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Run time distributions

T ∈ [0,∞] time to find a solution on an instance

F (t) = Pr{T ≤ t} F : [0,∞] 7→ [0, 1] cdf

f (t) = dF (t)
dt pdf

S(t) = Pr{T > t} = 1− F (t) survival function

h(t) = lim∆t→0 Pr {t ≤ T < t + ∆t | T ≥ t}∆t hazard function

H(t) =
∫ t
0 h(s)ds h(s) f (t)

S(t) H(t) = − log S(t) cumulative hazrd
function

E [T ] =
∫∞
0 tf (t)dt =

∫ 1
0 tdF (t) =

∫∞
0 S(t)dt expected run time
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F (t)→t→∞ 1− C t−α

(Pareto like distr.)

In practice, this means that

most runs are relatively short, but the remaining few can take a very
long time.

Depending on C , α, the mean of a heavy-tailed distribution can be finite
or not, while higher moments are always infinite.

Gomes and Selman [2005] explain that the length of a single run
depends on the order with which randomized backtracking assigns values
to the variables.
In some runs, backtracking has to search very deep branches in the tree
of possible solutions before finding a contradiction.
The same instance may be very easy if solved with a different random
reordering of the variables.

This is an example phenomenon which is difficult to study based on
simple statistics, as mean and variance.
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Heavy Tails

Gomes et al. [2000] analyze the mean computational cost to find a solution
on a single instance

On the left, the observed behavior calculated over an increasing number of
runs.
On the right, the case of data drawn from normal or gamma distributions

The use of the median instead of the mean is recommended
The existence of the moments (e.g., mean, variance) is determined by
the tails behavior: a case like the left one arises in presence of long tails
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Parametric models used in the analysis of run-times to
exploit the properties of the model (eg, the character of tails and completion
rate)

Procedure:

choose a model
apply fitting method
maximum likelihood estimation method:

max
θ∈Θ

log
n∏

i=1

p(Xi , θ)

test the model
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The distributions used are [Frost et al., 1997; Gomes et al., 2000]:
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Motivations for these distributions:

qualitative information on the completion rate (= hazard function)
empirical good fitting

To check whether a parametric family of models is reasonable the idea is to
make plots that should be linear. Departures from linearity of the data can be
easily appreciated by eye.

Example: for an exponential distribution:

log S(t) = −λt S(t) = 1− F (t) is the survivor function

 the plot of log S(t) against t should be linear.

Similarly, for the Weibull the cumulative hazard function is linear on a log-log
plot

 heavy tail if S(t) in log-log plot is linear with slope −α
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Heavy Tails

Graphical check using a log-log plot:

heavy tail distributions approximate linear decay,
exponentially decreasing tail has faster-than linear decay

Long tails explain the goodness of random restart. Determining the cutoff
time is however not trivial.
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Extreme value statistics focuses on characteristics related to the tails of
a distribution function

1. extreme quantiles (e.g., minima)
2. indices describing tail decay

‘Classical’ statistical theory: analysis of means.
Central limit theorem: X1, . . . ,Xn i.i.d. with FX

√
n

X̄ − µ√
Var(X )

D−→ N(0, 1), as n→∞

Heavy tailed distributions: mean and/or variance may not be finite!
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Extreme values theory

X1,X2, . . . ,Xn i.i.d. FX

Ascending order statistics X (1)
n ≤ . . . ≤ X (n)

n

For the minimum X (1)
n it is FX (1)

n
= 1− [1− F (1)

X ]n but not very useful in
practice as FX unknown
Theorem of [Fisher and Tippett, 1928]:
“almost always” the normalized extreme tends in distribution to a
generalized extreme distribution (GEV) as n→∞.

In practice, the distribution of extremes is approximated by a GEV:

FX (1)
n

(x) ∼

{
exp(−1(1− γ x−µ

σ )−1/γ , 1− γ x−µ
σ > 0, γ 6= 0

exp(− exp( x−µ
σ )), x ∈ R, γ = 0

Parameters estimated by simulation by repeatedly sampling k values
X1n, . . . ,Xkn, taking the extremes X (1)

kn , and fitting the distribution.
γ determines the type of distribution: Weibull, Fréchet, Gumbel, ...

13



Random Restart
Implementation Issues
SchedulingExtreme Value Statistics

Tail theory

Work with data exceeding a high threshold.
Conditional distribution of exceedances over threshold τ

1− Fτ (y) = P(X − τ > y | X > τ) =
P(X > τ + y)

P(X > τ)

If the distribution of extremes tends to GEV distribution then there exist
a Pareto-type function such that for some γ > 0

1− FX (x) = x−
1
γ `F (x), x > 0,

with `F (x) a slowly varying function at infinity.

In practice, fit a function Cx−
1
γ to the exceedances:

Yj = Xi − τ , provided Xi > τ , j = 1, . . . ,Nτ .
γ determines the nature of the tail
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Heavy Tails

The values estimated for γ give indication on the tails:

γ > 1: long tails hyperbolic decay (the completion rate decreases with t)
and mean not finite
γ < 1: tails exhibit exponential decay

Graphical check using a log-log plot:

heavy tail distributions approximate linear decay,
exponentially decreasing tail has faster-than linear decay

Long tails explain the goodness of random restart. Determining the cutoff
time is however not trivial.
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Restart strategy: execute a sequence of runs of a randomized algorithm,
to solve a single problem instance, stopping the r -th run after a time
τ(r) if no solution is found, and restarting the algorithm with a different
random seed

defined by a function τ : N→ R+ producing the sequence of thresholds
τ r employed.

origins in the field of communication networks
(Fayolle et al., 1978) derive the optimal timeout for a simple “send and
wait” communication protocol, maximizing the transmission rate.

It can be proved that restarts is beneficial under two conditions: if the
survival function decreases less fast than an exponential, and if the RTD
is improper.
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Luby et al. [1993] prove that:

if F (t) is known:
the optimal restart strategy is uniform, i.e., τ(r) = τ .
Optimal cutoff time τ∗ can be evaluated minimizing the expected value
of the total run-time Tτ :

E{Tτ} =
τ −

∫ τ
0 F (t)dt
F (τ)

if F (t) is not known, suggested a universal, non-uniform restart strategy,
whose cutoff sequence is composed of powers of 2:
r = 1, 2, . . . , τ(r) := 2j−1 if r = 2j − 1; τ(r) := τ(r − 2j−1 + 1) if 2j−1 ≤ r < 2j − 1.
(when 2j−1 is used twice, 2j is the next.)
whose performance tU is bounded with high probability with respect to
the expected run-time E{Tτ∗} of the optimal uniform strategy, as
tU ≤ 192E{Tτ∗}(log E{Tτ∗}+ 5)
Eg. Sequence {1, 1, 2, 1, 1, 2, 4, 1, . . .},
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Detecting failure and entailment.

Implementing domains.

Finding dependent propagators.

State restoration.

Variables for propagators.

Multiple variable occurrences and unification.

Private state.
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Propagation Services
Events
Selecting the next propagator
Value operations

Variable Domains
Iterators
Domain operations
Subscriptions
Domain representation

Propagators
Life cycle.
Idempotent propagators
Multiple value removals
Amount of information available
Use of private state (auxiliary data structures, incrementality, domain
information, fixed parameters)
Multiple variable occurrences
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Search

Branching

State Restoration
copying

trailing – time-stamping, multiple-value trail

recomputation

Expressiveness

Predefined exploration strategies
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