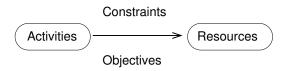
DM204, 2011 SCHEDULING, TIMETABLING AND ROUTING


Lecture 1 Introduction to Scheduling: Terminology and Classification

Marco Chiarandini

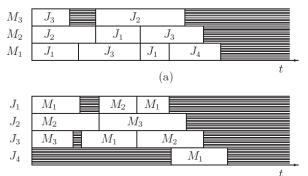
Department of Mathematics & Computer Science University of Southern Denmark

Problem Definition

Course Introduction Scheduling Complexity Hierarchy Definitions Classification Exercises Schedules

Problem Definition **Given:** a set of jobs $\mathcal{J} = \{J_1, \ldots, J_n\}$ to be processed by a set of machines $\mathcal{M} = \{M_1, \ldots, M_m\}$.

Task: Find a schedule, that is, a mapping of jobs to machines and processing times, that satisfies some constraints and is optimal w.r.t. some criteria.


Notation: n, j, k jobs m, i, h machines

Visualization

Course Introduction Scheduling Complexity Hierarchy Definitions Classification Exercises Schedules

Scheduling are represented by Gantt charts

- (a) machine-oriented
- $(b) \ \text{job-oriented} \\$

Data Associated to Jobs

Course Introduction Scheduling Complexity Hierarchy Definitions Classification Exercises Schedules

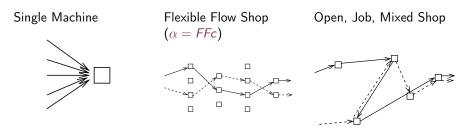
- Processing time p_{ij}
- Release date r_j
- Due date d_j (called deadline, if strict)
- Weight w_j
- Cost function $h_j(t)$ measures cost of completing J_j at t
- A job J_j may also consist of a number n_j of operations $O_{j1}, O_{j2}, \ldots, O_{jn_j}$ and data for each operation.
- $\bullet\,$ A set of machines $\mu_{jl}\subseteq \mathcal{M}$ associated to each operation
 - $|\mu_{jl}| = 1$ dedicated machines
 - $\mu_{jl} = \mathcal{M}$ parallel machines
 - $\mu_{jl} \subseteq \mathcal{M}$ multipurpose machines

Data that depend on the schedule

- Starting times Sij
- Completion time C_{ij}, C_j

Course Introduction Scheduling Complexity Hierarchy Definitions Classification Exercises Schedules

A scheduling problem is described by a triplet $\alpha \mid \beta \mid \gamma.$


- α machine environment (one or two entries)
- β job characteristics (none or multiple entry)
- γ objective to be minimized (one entry)

[R.L. Graham, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan (1979): Optimization and approximation in deterministic sequencing and scheduling: a survey, Ann. Discrete Math. 4, 287-326.]

$\alpha \,|\, \beta \,|\, \gamma$ Classification Scheme

Machine Environment

- single machine/multi-machine ($\alpha_1 = \alpha_2 = 1$ or $\alpha_2 = m$)
- parallel machines: identical (α₁ = P), uniform p_j/v_i (α₁ = Q), unrelated p_j/v_{ij} (α₁ = R)
- multi operations models: Flow Shop ($\alpha_1 = F$), Open Shop ($\alpha_1 = O$), Job Shop ($\alpha_1 = J$), Mixed (or Group) Shop ($\alpha_1 = X$), Multi-processor task sched.

