DM811 Heuristics for Combinatorial Optimization

Lecture 8 Local Search (cntd.)

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Summary: Local Search Algorithms (as in [Hoos, Stützle, 2005])

For given problem instance π :

- 1. search space S_{π}
- 2. neighborhood relation $\mathcal{N}_{\pi} \subseteq \mathcal{S}_{\pi} \times \mathcal{S}_{\pi}$
- 3. evaluation function $f_{\pi}: S \to \mathbb{R}$
- 4. set of memory states M_{π}
- 5. initialization function init : $\emptyset \to S_\pi \times M_\pi$)
- 6. step function step : $S_{\pi} \times M_{\pi} \rightarrow S_{\pi} \times M_{\pi}$
- 7. termination predicate terminate : $S_{\pi} \times M_{\pi} \to \{\top, \bot\}$

Local Search Revisited Examples

Outline

1. Local Search Revisited Components

Examples
 Indirect Solution Representation

Local Search Revisited Examples

Outline

1. Local Search Revisited Components

Examples
 Indirect Solution Representation

Search Space

Defined by the solution representation:

- permutations
 - linear (scheduling)
 - circular (TSP)
- arrays (assignment problems: GCP)
- sets or lists (partition problems: Knapsack)

Neighborhood function

Also defined as: $\mathcal{N}: S \times S \to \{T, F\}$ or $\mathcal{N} \subseteq S \times S$

ullet neighborhood (set) of candidate solution $s\colon N(s):=\{s'\in S\mid \mathcal{N}(s,s')\}$

Notation: N when set, \mathcal{N} when collection of sets or function

Neighborhood function

Also defined as: $\mathcal{N}: S \times S \rightarrow \{T, F\}$ or $\mathcal{N} \subseteq S \times S$

- ullet neighborhood (set) of candidate solution $s\colon \mathit{N}(s) := \{s' \in S \mid \mathcal{N}(s,s')\}$
- neighborhood size is |N(s)|

Notation: N when set, \mathcal{N} when collection of sets or function

Neighborhood function

Also defined as: $\mathcal{N}: S \times S \to \{T, F\}$ or $\mathcal{N} \subseteq S \times S$

- $\bullet \ \ \mathsf{neighborhood} \ \ \mathsf{(set)} \ \ \mathsf{of} \ \mathsf{candidate} \ \mathsf{solution} \ \ s \colon \ \mathcal{N}(s) := \{s' \in S \mid \mathcal{N}(s,s')\}$
- neighborhood size is |N(s)|
- neighborhood is symmetric if: $s' \in N(s) \rightarrow s \in N(s')$

Notation: N when set, N when collection of sets or function

Neighborhood function

Also defined as: $\mathcal{N}: S \times S \rightarrow \{T, F\}$ or $\mathcal{N} \subseteq S \times S$

- ullet neighborhood (set) of candidate solution s: $\mathcal{N}(s) := \{s' \in S \mid \mathcal{N}(s,s')\}$
- neighborhood size is |N(s)|
- neighborhood is symmetric if: $s' \in N(s) \rightarrow s \in N(s')$
- neighborhood graph of (S, f, N, π) is a directed vertex-weighted graph: $G_{N_{\pi}} := (V, A)$ with $V = S_{\pi}$ and $(uv) \in A \Leftrightarrow v \in N(u)$ (if symmetric neighborhood \leadsto undirected graph)

Notation: N when set, \mathcal{N} when collection of sets or function

A neighborhood function is also defined by means of an operator.

An operator Δ is a collection of operator functions $\delta: S \to S$ such that

$$s' \in N(s) \implies \exists \delta \in \Delta, \delta(s) = s'$$

Definition

k-exchange neighborhood: candidate solutions s, s' are neighbors iff s differs from s' in at most k solution components

Examples:

• 1-exchange (flip) neighborhood for SAT (solution components = single variable assignments)

A neighborhood function is also defined by means of an operator.

