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Local Search Revisited
ExamplesSummary: Local Search Algorithms

(as in [Hoos, Stützle, 2005])

For given problem instance π:

1. search space Sπ

2. neighborhood relation Nπ ⊆ Sπ × Sπ

3. evaluation function fπ : S → R

4. set of memory states Mπ

5. initialization function init : ∅ → Sπ ×Mπ)

6. step function step : Sπ ×Mπ → Sπ ×Mπ

7. termination predicate terminate : Sπ ×Mπ → {>,⊥}
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Local Search Revisited
ExamplesLS Algorithm Components

Search Space

Defined by the solution representation:

permutations
linear (scheduling)
circular (TSP)

arrays (assignment problems: GCP)

sets or lists (partition problems: Knapsack)
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Neighborhood function

Also defined as: N : S × S → {T ,F} or N ⊆ S × S

neighborhood (set) of candidate solution s: N(s) := {s ′ ∈ S | N (s, s ′)}

neighborhood size is |N(s)|
neighborhood is symmetric if: s ′ ∈ N(s)→ s ∈ N(s ′)

neighborhood graph of (S , f ,N, π) is a directed vertex-weighted graph:
GNπ := (V ,A) with V = Sπ and (uv) ∈ A⇔ v ∈ N(u)
(if symmetric neighborhood  undirected graph)

Notation: N when set, N when collection of sets or function
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A neighborhood function is also defined by means of an operator.

An operator ∆ is a collection of operator functions δ : S → S such that

s ′ ∈ N(s) =⇒ ∃ δ ∈ ∆, δ(s) = s ′

Definition

k-exchange neighborhood: candidate solutions s, s ′ are neighbors iff s differs
from s ′ in at most k solution components

Examples:

1-exchange (flip) neighborhood for SAT
(solution components = single variable assignments)

2-exchange neighborhood for TSP
(solution components = edges in given graph)
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Definition:

Local minimum: search position without improving neighbors wrt given
evaluation function f and neighborhood N ,
i.e., position s ∈ S such that f (s) ≤ f (s ′) for all s ′ ∈ N(s).

Strict local minimum: search position s ∈ S such that
f (s) < f (s ′) for all s ′ ∈ N(s).

Local maxima and strict local maxima: defined analogously.
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Note:

Local search implements a walk through the neighborhood graph

Procedural versions of init, step and terminate implement sampling
from respective probability distributions.

Memory state m can consist of multiple independent attributes, i.e.,
Mπ := M1 ×M2 × . . .×Mlπ .

Local search algorithms are often Markov processes:
behavior in any search state {s,m} depends only
on current position s
higher order if (limited) memory m.
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Search step (or move):
pair of search positions s, s ′ for which
s ′ can be reached from s in one step, i.e., N (s, s ′) and
step({s,m}, {s ′,m′}) > 0 for some memory states m,m′ ∈ M.

Search trajectory: finite sequence of search positions < s0, s1, . . . , sk >
such that (si−1, si ) is a search step for any i ∈ {1, . . . , k}
and the probability of initializing the search at s0
is greater than zero, i.e., init({s0,m}) > 0
for some memory state m ∈ M.

Search strategy: specified by init and step function; to some extent
independent of problem instance and other components of LS algorithm.

random
based on evaluation function
based on memory
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Evaluation (or cost) function:

function fπ : Sπ → R that maps candidate solutions of
a given problem instance π onto real numbers,
such that global optima correspond to solutions of π;
used for ranking or assessing neighbors of current
search position to provide guidance to search process.

