ID2204: Constraint Programming

Constraints:

Modeling & Propagation

Lecture 07, 2009-04-21

Christian Schulte

kcschulte@kth.se

Electronic, Computer and Software Systems

School of Information and Communication Technology
KTH — Royal Institute of Technology

Stockholm, Sweden

&

B,
ﬁg}(ﬂffl§§

VETENSKAP
o8 OCH KONST

&%g@%%

KTH Information and
Communication Technology

mailto:cschulte@kth.se

Linear Equality

Linear Equality

Propagator for
n
_ax, =d
where a;, d integers, a;, # 0
How to propagate cheaply bounds

iInformation?

for each variable x; consider how small and how
large it possibly can be

restrict us heretoax+ by=d

2009-04-21 1D2204, 1.07, Christian Schulte, ICT, KTH

38

Floor and Ceiling

| x] (read: floor of x) is greatest integer k such

that: k<X
example: [3.5]=3

| x| (read: ceiling of x) is smallest integer k

such that: K> X
example: [3.5|=4

2009-04-21 1D2204, 1.07, Christian Schulte, ICT, KTH 39

Propagating Linear Equality

Rewrite for x
ax+ by=d & ax=d-by
< x=(d-by)la
Propagate
x < max{(d — bn)/a | nes(y)}]
and
x > min{(d — bn)la | nes(y)}|

2009-04-21 1D2204, 1.07, Christian Schulte, ICT, KTH

40

Propagating Linear Equality

Computing

m = max{(d — bn)/a | nes(y)}
If a>0 then

m = max{(d — bn) | nes(y)} /a
If a<0 then

m = min{(d — bn) | nes(y)} /a

2009-04-21 1D2204, 1.07, Christian Schulte, ICT, KTH

41

Propagating Linear Equality

Computing (a > 0)
m = max{(d — bn) | nes(y)}/a
= (d - min{bn | nes(y)})/a
If b>0, then
m = (d — bxmin s(y))/a
If b<O0, then
m = (d — bxmax s(y))/a

2009-04-21 1D2204, 1.07, Christian Schulte, ICT, KTH

42

General Setup

Repeat until fixpoint

propagate for each variable x;

Speed up: compute once

u =max{d — Z; an,
[:=min{d-) " an

n; €s(x,)}

n; €s(x,)}

Reuse by removing term for x;

Refer to propagator by p_

2009-04-21 1D2204, 1.07, Christian Schulte, ICT, KTH

43

Questions

Is it necessary to perform several iterations?

yes, otherwise it is not idempotent
reason: non-unit coefficients

What does p_ compute?
is it bounds-consistent?

2009-04-21 1D2204, 1.07, Christian Schulte, ICT, KTH

44

Example

Example: x = 3y + 5z

s(x)={2..7} s(y)={0..2} s(z)={-1..2}
propagator:

p=(S)(x) = {min/(3y + 5z) ... max (3y + 5z)}
Resulting domain

S(x)={£ ..I'} s (y)={0..2} s'(z)={0..1}
different from bounds propagation!
should be 3 and 6!

2009-04-21 1D2204, 1.07, Christian Schulte, ICT, KTH

45

What Is Computed?

Algorithm just considers existence of real
solutions
bounds-consistency defined for integer solutions only

Possible: introduce new notion

R-bounds consistency

Allow constraints to be defined by solutions over the
reals

2009-04-21 1D2204, 1.07, Christian Schulte, ICT, KTH

46

More Details

Apt's book: Section 6.4

Paper

Schulte, Stuckey. When Do Bounds and Domain
Propagation Lead to the Same Search Space.
Transactions of Programming Languages and
Systems, 2005.

2009-04-21 1D2204, 1.07, Christian Schulte, ICT, KTH

47

Summary: Propagation Strength

Propagators can have different propagation
strengths

Interesting classes

domain-consistent propagators
bounds-consistent propagators

Typical propagators for linear arithmetic are

not bounds-consistent
but close: not for integers, but for reals

2009-04-21 1D2204, 1.07, Christian Schulte, ICT, KTH 48

Element Constraint

Constraints defined by extension

Modeling Price

Suppose variable modeling location in

warehouse
values model good to be stored at location
different goods have different prices

How to propagate the price while the variable
IS not yet assigned a good?

Very common: map variable to variable
according to given values

2009-04-21 1D2204, 1.07, Christian Schulte, ICT, KTH 50

Example

Assume goods represented by numbers 0, 1,

2,3

Prices
good O
good 1
good 2
good 3

2009-04-21

price 10
price 15
price 5

price 12

1D2204, 1.07, Christian Schulte, ICT, KTH

51

Model by Reitication

BoolVar boO(*this,0,1);

rel(*this, g, IRT EQ, ©, bo);
rel(*this, p, IRT _EQ, 10, bO);
rel(*this, g, IRT EQ, 1, bl);
rel(*this, p, IRT _EQ, 15, bl);
rel(*this, g, IRT EQ, 2, b2);
rel(*this, p, IRT EQ, 5, b2);
rel(*this, g, IRT EQ, 3, b3);
rel(*this, p, IRT EQ, 12, b3);
"b@ + bl + b2 + b3 = 1";
Tedious: several goods can have same price...
Inefficient: too many propagators...