An operator Δ is a collection of operator functions $\delta: S \to S$ such that

$$s' \in N(s) \implies \exists \delta \in \Delta, \delta(s) = s'$$

Definition

k-exchange neighborhood: candidate solutions s, s' are neighbors iff s differs from s' in at most k solution components

Examples:

- 1-exchange (flip) neighborhood for SAT (solution components = single variable assignments)
- 2-exchange neighborhood for TSP (solution components = edges in given graph)

Definition:

• Local minimum: search position without improving neighbors wrt given evaluation function f and neighborhood \mathcal{N} ,

i.e., position $s \in S$ such that $f(s) \le f(s')$ for all $s' \in N(s)$.

Definition:

- Local minimum: search position without improving neighbors wrt given evaluation function f and neighborhood \mathcal{N} , i.e., position $s \in S$ such that $f(s) \leq f(s')$ for all $s' \in \mathcal{N}(s)$.
- Strict local minimum: search position $s \in S$ such that f(s) < f(s') for all $s' \in N(s)$.

Definition:

- Local minimum: search position without improving neighbors wrt given evaluation function f and neighborhood \mathcal{N} , i.e., position $s \in S$ such that $f(s) \leq f(s')$ for all $s' \in \mathcal{N}(s)$.
- Strict local minimum: search position $s \in S$ such that f(s) < f(s') for all $s' \in N(s)$.
- Local maxima and strict local maxima: defined analogously.

Note:

• Local search implements a walk through the neighborhood graph

9

Note:

- Local search implements a walk through the neighborhood graph
- Procedural versions of init, step and terminate implement sampling from respective probability distributions.

Note:

- Local search implements a walk through the neighborhood graph
- Procedural versions of init, step and terminate implement sampling from respective probability distributions.
- Memory state m can consist of multiple independent attributes, *i.e.*, $M_{\pi} := M_1 \times M_2 \times \ldots \times M_{l_{\pi}}$.

Note:

- Local search implements a walk through the neighborhood graph
- Procedural versions of init, step and terminate implement sampling from respective probability distributions.
- Memory state m can consist of multiple independent attributes, *i.e.*, $M_{\pi} := M_1 \times M_2 \times \ldots \times M_{l_{\pi}}$.
- Local search algorithms are often Markov processes: behavior in any search state {s, m} depends only on current position s higher order if (limited) memory m.

```
Search step (or move): pair of search positions s, s' for which s' can be reached from s in one step, i.e., \mathcal{N}(s, s') and \operatorname{step}(\{s, m\}, \{s', m'\}) > 0 for some memory states m, m' \in M.
```

• Search trajectory: finite sequence of search positions $\langle s_0, s_1, \ldots, s_k \rangle$ such that (s_{i-1}, s_i) is a search step for any $i \in \{1, \ldots, k\}$ and the probability of initializing the search at s_0 is greater than zero, i.e., $\operatorname{init}(\{s_0, m\}) > 0$ for some memory state $m \in M$.

```
Search step (or move): pair of search positions s, s' for which s' can be reached from s in one step, i.e., \mathcal{N}(s, s') and \operatorname{step}(\{s, m\}, \{s', m'\}) > 0 for some memory states m, m' \in M.
```

- Search trajectory: finite sequence of search positions $< s_0, s_1, \ldots, s_k >$ such that (s_{i-1}, s_i) is a search step for any $i \in \{1, \ldots, k\}$ and the probability of initializing the search at s_0 is greater than zero, i.e., $\mathtt{init}(\{s_0, m\}) > 0$ for some memory state $m \in M$.
- Search strategy: specified by init and step function; to some extent independent of problem instance and other components of LS algorithm.
 - random
 - based on evaluation function
 - based on memory

Evaluation (or cost) function:

- function $f_{\pi}: S_{\pi} \to \mathbf{R}$ that maps candidate solutions of a given problem instance π onto real numbers, such that global optima correspond to solutions of π ;
- used for ranking or assessing neighbors of current search position to provide guidance to search process.