Evaluation vs objective functions:

Evaluation function: part of LS algorithm.
Objective function: integral part of optimization problem.
Some LS methods use evaluation functions different from given objective
function (e.g., guided local search).
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Resume

does not use memory
init: uniform random choice from S or construction heuristic
step: uniform random choice from improving neighbors

Pr(s, s ′) =

{
1/|I (s)| if s ′ ∈ I (s)

0 otherwise

where I (s) := {s ′ ∈ S | N (s, s ′) and f (s ′) < f (s)}

terminates when no improving neighbor available

Note: Iterative improvement is also known as iterative descent or
hill-climbing.
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ExamplesIterative Improvement (cntd)

Resume

Pivoting rule decides which neighbors go in I (s)

Best Improvement (aka gradient descent, steepest descent, greedy
hill-climbing): Choose maximally improving neighbors,
i.e., I (s) := {s ′ ∈ N(s) | f (s ′) = g∗},
where g∗ := min{f (s ′) | s ′ ∈ N(s)}.

Note: Requires evaluation of all neighbors in each step!

First Improvement: Evaluate neighbors in fixed order,
choose first improving one encountered.

Note: Can be more efficient than Best Improvement but not in the worst
case; order of evaluation can impact performance.
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Iterative Improvement for SAT

search space S : set of all truth assignments to variables in given formula F
(solution set S ′: set of all models of F )

neighborhood relation N : 1-flip neighborhood

memory: not used, i.e., M := {0}
initialization: uniform random choice from S , i.e., init(∅, {a}) := 1/|S | for all
assignments a

evaluation function: f (a) := number of clauses in F
that are unsatisfied under assignment a
(Note: f (a) = 0 iff a is a model of F .)

step function: uniform random choice from improving neighbors, i.e.,
step(a, a′) := 1/|I (a)| if a′ ∈ I (a),
and 0 otherwise, where I (a) := {a′ | N (a, a′) ∧ f (a′) < f (a)}
termination: when no improving neighbor is available
i.e., terminate(a,>) := 1 if I (a) = ∅, and 0 otherwise.
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Random order first improvement for SAT
URW-for-SAT(F ,maxSteps)
input: propositional formula F , integer maxSteps
output: a model for F or ∅

choose assignment ϕ of truth values to all variables in F
uniformly at random;

steps := 0;
while ¬(ϕ satisfies F ) and (steps < maxSteps) do

select x uniformly at random from {x ′|x ′ is a variable in F and
changing value of x ′ in ϕ decreases the number of unsatisfied clauses}
steps := steps+1;

if ϕ satisfies F then
return ϕ

else
return ∅
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Iterative Improvement for TSP
TSP-2opt-first(s)
input: an initial candidate tour s ∈ S(∈)
output: a local optimum s ∈ Sπ

∆ = 0;
for i = 1 to n − 2 do

if i = 1 then n′ = n − 1 else n′ = n
for j = i + 2 to n′ do

∆ij = d(ci , cj ) + d(ci+1, cj+1)− d(ci , ci+1)− d(cj , cj+1)
if ∆ij < 0 then

UpdateTour(s, i, j)

is it really?
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Iterative Improvement for TSP
TSP-2opt-first(s)
input: an initial candidate tour s ∈ S(∈)
output: a local optimum s ∈ Sπ

∆ = 0;
Improvement=TRUE;
while Improvement==TRUE do

Improvement=FALSE;
for i = 1 to n − 2 do

if i = 1 then n′ = n − 1 else n′ = n
for j = i + 2 to n′ do

∆ij = d(ci , cj ) + d(ci+1, cj+1)− d(ci , ci+1)− d(cj , cj+1)
if ∆ij < 0 then

UpdateTour(s, i, j)
Improvement=TRUE
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Random-order first improvement for the TSP

Given: TSP instance G with vertices v1, v2, . . . , vn.
search space: Hamiltonian cycles in G ;
neighborhood relation N: standard 2-exchange neighborhood

Initialization:
search position := fixed canonical tour < v1, v2, . . . , vn, v1 >
P := random permutation of {1, 2, . . . , n}

Search steps: determined using first improvement
w.r.t. f (s) = cost of tour s, evaluating neighbors
in order of P (does not change throughout search)

Termination: when no improving search step possible
(local minimum)
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ExamplesThe Max Independent Set Problem

Also called “stable set problem” or “vertex packing problem”.
Given: an undirected graph G (V ,E ) and a non-negative weight function ω
on V (ω : V → R)

Task: A largest weight independent set of vertices, i.e., a subset V ′ ⊆ V
such that no two vertices in V ′ are joined by an edge in E .

