er(c,-of) +od(c7-+1 ¢j1) — d(ci, cir1) — d(cs, cja) o Search steps: determined using first improvement
if JAU < 0/’thjen Y : o w.r.t. f(s) = cost of tour s, evaluating neighbors
UpdateTour(s, 1, j) in order of P (does not change throughout search)
L Improvement=TRUE
L o Termination: when no improving search step possible
_ J (local minimum)
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The Max Independent Set Problem Examles Single Machine Total Weighted Tardiness=
Also called “stable set problem” or “vertex packing problem”.
Given: an undirected graph GG(V, E)) and a non-negative weight function w Given: a set of n jobs {J;,...,.J,} to be processed on a single machine
onV (w:V —R) and for each job J; a processing time p;, a weight w; and a due date d;.
Task: A largest weight independent set of vertices, i.e., a subset V' C I/ Task: Find a schedule 'that mir:limizes
such that no two vertices in V// are joined by an edge in F. the total weighted tardiness >, w; - T}

where T; = max{C; — d;,0} (C; completion time of job .J;)
Related Problems:

Example:

Vertex Cover Job Ji Jo J3 Jy  Js5 Jg
Given: an undirected graph G(V. E) and a non-negative weight function w Processing Time 3 2 2 3 4 3
onV (w:V —R) Due date 6 13 4 9 7 17
Task: A smallest weight vertex cover, i.e., a subset IV C V such that each Weight 2 3 1 5 1 2
edge of G has at least one endpoint in V. Sequence ¢ = J3, J1, J5, Ju, J1, Jg

Job J; Jl J5 J4 Jl J6
Maximum Clique C; 2 5 9 12 14 17
Given: an undirected graph G(V, E) T; c 0 2 3 1 0
Task: A maximum cardinality clique, i.e., a subset V' C V' such that every wi-T; 00 2 15 3 0
two vertices in V'’ are joined by an edge in
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Graph Partitioning Examples Example: Scheduling in Parallel Machines--

Input: A graph G = (V. E), weights w(v) € ZT for each v € VV and

l(e) € Z+ foreach e € I. Total Weighted Completion Time on Unrelated Parallel Machines Problem
Task: Find a partition of V' into disjoint sets Vi, V5, ..., V,, such that Input: A set of jobs .J to be processed on a set of parallel machines M.
> ey, w(v) < K for 1 < <m and such that if £" C E is the set of edges Each job j € J has a weight w; and processing time p;; that depends on the
that have their two endpoints in two different sets 17, then >~ __ ., [(e) is machine i € M on which it is processed.
minimal.

Task: Find a schedule of the jobs on the machines such that the sum of
Consider the specific case of graph bipartitioning, that is, the case |V| = 2n weighted completion time of the jobs is minimal.

and K =n and w(v) =1,Vv € V.
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Example: Steiner Tree Exameles Examples, Resume Examples
Steiner Tree Problem
Input: A graph G = (V. F), a weight function w : £+~ N, and a subset
UcCV. @ Permutations
_ o TSP

Task: Find a Steiner tree, that is, a subtree 7" = (V, E) of GG that includes o SMWTP
all the vertices of U and such that the sum of the weights of the edges in the
subtree is minimal. ) o Assignments

) ) ) ) o SAT
Vertices in U are the special vertices and o Coloring
vertices in S = V' \ U are Steiner vertices. o Parallel machines

@ Sets

o Max Weighted Independent Set
o Steiner tree
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