Evaluation (or cost) function:

- function $f_{\pi}: S_{\pi} \to \mathbf{R}$ that maps candidate solutions of a given problem instance π onto real numbers, such that global optima correspond to solutions of π ;
- used for ranking or assessing neighbors of current search position to provide guidance to search process.

Evaluation vs objective functions:

- Evaluation function: part of LS algorithm.
- Objective function: integral part of optimization problem.

Evaluation (or cost) function:

- function $f_{\pi}: S_{\pi} \to \mathbf{R}$ that maps candidate solutions of a given problem instance π onto real numbers, such that global optima correspond to solutions of π ;
- used for ranking or assessing neighbors of current search position to provide guidance to search process.

Evaluation vs objective functions:

- Evaluation function: part of LS algorithm.
- Objective function: integral part of optimization problem.
- Some LS methods use evaluation functions different from given objective function (e.g., guided local search).

Local Search Revisited Examples

Outline

 Local Search Revisited Components

2. Examples Indirect Solution Representation

Iterative Improvement

- does not use memory
- init: uniform random choice from S or construction heuristic
- step: uniform random choice from improving neighbors

$$\Pr(s, s') = \begin{cases} 1/|I(s)| \text{ if } s' \in I(s) \\ 0 \text{ otherwise} \end{cases}$$

where
$$I(s) := \{ s' \in S \mid \mathcal{N}(s, s') \text{ and } f(s') < f(s) \}$$

Iterative Improvement

- does not use memory
- init: uniform random choice from S or construction heuristic
- step: uniform random choice from improving neighbors

$$\Pr(s, s') = \begin{cases} 1/|I(s)| \text{ if } s' \in I(s) \\ 0 \text{ otherwise} \end{cases}$$

where
$$I(s) := \{ s' \in S \mid \mathcal{N}(s, s') \text{ and } f(s') < f(s) \}$$

• terminates when no improving neighbor available

Iterative Improvement

- does not use memory
- init: uniform random choice from S or construction heuristic
- step: uniform random choice from improving neighbors

$$\Pr(s, s') = \begin{cases} 1/|I(s)| \text{ if } s' \in I(s) \\ 0 \text{ otherwise} \end{cases}$$

where
$$I(s) := \{ s' \in S \mid \mathcal{N}(s, s') \text{ and } f(s') < f(s) \}$$

terminates when no improving neighbor available

Note: Iterative improvement is also known as iterative descent or hill-climbing.

Pivoting rule decides which neighbors go in I(s)

• Best Improvement (aka gradient descent, steepest descent, greedy hill-climbing): Choose maximally improving neighbors, i.e., $I(s) := \{s' \in N(s) \mid f(s') = g^*\}$, where $g^* := \min\{f(s') \mid s' \in N(s)\}$.

Pivoting rule decides which neighbors go in I(s)

• Best Improvement (aka gradient descent, steepest descent, greedy hill-climbing): Choose maximally improving neighbors, i.e., $I(s) := \{s' \in N(s) \mid f(s') = g^*\}$, where $g^* := \min\{f(s') \mid s' \in N(s)\}$.

Note: Requires evaluation of all neighbors in each step!

Pivoting rule decides which neighbors go in I(s)

• Best Improvement (aka gradient descent, steepest descent, greedy hill-climbing): Choose maximally improving neighbors, i.e., $I(s) := \{s' \in N(s) \mid f(s') = g^*\}$, where $g^* := \min\{f(s') \mid s' \in N(s)\}$.

Note: Requires evaluation of all neighbors in each step!

 First Improvement: Evaluate neighbors in fixed order, choose first improving one encountered.

