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Course Introduction

Schedule and Material

@ Schedule (28 lecture hours):

Monday 16.15-18

Wednesday 12.15-14

Friday 10.15-12

Last lecture: Friday, 16th March, 2012

o Communication tools

o Public Course Webpage (Wp)
http://www.imada.sdu.dk/ “marco/DM826/

o In Blackboard (Bb):

@ Announcements

o Assignments Hand In

o Documents (Photocopies)

o Discussion Board (subscribe)

o Personal email

e You are welcome to visit me in my office in working hours.


http://www.imada.sdu.dk/~marco/DM826/

Course Introduction

Evaluation

@ Two obligatory assignments (50% of final grade)

o Model
o Implementation
o Report (3 pages)

o Third final assignment (50% of final grade)

o Model
o Implement
o Report (Max 10 pages)
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References

@ Main References:

B1 F. Rossi, P. van Beek and T. Walsh (ed.), Handbook of Constraint
Programming, Elsevier, 2006

B2 J.N. Hooker, Integrated Methods for Optimization. Springer, 2007

B3 C. Schulte, G. Tack, M.Z. Lagerkvist, Modelling and Programming with
Gecode 2010

Photocopies (Bb)
Articles from the Webpage

Lecture slides
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Assignments

...but take notes in class!
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Computational Model o odelling

We basically have three Computational Model to solve (combinatorial)
optimization problems:

o Mathematical Programming (LP, ILP, QP, SDP, ...)
o Constraint Programming (SAT as a very special case)

@ Local Search (... and Meta-heuristics)



Overview

Constraint Programming

o In MILP we formulate problems as a set of linear inequalities

@ In CP we describe substructures (so-called global constraints) and
combine them with various combinators.

@ Substructures capture building blocks often (but not always)
comptuationally tractable by special-purpose algorithms

o CP models can:
o be linearized and solved by their MIP solvers;

o be translated in CNF and sovled by SAT solvers;
o be handled by local search

o In MILP the solver is often seen as a black-box
In CP and LS solvers leave the user the task of programming the search.

@ CP = model + propagation + search
constraint propagation by domain filtering ~ inference
search = backtracking, branch and bound, local search
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Hybrid Methods R Mhodelling

Strengths:

@ CP is excellent to explore highly constrained combinatorial spaces quickly
@ Math programming is particulary good at deriving lower bounds
@ LS is particualry good at derving upper bounds

How to combine them to get better “solvers™?

o Exploiting OR algorithms for filtering
o Exploiting LP (and SDP) relaxation into CP

o Hybrid decompositions:
1. Logical Benders decomposition

2. Column generation

3. Large-scale neigbhrohood search

10



Outline

3. Hybrid Modelling
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Overview
Hybrid Modelling
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Modeling Fybrd Modeling

Modeling:

1. identify variables, domains, constraints and objective functions that
formulate the problem

2. express what in point 1) in a way that allows the solution by available
software

12



Integrated Modeling Hybrid Modeling

Models interact with solution process hence models in CP and IP are
different.

To integrate one needs:

@ to know both sides
@ to have available a modelling language that allow integration
(Comet)

There are typcially alternative ways to formulate a problem. Some may vyield
faster solutions.

Typical procedure:

@ begin with a strightforward model to solve a small problem instance

@ alter and refine the model while scaling up the instances to maintain
tractability

13
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Overview

Linear Programming Hybrid Modelling

Linear Programming

Given A matrix A € R™*" and column vectors b € R™, c € R".

Task Find a column vector x € R” such that Ax < b and ¢ x is maximum,

decide that {x € R" | Ax < b} is empty, or decide that for all « € R
there is an x € R” with Ax < b and ¢ x > «.

Theory vs. Practice

In theory the Simplex algorithm is exponential, in practice it works.

In theory the Ellipsoid algorithm is polynomial, in practice it is not better than
the Simplex.
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Integer Programming Hybrid Modsling

Integer Programming
Given A matrix A € Z™*" and vectors b € 2", c € 7.".

Task Find a vector x € Z" such that Ax < b and cx is maximum,
or decide that {x € Z" | Ax < b} =0,
or decide that sup{cx | x € Z", Ax < b} = cc.

Theory vs. Practice

In theory, IP problems can be solved efficiently by exploiting (if you can find-
/approximate) the convex hull of the problem.

In practice, we heavily rely on branch&bound search tree algorithms, that solve
LP relaxations at every node.

