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Schedule (28 lecture hours):
Monday 16.15-18
Wednesday 12.15-14
Friday 10.15-12
Last lecture: Friday, 16th March, 2012

Communication tools

Public Course Webpage (Wp)
http://www.imada.sdu.dk/~marco/DM826/

In Blackboard (Bb):
Announcements
Assignments Hand In
Documents (Photocopies)
Discussion Board (subscribe)

Personal email

You are welcome to visit me in my office in working hours.
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Two obligatory assignments (50% of final grade)
Model
Implementation
Report (3 pages)

Third final assignment (50% of final grade)
Model
Implement
Report (Max 10 pages)
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Main References:

B1 F. Rossi, P. van Beek and T. Walsh (ed.), Handbook of Constraint
Programming, Elsevier, 2006

B2 J.N. Hooker, Integrated Methods for Optimization. Springer, 2007
B3 C. Schulte, G. Tack, M.Z. Lagerkvist, Modelling and Programming with

Gecode 2010

Photocopies (Bb)
Articles from the Webpage
Lecture slides
Assignments

...but take notes in class!
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We basically have three Computational Model to solve (combinatorial)
optimization problems:

Mathematical Programming (LP, ILP, QP, SDP, ...)

Constraint Programming (SAT as a very special case)

Local Search (... and Meta-heuristics)
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In MILP we formulate problems as a set of linear inequalities

In CP we describe substructures (so-called global constraints) and
combine them with various combinators.

Substructures capture building blocks often (but not always)
comptuationally tractable by special-purpose algorithms

CP models can:
be linearized and solved by their MIP solvers;
be translated in CNF and sovled by SAT solvers;
be handled by local search

In MILP the solver is often seen as a black-box
In CP and LS solvers leave the user the task of programming the search.

CP = model + propagation + search
constraint propagation by domain filtering  inference
search = backtracking, branch and bound, local search
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Strengths:

CP is excellent to explore highly constrained combinatorial spaces quickly
Math programming is particulary good at deriving lower bounds
LS is particualry good at derving upper bounds

How to combine them to get better “solvers”?

Exploiting OR algorithms for filtering
Exploiting LP (and SDP) relaxation into CP
Hybrid decompositions:

1. Logical Benders decomposition

2. Column generation

3. Large-scale neigbhrohood search

CP

ILP

LS

10



Course Introduction
Overview
Hybrid ModellingOutline

1. Course Introduction

2. Overview

3. Hybrid Modelling

11



Course Introduction
Overview
Hybrid ModellingModeling

Modeling:

1. identify variables, domains, constraints and objective functions that
formulate the problem

2. express what in point 1) in a way that allows the solution by available
software
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Models interact with solution process hence models in CP and IP are
different.

To integrate one needs:

to know both sides
to have available a modelling language that allow integration
(Comet)

There are typcially alternative ways to formulate a problem. Some may yield
faster solutions.

Typical procedure:

begin with a strightforward model to solve a small problem instance
alter and refine the model while scaling up the instances to maintain
tractability
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Linear Programming

Given A matrix A ∈ Rm×n and column vectors b ∈ Rm, c ∈ Rn.
Task Find a column vector x ∈ Rn such that Ax ≤ b and cT x is maximum,

decide that {x ∈ Rn | Ax ≤ b} is empty, or decide that for all α ∈ R
there is an x ∈ Rn with Ax ≤ b and cT x > α.

Theory vs. Practice

In theory the Simplex algorithm is exponential, in practice it works.

In theory the Ellipsoid algorithm is polynomial, in practice it is not better than
the Simplex.
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Integer Programming

Given A matrix A ∈ Zm×n and vectors b ∈ Zm, c ∈ Zn.
Task Find a vector x ∈ Zn such that Ax ≤ b and cx is maximum,

or decide that {x ∈ Zn | Ax ≤ b} = ∅,
or decide that sup{cx | x ∈ Zn, Ax ≤ b} =∞.

Theory vs. Practice

In theory, IP problems can be solved efficiently by exploiting (if you can find-
/approximate) the convex hull of the problem.
In practice, we heavily rely on branch&bound search tree algorithms, that solve
LP relaxations at every node.
Logical Statements Frequently (but not always) the integer variables are re-
stricted to be in {0,1} representing Yes/No decisions.
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Quadratic Programming

Given Matrices A,Qi ∈ Rn×n, with i = 0, . . . , q, and column vectors
ai , b, c ∈ Rn.