Pivoting rule decides which neighbors go in I(s)

• Best Improvement (aka gradient descent, steepest descent, greedy hill-climbing): Choose maximally improving neighbors, i.e., $I(s) := \{s' \in N(s) \mid f(s') = g^*\}$, where $g^* := \min\{f(s') \mid s' \in N(s)\}$.

Note: Requires evaluation of all neighbors in each step!

 First Improvement: Evaluate neighbors in fixed order, choose first improving one encountered.

Note: Can be more efficient than Best Improvement but not in the worst case; order of evaluation can impact performance.

Iterative Improvement for SAT

search space S: set of all truth assignments to variables in given formula F
 (solution set S': set of all models of F)

- search space S: set of all truth assignments to variables in given formula F
 (solution set S': set of all models of F)
- ullet neighborhood relation \mathcal{N} : 1-flip neighborhood

- search space S: set of all truth assignments to variables in given formula F
 (solution set S': set of all models of F)
- ullet neighborhood relation \mathcal{N} : 1-flip neighborhood
- **memory:** not used, *i.e.*, $M := \{0\}$

- search space S: set of all truth assignments to variables in given formula F
 (solution set S': set of all models of F)
- ullet neighborhood relation \mathcal{N} : 1-flip neighborhood
- memory: not used, i.e., $M := \{0\}$
- initialization: uniform random choice from S, i.e., $\mathrm{init}(\emptyset,\{a\}):=1/|S|$ for all assignments a

- search space S: set of all truth assignments to variables in given formula F
 (solution set S': set of all models of F)
- ullet neighborhood relation \mathcal{N} : 1-flip neighborhood
- memory: not used, i.e., M := {0}
- initialization: uniform random choice from S, i.e., $\operatorname{init}(\emptyset, \{a\}) := 1/|S|$ for all assignments a
- evaluation function: f(a) := number of clauses in F that are unsatisfied under assignment a
 (Note: f(a) = 0 iff a is a model of F.)

Iterative Improvement for SAT

- search space S: set of all truth assignments to variables in given formula F
 (solution set S': set of all models of F)
- ullet neighborhood relation \mathcal{N} : 1-flip neighborhood
- memory: not used, i.e., M := {0}
- initialization: uniform random choice from S, i.e., $\operatorname{init}(\emptyset, \{a\}) := 1/|S|$ for all assignments a
- evaluation function: f(a) := number of clauses in F that are unsatisfied under assignment a
 (Note: f(a) = 0 iff a is a model of F.)
- step function: uniform random choice from improving neighbors, *i.e.*, step(a,a') := 1/|I(a)| if $a' \in I(a)$, and 0 otherwise, where $I(a) := \{a' \mid \mathcal{N}(a,a') \land f(a') < f(a)\}$

Iterative Improvement for SAT

- search space S: set of all truth assignments to variables in given formula F
 (solution set S': set of all models of F)
- ullet neighborhood relation \mathcal{N} : 1-flip neighborhood
- memory: not used, i.e., M := {0}
- initialization: uniform random choice from S, i.e., $\operatorname{init}(\emptyset, \{a\}) := 1/|S|$ for all assignments a
- evaluation function: f(a) := number of clauses in F that are unsatisfied under assignment a
 (Note: f(a) = 0 iff a is a model of F.)
- step function: uniform random choice from improving neighbors, *i.e.*, step(a, a') := 1/|I(a)| if $a' \in I(a)$, and 0 otherwise, where $I(a) := \{a' \mid \mathcal{N}(a, a') \land f(a') < f(a)\}$
- **termination**: when no improving neighbor is available *i.e.*, terminate(a, \top) := 1 if $I(a) = \emptyset$, and 0 otherwise.

