${\sf DM826-Spring~2012}$ Modeling and Solving Constrained Optimization Problems

Lecture 10 Search

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Search

- Complete
 - backtracking
 - dynamic programming
- Incomplete
 - local search

Outline

1. Complete Search

2. Incomplete Search

Backtracking: Terminology

- backtracking: depth first search of a search tree
- branching strategy: method to extend a node in the tree
- node visited if generated by the algorithm
- constraint propagation prunes subtrees
- deadend: if the node does not lead to a solution
- thrashing repeated exploration of failing subtree differing only in assignments to variables irrelevant to the failure of the subtree.

Simple Backtracking

- at level $j \leftarrow$ instantiation $I = \{x_1 = a_1, \dots, x_j = a_j\}$
- branches: different choices for an unassigned variable: $I \cup \{x = a\}$
- branching constraints $\mathcal{P} = \{b_1, \dots, b_j\}$, $b_i, 1 \leq i \leq j$
- $\mathcal{P} \cup \{b^1_{j+1}\}, \dots, \mathcal{P} \cup \{b^k_{j+1}\}$ extension of a node by mutually exclusive branching constraints

Branching strategies

Assume a variable order and a value order (e.g., lexicographic):

- A. Generic branching with unary constraints:
 - 1. Enumeration, d-way

$$x = 1 \mid x = 2 \mid \dots$$

2. Binary choice points, 2-way

$$x = 1 \mid x \neq 1$$

3. Domain splitting

$$x \le 3 \mid x > 3$$

- → d-way can be simulated by 2-way with no loss of efficiency. The contrary does not old.
- \sim 2-way seems theoretically more powerful than d-way

Branching strategies

B. Problem specific:

- Disjunctive scheduling
- Zykov's branching rule for graph coloring

Constraint propagation

- constraint propagation performed at each node: mechanism to avoid thrashing
- typically best to enforce domain based but with some exceptions (e.g., forward checking is best in SAT)
- nogood constraints added after deadend is encountered:
 - set of assignments and branching constraints that is not consistent with a solution
 - backtracking has already ruled out the subtree but inserting nogood constraints the hope is they contribute to propagate
 - e.g., $I = \{x_1 = 2, x_2 = 5, x_3 = 3, x_5 = 4\}$ and x = 6 deadend post $\neg \{x_1 = 2, x_2 = 5, x_3 = 3, x_5 = 4\}$

Backjumping

- standard backtracking: chronological backtracking
- non-chronological backtracking: retracts the closest branching constraint that bears responsibility.

```
backjumping or intelligent backtracking: \mathcal{P} = \{b_1, \dots, b_i\}
```

$$J(\mathcal{P}) \subseteq \mathcal{P}$$
 jumpback nogood for \mathcal{P}

 $\mathsf{largest}\ i\ 1 \leq i \leq j: b_i \in J(\mathcal{P})$

jumpback and retracts b_i and all those posted after b_i and delete nogoods recorded after b_i

Restoration Service

What do we have at the nodes of the search tree?

A computational space:

- 1. Partial assignments of values to variables
- 2. Unassigned variables
- 3. Suspended propagators

How to restore when backtracking?

- Trailing Changes to nodes are recorded such that they can be undone later
- Copying A copy of a node is created before the node is changed
- Recomputation If needed, a node is recomputed from scratch

Variable-Value ordering

Possible goals

- Minimize the underlying search space
- Minimize expected depth of any branch
- Minimize expected number of branches
- Minimize size of search space explored by backtracking algorithm (intractable to find "best" variable)

Variable ordering

dynamic vs static

- it is optimal if it visits the fewest number of nodes in the search tree
- finding optimal ordering is hard

dynamic heuristics:

- based on domain size $\operatorname{rem}(x|\mathcal{P})$ remaining after propagation
- dom + deg (# constraints that involve a variable still unassigned)
- dom/wdeg weight incremented when a constraint is responsible for a deadend
- min regret
- structure guided var ordering: instantiate first variables that decompose the constraint graph graph separators: subset of vertices or edges that when removed separates the graph into disjoint subcomponents