Task Find a column vector x ∈ Rn such that xTQix + aT
i x ≤ b and

xTQ0X + cT x is maximum,
or decide that {x ∈ Rn | xTQix + aT

i x ≤ b} is empty,
or decide that it is unbounded.

Theory vs. Practice

In theory, this is a richer modeling language (quadratic constraints and/or
objective functions).
In practice, we linearize all the time, relying on (most of the time linear) cutting
plane algorithms.
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Example
Quadratic programming (QP), quadratically-constrained programming
(QCP), mixed integer quadratic programming (MIQP), and mixed-integer
quadratically-constrained programming (MIQCP).
Conventionally, a quadratic program is formulated this way:

min 1/2xTQx + cTx
s.t. Ax ∼ b

lb ≤ x ≤ ub

Q is a matrix of coefficients. That is, the elements Qjj are the coefficients of
the quadratic terms x2

j , and the elements Qij and Qji are summed to make
the coefficient of the term xixj .
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min x1 + 2x2 + 3x3 +
1
2
(−33x2

1 + 12x1x2 − 22x2
2 + 23x2x3 − 11x3)

− x1 + x2 + x3 ≤ 20
x1 − 3x2 + x3 ≤ 30

+ x2
1 + x2

2 + x2
3 ≤ 1

Example qpex1.py and qpex1.lp
Example qcpex1.py and qcpex1.lp
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Given:
n units with a matrix F = [fij ] ∈ Rn×n of flows between them and
n locations with a matrix D = [duv ] ∈ Rn×n of distances

Task: Find the assignment σ of units to locations that minimizes the
sum of product between flows and distances, ie,

min
σ∈Σ

∑
i,j

fijdσ(i)σ(j)

Applications: hospital layout; keyboard layout
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Quadratic Programming Formulation

i1

i2

i3

i4

i5

u1

u2

u3

u4

u5

xiu ∈ [0; 1]

indices i , j for units and u, v for locations:
Quadratic 0-1 problem:

min
∑

i

∑
u

∑
j

∑
v

fuvdijxiuxjv∑
i

xiu = 1 ∀u∑
u

xui = 1 ∀i

xiu ∈ {0, 1}

Largest instances solvable exactly n = 30
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Example: QAP

D =


0 4 3 2 1
4 0 3 2 1
3 3 0 2 1
2 2 2 0 1
1 1 1 1 0

 F =


0 1 2 3 4
1 0 2 3 4
2 2 0 3 4
3 3 3 0 4
4 4 4 4 0



The optimal solution is σ = (1, 2, 3, 4, 5), that is,
facility 1 is assigned to location 1,
facility 2 is assigned to location 2, etc.

The value of f (σ) is 100.
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A possible linearization with yiujv = xiuxjv (Adams-Johnson model)

min
∑

i,u,j,v

auvbijyiujv∑
i

xiu = 1 ∀u∑
u

xui = 1 ∀i∑
v

yiujv = xiu ∀i , u, j∑
j

yiujv = xiu ∀i , u, v

yiujv = yjviu ∀i , u, j , v
xiu ≥ 0 ∀i , u

yiujv ≥ 0 ∀i , u, j , v

The symmetry constraints
⇒ yiujv , i ≤ k .

yijij = xij for all i and j ,
yiuiv = 0 for all i and u 6= v ,
and yiuju = 0 for all i 6= j
 n2 + n2(n − 1)/2 variables.

Constraints
2n(n−1)2−(n−1)(n−2), n ≥
3.
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Modeling Languages (e.g., AMPL, Mosel, AIMMS, ZIMPL, Comet, OPL,...)

Write your problem as:

min{cTz + dTy | Az + By ≥ b, z ∈ Rn, y ∈ Z}

push the button solve, and ... cross your fingers!

Theory vs. Practice

In theory, plenty of optimization problem solved in this manner.
In practice, for many real-life discrete (optimization) problems this approach is
not suitable (typically, it does not scale well).
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The problem with Integer Programming [Williams, 2010]

IP is essentially concerned with the intersection of two structures:
1. Linear inequalities giving rise to polytopes.
2. Lattices of integer points.

Mathematical and computational methods and results exist for both these
structures on their own. However mixing them is like mixing oil and water.
Problems arise in both the computation of optimal solutions and the
economic interpretation of the results.

Example:

How many times do we really have (an approximation of) the convex hull in
our integer problem?
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Send + More = Money

You are asked to replace each letter by a different digit so that

S E N D +
M O R E =

M O N E Y

is correct. Because S and M are the leading digits, they cannot be equal to
the 0 digit.