Random order first improvement for SAT

URW-for-SAT(F,maxSteps)

input: propositional formula F, integer maxSteps

output: a model for \digamma or \emptyset

Random order first improvement for SAT

```
URW-for-SAT(F, maxSteps) input: propositional formula F, integer maxSteps output: a model for F or \emptyset
```

choose assignment φ of truth values to all variables in $\ensuremath{\textit{F}}$ uniformly at random;

steps := 0;

Random order first improvement for SAT

```
\begin{tabular}{ll} $URW$-for-SAT(F,maxSteps)$ & input: propositional formula $F$, integer maxSteps$ & output: a model for $F$ or $\emptyset$ & choose assignment $\varphi$ of truth values to all variables in $F$ & uniformly at random; & steps:=0; & while $\neg(\varphi$ satisfies $F$)$ and $(steps < maxSteps)$ do & select $x$ uniformly at random from $\{x'|x'$ is a variable in $F$ and changing value of $x'$ in $\varphi$ decreases the number of unsatisfied clauses $\}$ & steps:= steps+1; & \end{tabular}
```

Random order first improvement for SAT

```
URW-for-SAT(F, maxSteps)
input: propositional formula F, integer maxSteps
output: a model for F or \emptyset

choose assignment \varphi of truth values to all variables in F
uniformly at random;
steps := 0;
while \neg(\varphi) satisfies F) and (steps < maxSteps) do
select \times uniformly at random from <math>\{x'|x' \text{ is a variable in } F \text{ and } Changing value of } x' \text{ in } \varphi \text{ decreases the number of unsatisfied clauses} \}
steps := steps + 1;
if \varphi satisfies F then
return \varphi
else
return \emptyset
```

Iterative Improvement for TSP

is it really?

Iterative Improvement for TSP

```
TSP-2opt-first(s)
input: an initial candidate tour s \in S(\in)
output: a local optimum s \in S_{\pi}
\Delta = 0:
Improvement=TRUE;
while Improvement==TRUE do
    Improvement=FALSE;
    for i = 1 to n - 2 do
        if i = 1 then n' = n - 1 else n' = n
        for i = i + 2 to n' do
             \Delta_{ij} = d(c_i, c_i) + d(c_{i+1}, c_{i+1}) - d(c_i, c_{i+1}) - d(c_i, c_{i+1})
            if \Delta_{ij} < 0 then
            UpdateTour(s,i,j)
Improvement=TRUE
```

Random-order first improvement for the TSP

- **Given:** TSP instance G with vertices v_1, v_2, \ldots, v_n .
- **search space:** Hamiltonian cycles in *G*;
- neighborhood relation N: standard 2-exchange neighborhood

Random-order first improvement for the TSP

- **Given:** TSP instance G with vertices v_1, v_2, \ldots, v_n .
- **search space:** Hamiltonian cycles in *G*;
- neighborhood relation N: standard 2-exchange neighborhood
- Initialization:

```
search position := fixed canonical tour < v_1, v_2, \dots, v_n, v_1 > P := random permutation of \{1, 2, \dots, n\}
```

Random-order first improvement for the TSP

- **Given:** TSP instance G with vertices v_1, v_2, \ldots, v_n .
- search space: Hamiltonian cycles in G;
- neighborhood relation N: standard 2-exchange neighborhood
- Initialization:

```
search position := fixed canonical tour \langle v_1, v_2, \dots, v_n, v_1 \rangle
 P := \text{random permutation of } \{1, 2, \dots, n\}
```

• **Search steps:** determined using first improvement w.r.t. $f(s) = \cos t$ of tour s, evaluating neighbors in order of P (does not change throughout search)

Random-order first improvement for the TSP

- **Given:** TSP instance G with vertices v_1, v_2, \ldots, v_n .
- search space: Hamiltonian cycles in G;
- neighborhood relation N: standard 2-exchange neighborhood
- Initialization:

```
search position := fixed canonical tour \langle v_1, v_2, \dots, v_n, v_1 \rangle
 P := \text{random permutation of } \{1, 2, \dots, n\}
```

- **Search steps:** determined using first improvement w.r.t. $f(s) = \cos t$ of tour s, evaluating neighbors in order of P (does not change throughout search)
- Termination: when no improving search step possible (local minimum)

The Max Independent Set Problem

Also called "stable set problem" or "vertex packing problem".