Logical Statements Frequently (but not always) the integer variables are re-
stricted to be in {0,1} representing Yes/No decisions.

v
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Quadratic Programming Hybrid Modellng

Quadratic Programming

Given Matrices A, Q; € R"*" with i =0,...,q, and column vectors
aj,b,c € R".

Task Find a column vector x € R" such that x” Q;x + a/ x < b and
xTQuX + cTx is maximum,
or decide that {x € R" [ x" Q;x + a,-Tx < b} is empty,
or decide that it is unbounded.

Theory vs. Practice

In theory, this is a richer modeling language (quadratic constraints and/or
objective functions).

In practice, we linearize all the time, relying on (most of the time linear) cutting
plane algorithms.

v
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Hybrid Modelling

Example

Quadratic programming (QP), quadratically-constrained programming
(QCP), mixed integer quadratic programming (MIQP), and mixed-integer
quadratically-constrained programming (MIQCP).

Conventionally, a quadratic program is formulated this way:

min 1/2XTQx+CTX
s.t. Ax~ b
Ib<x<ub

Q is a matrix of coefficients. That is, the elements Q;; are the coefficients of
the quadratic terms ij, and the elements Q; and Qj; are summed to make
the coefficient of the term x;x;.

17
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1
min x1 + 2x2 + 3x3 + 5(—33x12 + 12x3x2 — 2253 + 23x0x3 — 11x3)

—x1+x2+x3 <20
x1 — 3x + x3 < 30
i+ +x3 <1

Example gpex1.py and gpex1.1lp
Example gcpex1.py and qcpex1.1p
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. . (o] W
Example: Quadratic Assignment Problem b medting

e Given:
n units with a matrix F = [f;] € R"*" of flows between them and
n locations with a matrix D = [d,,] € R"*" of distances

o Task: Find the assignment o of units to locations that minimizes the
sum of product between flows and distances, ie,

min > fdo(i)o()
ij

TEY —

Applications: hospital layout; keyboard layout

19



Quadratic Programming Formulation

Ug

uz

u

Largest instances solvable exactly n = 30

u min E E E E fu‘,d,'jX,'quV
3 i u g v

inuzl Yu
qu,-:l Vi

Xy € {0, 1}

Hybrid Modelling

us indices 7, j for units and v, v for locations:
Quadratic 0-1 problem:

20



Example: QAP
0 4 3 21
4 0 3 21
D=| 3 3 0 2 1
2 2 2 01
1 11 10

The optimal solution is o = (1,2,3,4,5), that is,

facility 1 is assigned to location 1,
facility 2 is assigned to location 2, etc.

The value of f(o) is 100.

Course Introduction
Overview

Hybrid Modelling

01 2 3 4
1 0 2 3 4
F=12 2 0 3 4
33 3 0 4
4 4 4 4 0
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A possible linearization with y;,;,

min § auvbijyiujv
iuj,v
E Xiy = 1
i
E Xui = 1
u
§ Yiujy = Xiu
v
E Yiujy = Xiu
J
Yiujv = Yjviu
Xiu Z 0
Yiujv > 0

Yu

Yi

Vi, u,j
Vi, u,v
Visu,j,v

Vi, u
\V/I-, uvjv v

Course Introduction
Overview

Hybrid Modelling

= XjuXjy (Adams-Johnson model)

The symmetry constraints
= yiujwi < k.

yijii = x;j for all i and J,

Yiuiv = 0 for all i and u # v,
and yjj, = 0 for all i # j

~ n? + n?(n— 1)/2 variables.

Constraints
2n(n—1)2—(n—=1)(n—=2),n >
3.
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In pra ctice Hybrid Modelling

Modeling Languages (e.g., AMPL, Mosel, AIMMS, ZIMPL, Comet, OPL,...)

Write your problem as:
min{c’z+d"y |Az+ By > b,zc R",y € 7}

push the button solve, and ... cross your fingers!

Theory vs. Practice

In theory, plenty of optimization problem solved in this manner.
In practice, for many real-life discrete (optimization) problems this approach is
not suitable (typically, it does not scale well).

4
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The case of Integer Programming Hybrid Modsling

The problem with Integer Programming [Williams, 2010]

IP is essentially concerned with the intersection of two structures:
Linear inequalities giving rise to polytopes.
Lattices of integer points.

Mathematical and computational methods and results exist for both these
structures on their own. However mixing them is like mixing oil and water.
Problems arise in both the computation of optimal solutions and the
economic interpretation of the results.

Example:

How many times do we really have (an approximation of) the convex hull in
our integer problem?