Related Problems:

Vertex Cover

Given: an undirected graph G (V ,E ) and a non-negative weight function ω
on V (ω : V → R)
Task: A smallest weight vertex cover, i.e., a subset V ′ ⊆ V such that each
edge of G has at least one endpoint in V ′.

Maximum Clique

Given: an undirected graph G (V ,E )
Task: A maximum cardinality clique, i.e., a subset V ′ ⊆ V such that every
two vertices in V ′ are joined by an edge in E
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ExamplesThe Max Independent Set Problem

Also called “stable set problem” or “vertex packing problem”.
Given: an undirected graph G (V ,E ) and a non-negative weight function ω
on V (ω : V → R)

Task: A largest weight independent set of vertices, i.e., a subset V ′ ⊆ V
such that no two vertices in V ′ are joined by an edge in E .

Related Problems:

Vertex Cover

Given: an undirected graph G (V ,E ) and a non-negative weight function ω
on V (ω : V → R)
Task: A smallest weight vertex cover, i.e., a subset V ′ ⊆ V such that each
edge of G has at least one endpoint in V ′.

Maximum Clique

Given: an undirected graph G (V ,E )
Task: A maximum cardinality clique, i.e., a subset V ′ ⊆ V such that every
two vertices in V ′ are joined by an edge in E
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Local Search Revisited
ExamplesSingle Machine Total Weighted Tardiness

Given: a set of n jobs {J1, . . . , Jn} to be processed on a single machine
and for each job Ji a processing time pi , a weight wi and a due date di .

Task: Find a schedule that minimizes
the total weighted tardiness

∑n
i=1 wi · Ti

where Ti = max{Ci − di , 0} (Ci completion time of job Ji )

Example:
Job J1 J2 J3 J4 J5 J6

Processing Time 3 2 2 3 4 3
Due date 6 13 4 9 7 17
Weight 2 3 1 5 1 2

Sequence φ = J3, J1, J5, J4, J1, J6

Job J3 J1 J5 J4 J1 J6

Ci 2 5 9 12 14 17
Ti 0 0 2 3 1 0
wi · Ti 0 0 2 15 3 0
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ExamplesGraph Partitioning

Input: A graph G = (V ,E ), weights w(v) ∈ Z+ for each v ∈ V and
l(e) ∈ Z+ for each e ∈ E .
Task: Find a partition of V into disjoint sets V1,V2, . . . ,Vm such that∑

v∈Vi
w(v) ≤ K for 1 ≤ i ≤ m and such that if E ′ ⊆ E is the set of edges

that have their two endpoints in two different sets Vi , then
∑

e∈E ′ l(e) is
minimal.

Consider the specific case of graph bipartitioning, that is, the case |V | = 2n
and K = n and w(v) = 1,∀v ∈ V .
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Components

2. Examples
Indirect Solution Representation
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ExamplesExample: Scheduling in Parallel Machines

Total Weighted Completion Time on Unrelated Parallel Machines Problem

Input: A set of jobs J to be processed on a set of parallel machines M. Each
job j ∈ J has a weight wj and processing time pij that depends on the
machine i ∈ M on which it is processed.

Task: Find a schedule of the jobs on the machines such that the sum of
weighted completion time of the jobs is minimal.
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Steiner Tree Problem

Input: A graph G = (V ,E ), a weight function ω : E 7→ N, and a subset
U ⊆ V .

Task: Find a Steiner tree, that is, a subtree T = (VT ,ET ) of G that includes
all the vertices of U and such that the sum of the weights of the edges in the
subtree is minimal.

Vertices in U are the special vertices and
vertices in S = V \ U are Steiner vertices.
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Permutations
TSP
SMWTP

Assignments
SAT
Coloring
Parallel machines

Sets
Max Weighted Independent Set
Steiner tree
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