Can you model this problem as an IP?
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xi ∈ {0, . . . , 9} for all i ∈ I = {S ,E ,N,D,M,O,R,Y }

δij

{
0 if xi < xj

1 if xj < xi

Crypto constraint:
103x1 +102x2 +10x3 +x4 +
103x5 +102x6 +10x7 +x2 =

104x5 +103x6 +102x3 +10x2 +x8

Each letter takes a different digit:

xi − xj − 10δij ≤ −1, for all i , j , i < j
xj − xi + 10δij ≤ 9, for all i , j , i < j
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xi ∈ {0, . . . , 9} for all i ∈ I = {S ,E ,N,D,M,O,R,Y }
yij ∈ {0, 1} for all i ∈ I , j ∈ J = {0, . . . , 9}
Crypto constraint:

103x1 +102x2 +10x3 +x4 +
103x5 +102x6 +10x7 +x2 =

104x5 +103x6 +102x3 +10x2 +x8

Each letter takes a different digit:∑
j∈J

yij = 1, ∀i ∈ I ,

∑
i∈I

yij ≤ 1, ∀j ∈ J,

xi =
∑
j∈J

jyij , ∀i ∈ I .
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The quality of these formulations depends on both the tightness of the LP
relaxations and the number of constraints and variables (compactness)

Which of the two models is tighter?
project out all extra variables in the LP so that the polytope for LP is in
the space of the x variables. By linear comb. of constraints:

Model 1

−1 ≤ xi − xj ≤ 10− 1

Model 2∑
j∈J

xj ≥
|J| (|J| − 1)

2
, ∀J ⊂ I ,

∑
j∈J

xj ≤
|J| (2k − |J|) + 1

2
, ∀J ⊂ I .

Can you find the convex hull of this problem?
Williams and Yan [2001] prove that model 2 is facet defining

Suppose we want to maximize MONEY, how strong is the upper bound
obtained with this formulation? How to obtain a stronger upper bound?
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xi ∈ {0, . . . , 9} for all i ∈ I = {S ,E ,N,D,M,O,R,Y }
Crypto constraint:

103x1 +102x2 +10x3 +x4 +
103x5 +102x6 +10x7 +x2 =

104x5 +103x6 +102x3 +10x2 +x8

Each letter takes a different digit:∑
j∈J

xj ≥
|J| (|J| − 1)

2
, ∀J ⊂ I ,

∑
j∈J

xj ≤
|J| (2k − |J|) + 1

2
, ∀J ⊂ I .

But exponentially many!
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The domain of a variable x , denoted D(x), is a finite set of elements that
can be assigned to x .

A constraint C on X is a subset of the Cartesian product of the domains of
the variables in X, i.e., C ⊆ D(x1)× · · · ×D(xk). A tuple (d1, . . . , dk) ∈ C is
called a solution to C .
Equivalently, we say that a solution (d1, ..., dk) ∈ C is an assignment of the
value di to the variable xi ,∀1 ≤ i ≤ k, and that this assignment satisfies C .
If C = ∅, we say that it is inconsistent.

Extensional: specifies the satisfying tuples
Intensional: specifies the characteristic function
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Constraint Satisfaction Problem (CSP)

A CSP is a finite set of variables X , together with a finite set of constraints
C , each on a subset of X . A solution to a CSP is an assignment of a value
d ∈ D(x) to each x ∈ X , such that all constraints are satisfied simultaneously.

Constraint Optimization Problem (COP)

A COP is a CSP P defined on the variables x1, . . . , xn, together with an
objective function f : D(x1)× · · · × D(xn)→ Q that assigns a value to each
assignment of values to the variables. An optimal solution to a minimization
(maximization) COP is a solution d to P that minimizes (maximizes) the
value of f (d).
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Global constraint:
set of more elementary constraints that exhibit a special structure when
considered together.

alldifferent constraint
Let x1, x2, . . . , xn be variables. Then:

alldifferent(x1, ..., xn) =

{(d1, ..., dn) | ∀i , di ∈ D(xi ), ∀i 6= j , di 6= dj}.