24
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vvvvv

Example: Send More Money Hybrid Modsling

Send 4+ More = Money
You are asked to replace each letter by a different digit so that

I+

o 2w
Z|om
mixo 2
<|/m O

M

is correct. Because S and M are the leading digits, they cannot be equal to
the 0 digit.

Can you model this problem as an IP?

26



Send More Money: ILP model 1

o xic{0,....9) foralliel={S END,MO,R,Y}
o 0 0 ffx,-<xj
1 ifx < x

o Crypto constraint:

103 +10%x;  +10x3  +xs +
103X5 +102X6 +10x7 +x =
104X5 +103X6 —|—102X3 —|—10X2 +Xg
o Each letter takes a different digit:
x; — x; —100; < —1, forall i,j, i <j

xj — x;j +109; <9, forall i,j, i <j

Course Introduction
Overview

Hybrid Modelling
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Send More Money: ILP model 2

o x;,€{0,...,9}forallie !l ={S,E,N,D,M,O,R, Y}
o yje{0,1}foralliel, je J={0,...,9}
o Crypto constraint:

103X1 +102X2 +10x3  +xa
103X5 +102X6 +10x7  +x2

104X5 +103X6 +102X3 —|—10X2 +Xg
o Each letter takes a different digit:

> yi=1, Viel,

jed
iel
X =>_ i Viel.

Jjed

Course Introduction
Overview

Hybrid Modelling
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Send More Money: ILP model Hybrid Modelling

The quality of these formulations depends on both the tightness of the LP
relaxations and the number of constraints and variables (compactness)

@ Which of the two models is tighter?
project out all extra variables in the LP so that the polytope for LP is in
the space of the x variables. By linear comb. of constraints:

Model 1 Model 2
—1<x-x<10-1 > >|J\ \J\*l) vicl
jedJ
J|( J 1
Z <w’ vJ C|I.
2
Jjed

@ Can you find the convex hull of this problem?
Williams and Yan [2001] prove that model 2 is facet defining

Suppose we want to maximize MONEY, how strong is the upper bound
obtained with this formulation? How to obtain a stronger upper bound?

29
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Send More Money: ILP model (revisited) #b ot

o x;€{0,...,9}forallie !l ={S,E,N,D,M,O,R, Y}
o Crypto constraint:

103x; +10%x,  +10x3 +xa4
103xs +10%xs  +10x7  +xo

10%xs +103xg +10%°x3 +10x0 +xg
o Each letter takes a different digit:

-1
Z x> |J\(|J\ ), vicl,
- 2
jeJ
JI(2k —|J 1
217%7 Vil
Jjed

But exponentially many!
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Constraint Programming Hybrid Modelling

The domain of a variable x, denoted D(x), is a finite set of elements that
can be assigned to x.

A constraint C on X is a subset of the Cartesian product of the domains of
the variables in X, i.e., C C D(xy) x -+ x D(xx). A tuple (dy,...,dx) € Cis
called a solution to C.

Equivalently, we say that a solution (di, ..., dx) € C is an assignment of the
value d; to the variable x;,V1 < i < k, and that this assignment satisfies C.
If C = (), we say that it is inconsistent.

Extensional: specifies the satisfying tuples
Intensional: specifies the characteristic function

31
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Constraint Programming Hybrid Modelling

Constraint Satisfaction Problem (CSP)

A CSP is a finite set of variables X, together with a finite set of constraints
C, each on a subset of X. A solution to a CSP is an assignment of a value

d € D(x) to each x € X, such that all constraints are satisfied simultaneously.

Constraint Optimization Problem (COP)

A COP is a CSP P defined on the variables xi, ..., x,, together with an
objective function f : D(x;) x - -+ x D(x,) — Q that assigns a value to each
assignment of values to the variables. An optimal solution to a minimization
(maximization) COP is a solution d to P that minimizes (maximizes) the
value of 7(d).

32
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Global Constraint: alldifferent Hybrid Modelling

Global constraint:

set of more elementary constraints that exhibit a special structure when
considered together.

alldifferent constraint

Let x1, xo, ..., x, be variables. Then:

alldifferent(xy, ..., x,) =
{(dl, ...,d,,) | Vi, d; € D(X,')7 Vi 75], d; 7& dJ}

Note: different notation and names used in the literature
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Send More Money

Constraint Programming model

Send + More = Money
e X;€{0,...,9} forallie !l ={S,E,N,D,M,O,R, Y}
@ Crypto constraint:

103X +10°X,  +10X3  +X,
103X +10%Xs  +10X7  +X»

Course Introduction
Overview
Hybrid Modelling

10°Xs  +103Xs +10°X3; +10Xo +Xg
o Each letter takes a different digit:

alldifferent([X1, Xo,..., Xs]).