Definitions

Exercises

Schedules

 $\alpha_1 \alpha_2 \mid \beta_1 \dots \beta_{13} \mid \gamma \mid$

Classification

Course Introduction

Complexity Hierarchy

Scheduling

Course Introduction Scheduling Complexity Hierarchy Definitions Classification Exercises Schedules

Job Characteristics

$$\alpha_1\alpha_2 \mid \beta_1 \dots \beta_{13} \mid \gamma$$

- $\beta_1 = prmp$ presence of preemption (resume or repeat)
- β_2 precedence constraints between jobs acyclic digraph G = (V, A)
 - $\beta_2 = prec$ if G is arbitrary
 - $\beta_2 = \{chains, intree, outtree, tree, sp-graph\}$
- $\beta_3 = r_j$ presence of release dates
- $\beta_4 = p_j = p$ preprocessing times are equal
- ($\beta_5 = d_j$ presence of deadlines)
- $\beta_6 = \{s\text{-batch}, p\text{-batch}\}$ batching problem
- $\beta_7 = \{s_{jk}, s_{jik}\}$ sequence dependent setup times

Course Introduction Scheduling Complexity Hierarchy Definitions Classification Exercises Schedules

Job Characteristics (2)

- $\beta_8 = brkdwn$ machine breakdowns
- $\beta_9 = M_j$ machine eligibility restrictions (if $\alpha = Pm$)
- $\beta_{10} = prmu$ permutation flow shop
- $\beta_{11} = block$ presence of blocking in flow shop (limited buffer)
- $\beta_{12} = nwt$ no-wait in flow shop (limited buffer)
- $\beta_{13} = recrc$ recirculation in job shop

 $\alpha_1 \alpha_2 | \beta_1 \dots \beta_{13} | \gamma |$

Course Introduction Complexity Hierarchy

Scheduling

Definitions Classification Exercises Schedules

Objective (always $f(C_i)$)

- Lateness $L_i = C_i d_i$
- Tardiness $T_i = \max\{C_i d_i, 0\} = \max\{L_i, 0\}$
- Earliness $E_i = \max\{d_i C_i, 0\}$
- Unit penalty $U_j = \begin{cases} 1 & \text{if } C_j > d_j \\ 0 & \text{otherwise} \end{cases}$

$\alpha_1\alpha_2 \mid \beta_1\beta_2\beta_3\beta_4 \mid \boldsymbol{\gamma}$

$$\alpha_1 \alpha_2 \mid \beta_1 \beta_2 \beta_3 \beta_4 \mid \gamma$$

Objective

- Makespan: Maximum completion $C_{max} = \max\{C_1, \dots, C_n\}$ tends to max the use of machines
- Maximum lateness $L_{max} = \max\{L_1, \ldots, L_n\}$
- Total completion time $\sum C_j$ (flow time)
- Total weighted completion time $\sum w_j \cdot C_j$ tends to min the av. num. of jobs in the system, ie, work in progress, or also the throughput time
- Discounted total weighted completion time $\sum w_j(1 e^{-rC_j})$
- Total weighted tardiness $\sum w_j \cdot T_j$
- Weighted number of tardy jobs $\sum w_j U_j$

All regular functions (nondecreasing in C_1, \ldots, C_n) except E_i

Definitions Classification Exercises Schedules

Course Introduction

Complexity Hierarchy

Scheduling

 $\alpha_1\alpha_2 \mid \beta_1\beta_2\beta_3\beta_4 \mid \boldsymbol{\gamma}$

Other Objectives Non regular objectives

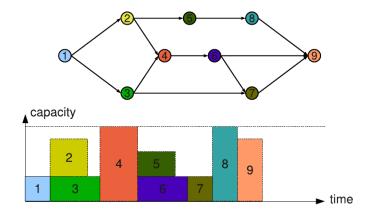
- Min $\sum w'_i E_j + \sum w''_j T_j$ (just in time)
- Min waiting times
- Min set up times/costs
- Min transportation costs

 $\alpha_1\alpha_2 \mid \beta_1\beta_2\beta_3\beta_4 \mid \boldsymbol{\gamma}$

Definitions Course Introduction Classification Exercises Complexity Hierarchy Schedules

Scheduling

RCPS Model


Preliminaries Heuristics for RCPSP

Resource Constrained Project Scheduling Model Given:

- activities (jobs) $j = 1, \ldots, n$
- renewable resources $i = 1, \ldots, m$
- amount of resources available R_i
- processing times p_j
- amount of resource used rij
- precedence constraints $j \rightarrow k$

RCPS Model

Example