Note: different notation and names used in the literature
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Constraint Programming model

Send + More = Money

Xi ∈ {0, . . . , 9} for all i ∈ I = {S ,E ,N,D,M,O,R,Y }
Crypto constraint:

103X1 +102X2 +10X3 +X4 +
103X5 +102X6 +10X7 +X2 =

104X5 +103X6 +102X3 +10X2 +X8

Each letter takes a different digit:

alldifferent([X1,X2, . . . ,X8]).
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Convex Hull of of alldifferent

Given a set I = {1, . . . , n} (variable indices) and a set D = {0, . . . , k} with
k ≥ n, we consider

alldifferent([x1, . . . , xn]), with 0 ≤ xi ≤ k.

all the facets of the previous ILP formulation for the alldifferent
constraint are∑

j∈J

xj ≥
|J| (|J| − 1)

2
, ∀J ⊂ I ,

∑
j∈J

xj ≤
|J| (2k − |J|) + 1

2
, ∀J ⊂ I .

[Williams and Yan [2001]]
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xi ∈ {0, . . . , 9} for all i ∈ I = {S ,E ,N,D,M,O,R,Y }
yij ∈ {0, 1} for all i ∈ I , j ∈ J = {0, . . . , 9}

103x1 +102x2 +10x3 +x4 +
103x5 +102x6 +10x7 +x2 =

104x5 +103x6 +102x3 +10x2 +x8∑
j∈J

yij = 1, ∀i ∈ I ,

∑
i∈I

yij ≤ 1, ∀j ∈ J,

xi =
∑
j∈J

jyij , ∀i ∈ I .

Propagation adds valid inequalities:

LB(Xi ) ≤ xi ≤ UB(Xi ) for all i ∈ I

.
H. Simonis’ demo, slides 42-56
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Xi ∈ {0, . . . , 9} for all i ∈ I = {S ,E ,N,D,M,O,R,Y }
103X1 +102X2 +10X3 +X4 +
103X5 +102X6 +10X7 +X2 =

104X5 +103X6 +102X3 +10X2 +X8

alldifferent([X1,X2, . . . ,X8]).

Redundant constraints
X4 + X2 = 10 r1 + X8,

X3 + X7 + r1 = 10 r2 + X2,

X2 + X6 + r2 = 10 r3 + X3,

X1 + X5 + r3 = 10 r4 + X6,

+r4 = X5.

Can we do better? Can we propagate more?
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Comet

Solver<LP> lp();
var<LP>{float} y[Letters, Domain](lp, 0..1);
var<LP>{float} x[Letters](lp, Domain);
var<LP>{float} S = x[1];

maximize<lp>
10000 * M + 1000 * O + 100 * N + 10 * E + Y

subject to {
lp.post( S >= 1 );
lp.post( M >= 1 );
lp.post( 1000 * S + 100 * E + 10 * N + D +

1000 * M + 100 * O + 10 * R + E ==
10000 * M + 1000 * O + 100 * N + 10 * E + Y );

forall (j in Domain)
lp.post( sum(i in Letters) y[i,j] <= 1);

forall (i in Letters) {
lp.post( sum(j in Domain) y[i,j] == 1 );
lp.post( x[i] == sum(j in Domain) j*y[i,j] );

}
}
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Comet

range Letters = 1..8;
range Domain = 0..9;

Solver<CP> cp();
var<CP>{int} r[1..4](cp, 0..1);
var<CP>{int} x[Letters](cp, Domain);
var<CP>{int} S = x[1]; [...]

solve<cp> {
cp.post( S != 0 );
cp.post( M != 0 );
cp.post( 1000 * S + 100 * E + 10 * N + D +

1000 * M + 100 * O + 10 * R + E ==
10000 * M + 1000 * O + 100 * N + 10 * E + Y );

cp.post( alldifferent(x) );

cp.post( S + M + r[3] == O + 10*r[4] );
cp.post( E + O + r[2] == N + 10*r[3] );
cp.post( N + R + r[1] == E + 10*r[2] );
cp.post( D + E == Y + 10*r[1] );

}
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Gecode-python

from gecode import *

s = space()
letters = s.intvars(8,0,9)
S,E,N,D,M,O,R,Y = letters
s.rel(M,IRT_NQ,0)
s.rel(S,IRT_NQ,0)
s.distinct(letters)
C = [1000, 100, 10, 1,

1000, 100, 10, 1,
-10000, -1000, -100, -10, -1]

X = [S,E,N,D,
M,O,R,E,
M,O,N,E,Y]

s.linear(C,X,IRT_EQ,0)
s.branch(letters,INT_VAR_SIZE_MIN,INT_VAL_MIN)
for s2 in s.search():

print(s2.val(letters))
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