Given: an undirected graph G(V, E) and a non-negative weight function ω on $V(\omega: V \to \mathbb{R})$

Task: A largest weight independent set of vertices, i.e., a subset $V' \subseteq V$ such that no two vertices in V' are joined by an edge in E.

The Max Independent Set Problem

Also called "stable set problem" or "vertex packing problem".

Given: an undirected graph G(V, E) and a non-negative weight function ω on $V(\omega: V \to \mathbb{R})$

Task: A largest weight independent set of vertices, i.e., a subset $V' \subseteq V$ such that no two vertices in V' are joined by an edge in E.

Related Problems:

Vertex Cover

Given: an undirected graph G(V, E) and a non-negative weight function ω on $V(\omega: V \to \mathbb{R})$

Task: A smallest weight vertex cover, i.e., a subset $V' \subseteq V$ such that each edge of G has at least one endpoint in V'.

Maximum Clique

Given: an undirected graph G(V, E)

Task: A maximum cardinality clique, i.e., a subset $V' \subseteq V$ such that every two vertices in V' are joined by an edge in E

Single Machine Total Weighted Tardines Stamples

Given: a set of *n* jobs $\{J_1, \ldots, J_n\}$ to be processed on a single machine and for each job J_i a processing time p_i , a weight w_i and a due date d_i .

Task: Find a schedule that minimizes the total weighted tardiness $\sum_{i=1}^{n} w_i \cdot T_i$ where $T_i = \max\{C_i - d_i, 0\}$ (C_i completion time of job J_i)

Example:

Job	J_1	J_2	J_3	J_4	J_5	J_6
Processing Time	3	2	2	3	4	3
Due date	6	13	4	9	7	17
Weight	2	3	1	5	1	2

Sequence $\phi = J_3, J_1, J_5, J_4, J_1, J_6$

Job	J_3	J_1	J_5	J_4	J_1	J_6
C_i	2	5	9	12	14	17
T_i	0	0	2	3	1	0
$w_i \cdot T_i$	0	0	2	15	3	0

Graph Partitioning

Input: A graph G = (V, E), weights $w(v) \in Z^+$ for each $v \in V$ and $I(e) \in Z^+$ for each $e \in E$.

Task: Find a partition of V into disjoint sets V_1, V_2, \ldots, V_m such that $\sum_{v \in V_i} w(v) \le K$ for $1 \le i \le m$ and such that if $E' \subseteq E$ is the set of edges that have their two endpoints in two different sets V_i , then $\sum_{e \in E'} l(e)$ is minimal.

Consider the specific case of graph bipartitioning, that is, the case |V|=2n and K=n and $w(v)=1, \forall v\in V$.

Outline

 Local Search Revisited Components

2. Examples Indirect Solution Representation

Total Weighted Completion Time on Unrelated Parallel Machines Problem

Input: A set of jobs J to be processed on a set of parallel machines M. Each job $j \in J$ has a weight w_j and processing time p_{ij} that depends on the machine $i \in M$ on which it is processed.

Task: Find a schedule of the jobs on the machines such that the sum of weighted completion time of the jobs is minimal.

Example: Steiner Tree

Steiner Tree Problem

Input: A graph G = (V, E), a weight function $\omega : E \mapsto \mathbb{N}$, and a subset $U \subseteq V$.

Task: Find a Steiner tree, that is, a subtree $T = (V_T, E_T)$ of G that includes all the vertices of U and such that the sum of the weights of the edges in the subtree is minimal.

Vertices in U are the special vertices and vertices in $S = V \setminus U$ are Steiner vertices.

Examples, Resume

- Permutations
 - TSP
 - SMWTP
- Assignments
 - SAT
 - Coloring
 - Parallel machines
- Sets
 - Max Weighted Independent Set
 - Steiner tree