Propagation: if propagators run to fixpoint, domain-
consistency!

2009-04-21 1D2204, 1.07, Christian Schulte, ICT, KTH

The Element Constraint

Element constraint a[[x]] = y

array of integers a

variables x and y

value of y is value of a at x-th position
in particular: 0 < x < elements in a

In Gecode
element(*this, a, x, y);
also for arrays of variables

2009-04-21 1D2204, 1.07, Christian Schulte, ICT, KTH

53

Model with Element

IntArgs prices(4, 10,15,5,12);
element(*this, prices, g, p);

Just single propagator!
Okay, if same integer occurs multiply in array

2009-04-21 1D2204, 1.07, Christian Schulte, ICT, KTH 54

Propagating Element

We insist on domain-consistency
bounds-consistency too weak

For a[[x]] = y and store s propagate
if jes(y) then keep all k from s(x) with j=a[K]
if kes(x) then keep all j from s(y) with j=a[K]
remove all other values

2009-04-21 1D2204, 1.07, Christian Schulte, ICT, KTH

55

Implementing Element...

Fundamental requirement: new domains
must be computed in order!

Iterate over all elements ke s(x)
{alk] | kes(x) } m s(y)
Iterate k from O to n-1:= width of a

construct new domain for x
if a[k]les(y) then keep k
requires intersection and sorting

2009-04-21 1D2204, 1.07, Christian Schulte, ICT, KTH

56

Problems...

Array in element constraints can be very
large
always iterate over entire array

always sort (or maintain sorted data structure)
always compute intersection

We can do better!

2009-04-21 1D2204, 1.07, Christian Schulte, ICT, KTH

57

Running Example

Consider a[[x]] = y with
a=(4,5.9,7)
s(x) = {1,2,3}
s(y) = {2...8}
Propagation yields
s(x) ={1,3}
s(y) =1{5.7}

2009-04-21 1D2204, 1.07, Christian Schulte, ICT, KTH

58

Approach

Construct data structure
contains pairs of (i,a[])
allows traversal for increasing i
allows traversal for increasing a[i]
allows removal of pairs (later)

Data structure constructed initially

2009-04-21 1D2204, 1.07, Christian Schulte, ICT, KTH

59

‘ Datastructure Construction

= lterate over all i between 0 and 3

= create node (/, a[i])
= create links in order of creation (x-links)

4 S 9
X 0 1 2
\M/

2009-04-21 1D2204, 1.07, Christian Schulte, ICT, KTH

60

‘ Datastructure Construction

y 4 5 9 7
X 0 1 2 3
— T~~~
= Create links for a[/] values in increasing order
(y-links)

= sort and create links

2009-04-21 1D2204, 1.07, Christian Schulte, ICT, KTH 61

‘ Datastructure Invariant

= Datastructure allows iteration

= /values in order: follow x-links
= a[i] values in order: follow y-links

2009-04-21 1D2204, .07, Christian Schulte, ICT, KTH

62

Propagation

Follow x-links and iterate values in s(x)
if value not in s(x), remove node

Follow y-links and iterate values in s(y)
if value not in s(y), remove node

Result: nodes with correct values remain for
both x and y

In increasing order!

2009-04-21 1D2204, 1.07, Christian Schulte, ICT, KTH

63

‘ Follow x-links...

)

<

|

>
—
)
I

—

N

w

= Store s(x) = {1,2,3}

= Remove node for 0
= by relinking
= constant time: doubly-linked lists

2009-04-21 1D2204, 1.07, Christian Schulte, ICT, KTH

64

‘ Follow y-links...

f\/

I_l _l

yr o4 5 9
| |

X :O: 1 :2:

= Store s(y) ={2,...,8}

= Remove node for 9
= by relinking
= constant time: doubly-linked lists

2009-04-21 1D2204, 1.07, Christian Schulte, ICT, KTH

65

Read-off Variable Domains

Sl I"'I\

T T
X :O: 1 :2: 3
/

New store: s(x) = {1,3}, s(y) = {5,7}

By just following respective links

are sorted
are smaller than original domains

2009-04-21 1D2204, 1.07, Christian Schulte, ICT, KTH 66

Incremental Propagation

One option: destroy data structure

Better: keep data structure for next

propagator invocation

propagators with state
our model: propagator rewriting

Incremental propagation
construction only initially
sorting only initially
traversing never for full number of array
elements

2009-04-21 1D2204, 1.07, Christian Schulte, ICT, KTH

67

Summary: Element

Element important constraint for mapping

variables to values

cost functions
arbitrary constraints defined extensionally

Important for propagation

maintain clever data structure
make propagation incremental

2009-04-21 1D2204, 1.07, Christian Schulte, ICT, KTH

68