34
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Overview

The convex hull of alldifferent Hybrid Modelling

Convex Hull of of alldifferent

Given a set | = {1,...,n} (variable indices) and a set D = {0,..., k} with
k > n, we consider

alldifferent([xi, ..., x,]), with 0 < x; < k.

all the facets of the previous ILP formulation for the alldifferent
constraint are

—l
- 2
jed
JI(2k —|J 1
217%7 vJc .
jed

[Williams and Yan [2001]]
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ILP model + CP propagation e odelling

o x €1{0,...,9) forall i € | = {S,E,N,D,M,O,R, Y}
o yje{0,1}foralliel, je J={0,...,9}
103x;  +10%x,  +10x3 +xs +
103xs  +102xs  +10x;  +xo
10%%  +10°x% +10°x3 +10x2 +xg

> yi=1, Viel,

Jjed

doy<t vj € J,

icl

X,':Z_jy,j, Viel.
jed

o Propagation adds valid inequalities:

LB(X;) < x; < UB(X;) forall i € I

@ H. Simonis’ demo, slides 42-56

36


http://4c.ucc.ie/~hsimonis/ELearning/sendmore/slides.pdf
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Send More Money: CP model (revisited) i westine

o X;€{0,....9} forallie | ={S,E,N,D,M,O,R, Y}

103X;  +10°X, +10X3 +X, +
103Xs  +102Xs +10X; +X, =
].04X5 +103X6 +102X3 +10X>  +Xs

o Redundant constraints

X4+ X5
X3+ X7+n
Xo 4+ Xe + 12
X1+ Xs+r3

+ry

Can we do better? Can we propagate more?

10 + Xs,
102 + Xz,
10 r3 + X3,
10 ry + X,
Xs.

aIIdifFerent([Xl, Xo, ... ,Xg]).
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Send More Money: LP relaxation oy AT

Comet

Solver<LP> 1p();

var<LP>{float} y[Letters, Domain] (1p, 0..1);
var<LP>{float} x[Letters](lp, Domain);
var<LP>{float} S = x[1];

maximize<lp>
10000 * M + 1000 * O + 100 * N + 10 * E + Y
subject to {
lp.post( S >= 1 );
lp.post( M >= 1 );
1p.post( 1000 * S + 100 * E + 10 * N + D +
1000 * M + 100 * 0 + 10 * R + E ==
10000 * M + 1000 * O + 100 * N + 10 * E + Y );

forall (j in Domain)
lp.post( sum(i in Letters) y[i,j]l <= 1);

forall (i in Letters) {
1p.post( sum(j in Domain) y[i,j] == 1 );
1p.post( x[i] == sum(j in Domain) j*y[i,j] )
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Send More Money: CP model

Comet

range Letters = 1..8;
range Domain = 0..9;

Solver<CP> cp();

var<CP>{int} r[1..4](cp, O..

var<CP>{int} x[Letters] (cp,
var<CP>{int} S = x[1]; [..

solve<cp> {
cp.post( S
cp.post( M
cp.post( 1000
1000

10000 * M + 1000

1)
Domain) ;

1

*
2]

+ 100 * E + 10 * N + D +
+ 100 * 0 + 10 * R + E ==
+ 100 * N + 10 * E + Y );

* *
o=

cp.post( alldifferent(x) );

cp.post( S + M + r[3] ==

cp.post( E + 0 + r[2] ==

cp.post( N + R + r[1] ==

cp.post( D + E ==
}

10*r[4] )
10*r[3] )
10xr[2] );
10*r[1] )

= m=0o
+ o+ o+ o+

Course Introduction

Overview
Hybrid Modelling
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Send More Money: CP model ovbid Modellng

Gecode-python

from gecode import *

s = space()

letters = s.intvars(8,0,9)
S,E,N,D,M,0,R,Y = letters
s.rel(M,IRT_NQ,0)
s.rel(S,IRT_NQ,0)
s.distinct (letters)

¢ = [1000, 100, 10, 1,

1000, 100, 10, 1,

-10000, -1000, -100, -10, -1]
X = [S,E,N,D,

M,0,R,E,

M,0,N,E,Y]
s.linear(C,X,IRT_EQ,0)
s.branch(letters,INT_VAR_SIZE_MIN,INT_VAL_MIN)
for s2 in s.search():

print(s2.val(letters))
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