Value ordering

- estimate number of solutions:
 counting solutions to a problem with tree structure can be done in polytime
 reduce the graph to a tree by dropping constraints
- if optimization constraints: reduced cost to rank values

Variants to best search

Limited Discrepancy search

Discrepancy: when the search does not follow the value ordering heuristic and does not take the left most branch out of a node.

explored tree by iteratively increasing number of discrepancies, preferring discrepancies near the root (thus easier to recover from early mistakes)

Ex: *i*th iteration: visit all leaf nodes up to *i* discrepancies i = 0, 1, ..., k (if $k \ge n$ depth then alg is complete)

• Interleaved depth first search

each subtree rooted at a branch is searched for a given time-slice using depth-first.

If no solution found, search suspended, next branch active. Upon suspending in the last the first again becomes active. Similar idea in credit based.

Randomization in Search Tree

- Dynamical selection of solution components in construction or choice points in backtracking.
- Randomization of construction method or selection of choice points in backtracking while still maintaining the method complete
 randomized systematic search.
- Randomization can also be used in incomplete search

Outline

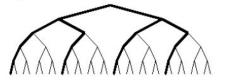
1. Complete Search

2. Incomplete Search

Bounded-backtrack search:

bbs(10)

Depth-bounded, then bounded-backtrack search:

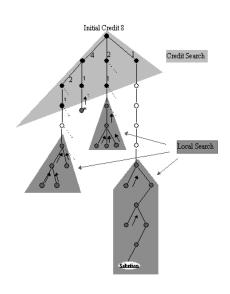


dbs(2, bbs(0))

http://dc.ucc.ie/~hsimonis/visualization/techniques/partial_search/main.htm

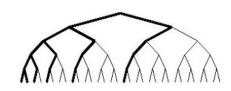
Credit-based search

- Key idea: important decisions are at the top of the tree
- Credit = backtracking steps
- Credit distribution: one half at the best child the other divided among the other children.
- When credits run out follow deterministic best-search
- In addition: allow limited backtracking steps (eg, 5) at the bottom
- Control parameters: initial credit, distribution of credit among the children, amount of local backtracking at bottom.



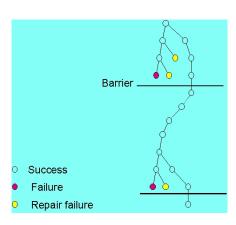
Limited Discrepancy Search (LDS)

- Key observation that often the heuristic used in the search is nearly always correct with just a few exceptions.
- Explore the tree in increasing number of discrepancies, modifications from the heuristic choice.
- Eg: count one discrepancy if second best is chosen count two discrepancies either if third best is chosen or twice the second best is chosen
- Control parameter: the number of discrepancies



Barrier Search

- Extension of LDS
- Key idea: we may encounter several, independent problems in our heuristic choice. Each of these problems can be overcome locally with a limited amount of backtracking.
- At each barrier start LDS-based backtracking



Local Search for CSP [Hoos and Tsang, 2006]

- Uses a complete-state formulation
- Initial state: a value assigned to each variable (randomly)
- Changes the value of one variable at a time
- Evaluation of a state: number of constraints violated or variables to change (see soft constraints)
- Min-conflict heuristic [Minton et al., 1992]:
 - pick one variable involved in a constraint violation at random
 - assign to it the best value
- Run-time independent from problem size

References

- Hoos H.H. and Tsang E. (2006). Local Search Methods, chap. 5. Elsevier.
- Minton S., Johnston M., Philips A., and Laird P. (1992). Minimizing conflicts: A heuristic repair method for constraint satisfaction and scheduling problems. *Artificial Intelligence*, 58(1-3), pp. 161–205.
- Rossi F., van Beek P., and Walsh T. (eds.) (2006). Handbook of Constraint Programming. Elsevier.
- Schulte C. and Carlsson M. (2006). **Finite domain constraint programming systems**. In Rossi et al. [2006].