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Complete Search
Incomplete SearchBacktracking: Terminology

backtracking: depth first search of a search tree

branching strategy: method to extend a node in the tree

node visited if generated by the algorithm

constraint propagation prunes subtrees

deadend: if the node does not lead to a solution

thrashing repeated exploration of failing subtree differing only in
assignments to variables irrelevant to the failure of the subtree.
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Incomplete SearchSimple Backtracking

at level j ←− instantiation I = {x1 = a1, . . . , xj = aj}

branches: different choices for an unassigned variable: I ∪ {x = a}

branching constraints P = {b1, . . . , bj}, bi , 1 ≤ i ≤ j

P ∪ {b1
j+1}, . . . ,P ∪ {bk

j+1} extension of a node by mutually exclusive
branching constraints
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Incomplete SearchBranching strategies

Assume a variable order and a value order (e.g., lexicographic):

A. Generic branching with unary constraints:

1. Enumeration, d -way

x = 1 | x = 2 | . . .

2. Binary choice points, 2-way

x = 1 | x 6= 1

3. Domain splitting
x ≤ 3 | x > 3

 d -way can be simulated by 2-way with no loss of efficiency. The contrary
does not old.

 2-way seems theoretically more powerful than d -way
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B. Problem specific:

Disjunctive scheduling

Zykov’s branching rule for graph coloring
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Incomplete SearchConstraint propagation

constraint propagation performed at each node: mechanism to avoid
thrashing

typically best to enforce domain based but with some exceptions (e.g.,
forward checking is best in SAT)

nogood constraints added after deadend is encountered:

set of assignments and branching constraints that is not consistent with a
solution

backtracking has already ruled out the subtree but inserting nogood
constraints the hope is they contribute to propagate

e.g., I = {x1 = 2, x2 = 5, x3 = 3, x5 = 4} and x = 6 deadend
post ¬{x1 = 2, x2 = 5, x3 = 3, x5 = 4}
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standard backtracking: chronological backtracking

non-chronological backtracking: retracts the closest branching constraint
that bears responsibility.
backjumping or intelligent backtracking:
P = {b1, . . . , bj}
J(P) ⊆ P jumpback nogood for P
largest i 1 ≤ i ≤ j : bi ∈ J(P)
jumpback and retracts bi and all those posted after bi
and delete nogoods recorded after bi
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Incomplete SearchRestoration Service

What do we have at the nodes of the search tree?
A computational space:
1. Partial assignments of values to variables
2. Unassigned variables
3. Suspended propagators

How to restore when backtracking?

Trailing Changes to nodes are recorded such that they can be undone
later

Copying A copy of a node is created before the node is changed

Recomputation If needed, a node is recomputed from scratch
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Incomplete SearchVariable-Value ordering

Possible goals
Minimize the underlying search space

Minimize expected depth of any branch

Minimize expected number of branches

Minimize size of search space explored by backtracking algorithm
(intractable to find “best” variable)

11



Complete Search
Incomplete SearchVariable ordering

dynamic vs static

it is optimal if it visits the fewest number of nodes in the search tree

finding optimal ordering is hard

dynamic heuristics:

based on domain size rem(x |P) remaining after propagation

dom+ deg (# constraints that involve a variable still unassigned)
dom
wdeg weight incremented when a constraint is responsible for a deadend

min regret

structure guided var ordering:
instantiate first variables that decompose the constraint graph
graph separators: subset of vertices or edges that when removed
separates the graph into disjoint subcomponents
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estimate number of solutions:
counting solutions to a problem with tree structure can be done in
polytime
reduce the graph to a tree by dropping constraints

if optimization constraints: reduced cost to rank values
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Incomplete SearchVariants to best search

Limited Discrepancy search

Discrepancy: when the search does not follow the value ordering
heuristic and does not take the left most branch out of a node.

explored tree by iteratively increasing number of discrepancies, preferring
discrepancies near the root
(thus easier to recover from early mistakes)

Ex: ith iteration: visit all leaf nodes up to i discrepancies
i = 0, 1, . . . , k (if k ≥ n depth then alg is complete)

Interleaved depth first search
each subtree rooted at a branch is searched for a given time-slice using
depth-first.
If no solution found, search suspended, next branch active.
Upon suspending in the last the first again becomes active.
Similar idea in credit based.
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Incomplete SearchRandomization in Search Tree

Dynamical selection of solution components
in construction or choice points in backtracking.

Randomization of construction method or
selection of choice points in backtracking
while still maintaining the method complete
 randomized systematic search.

Randomization can also be used in incomplete search
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http://4c.ucc.ie/~hsimonis/visualization/techniques/partial_search/main.htm
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Credit-based search

Key idea: important decisions are
at the top of the tree

Credit = backtracking steps

Credit distribution: one half at
the best child the other divided
among the other children.

When credits run out follow
deterministic best-search

In addition: allow limited
backtracking steps (eg, 5) at the
bottom

Control parameters: initial credit,
distribution of credit among the
children, amount of local
backtracking at bottom.
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Limited Discrepancy Search (LDS)

Key observation that often the
heuristic used in the search is
nearly always correct with just a
few exceptions.

Explore the tree in increasing
number of discrepancies,
modifications from the heuristic
choice.

Eg: count one discrepancy if
second best is chosen
count two discrepancies either if
third best is chosen or twice the
second best is chosen

Control parameter: the number of
discrepancies
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Barrier Search

Extension of LDS

Key idea: we may encounter
several, independent problems in
our heuristic choice. Each of
these problems can be overcome
locally with a limited amount of
backtracking.

At each barrier start LDS-based
backtracking
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Incomplete SearchLocal Search for CSP [Hoos and Tsang, 2006]

Uses a complete-state formulation

Initial state: a value assigned to each variable (randomly)

Changes the value of one variable at a time

Evaluation of a state:
number of constraints violated or variables to change (see soft
constraints)

Min-conflict heuristic [Minton et al., 1992]:
pick one variable involved in a constraint violation at random
assign to it the best value

Run-time independent from problem size
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