DM826 – Spring 2012 Modeling and Solving Constrained Optimization Problems

Lecture 12 Global Variables

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Resume

- Modelling in IP and CP
- Global constraints
- Local consistency notions
- Filtering algorithms for global constraints Scheduling
- Search
- Set variables
- Symmetries

Global variables: complex variable types representing combinatorial structures in which problems find their most natural formulation

Eg: sets, multisets, strings, functions, graphs bin packing, set partitioning, mapping problems

We will see:

- Set variables
- Graph variables

Outline

1. Set Variables

2. Graph Variables

- A finite-domain integer variable takes values from a finite set of integers.
- A finite-domain set variable takes values from the power set of a finite set of integers.
 Eg.:
 domain of x is the set of subsets of {1,2,3}:

```
\{\{\},\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}
```

Finite-Set Variables

Recall the shift-assignment problem

We have a lower and an upper bound on the number of shifts that each worker is to staff (symmetric cardinality constraint)

- one variable for each worker that takes as value the set of shifts covererd by the worker. → exponential number of values
- set variables with domain D(x) = [lb(x), ub(x)]
 D(x) consists of only two sets:
 - *lb*(*x*) mandatory elements
 - $ub(x) \setminus lb(x)$ of possible elements

The value assigned to x should be a set s(x) such that $lb \subseteq s(x) \subseteq ub(x)$

In practice good to keep dual views with channelling

Finite-Set Variables

Example:

domain of x is the set of subsets of $\{1, 2, 3\}$:

```
\{\{\},\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}
```

can be represented in space-efficient way by:

 $[\{\}..\{1,2,3\}]$

The representation is however an approximation!

Example:

```
domain of x is the set of subsets of \{1, 2, 3\}:
```

 $\{\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\}\}$

cannot be captured exactly by an interval. The closest interval would be still:

 $[{}..{1,2,3}]$

 \rightsquigarrow we store additionally cardinality bounds: #[i..j]

Set Variables

Definition

set variable is a variable with domain D(x) = [lb(x), ub(x)]D(x) consists of only two sets:

- *lb*(*x*) mandatory elements (intersection of all subsets)
- $ub(x) \setminus lb(x)$ of possible elements (union of all subsets)

The value assigned to x must be a set s(x) such that $lb \subseteq s(x) \subseteq ub(x)$

We are not interested in domain consistency but in bound consistency:

Enforcing bound consistency

A bound consistency for a constraint C defined on a set variable \times requires that we:

- Remove a value v from ub(x) if there is no solution to C in which $v \in s(x)$.
- Include a value $v \in ub(x)$ in lb(x) if in all solutions to C, $v \in s(x)$.

Social Golfers Problem

Find a schedule for a golf tournament:

- $g \cdot s$ golfers
- who want to play a tournament in g groups of s golfers each over w weeks
- such that no two golfers play against each other more than once during the tournament.

A solution for the instance w = 4, g = 3, s = 3(players are numbered from 0 to 8)

	Group 0		Group 1			Group 2			
Week 0	0	1	2	3	4	5	6	7	8
Week 1	0	3	6	1	4	7	2	5	8
Week 2	0	4	8	1	5	6	2	3	7
Week 3	0	5	7	1	3	8	2	4	6

Model

See script

Space.setvar(int glbMin, int glbMax, int lubMin, int lubMax, int cardMin= MIN, int cardMax=MAX)

A = m.setvar(0, 1, 0, 5, 3, 3)

m.glbValues(A): [0, 1] # lists of ints representing the greatest lower set bound
m.glbSize(A): 2 # num. of elements in the greatest lower bound
m.glbMin(A): 0 # minimum element of greatest lower bound
m.glbMax(A): 1 # maximum of greatest lower bound
m.glbRanges(A): [(0, 1)] # lists of pairs of ints representing the gl set bound

m.lubValues(A): [0, 1, 2, 3, 4, 5]
m.lubSize(A): 6 # num. of elements in the least upper bound
m.lubMin(A): 0 # minimum element of least upper bound
m.lubMax(A): 5 # maximum element of least upper bound
m.lubRanges(A): [(0, 5)]

```
m.unknownValues(A): [2, 3, 4, 5]
m.unknownSize(A): 4 # num. of unknown elements (elements in lub but not in glb)
m.unknownRanges(A): [(2, 5)]
```

m.cardMin(A): 3 # cardinality minimum
m.cardMax(A): 3 # cardinality maximum

A = m.setvar(intset(), 0, 5, 0, 4)

m.glbValues(A): [] # lists of ints representing the greatest lower set bound
m.glbSize(A): 0 # num. of elements in the greatest lower bound
m.glbMin(A): 1073741823 # minimum element of greatest lower bound
m.glbMax(A): -1073741823 # maximum of greatest lower bound
m.glbRanges(A): [] # lists of pairs of ints representing the corresponding set bounds

```
m.lubValues(A): [0, 1, 2, 3, 4, 5]
m.lubSize(A): 6 # num. of elements in the least upper bound
m.lubMin(A): 0 # minimum element of least upper bound
m.lubMax(A): 5 # maximum element of least upper bound
m.lubRanges(A): [(0, 5)]
```

m.unknownValues(A): [0, 1, 2, 3, 4, 5]
m.unknownSize)(A): 6 # num. of unknown elements (elements in lub but not in glb)
m.unknownRanges(A): [(0, 5)]

m.cardMin(A): 0 # cardinality minimum
m.cardMax(A): 4 # cardinality maximum

A = m.setvar(1, 3, intset([(1,4),(8,12)]), 2, 4)

m.glbValues(A): [1, 2, 3] # lists of ints representing the greatest lower set bound
m.glbSize(A): 3 # num. of elements in the greatest lower bound
m.glbMin(A): 1 # minimum element of greatest lower bound
m.glbMax(A): 3 # maximum of greatest lower bound
m.glbRanges(A): [(1, 3)] # lists of pairs of ints representing the corresponding set bounds

m.lubValues(A): [1, 2, 3, 4, 8, 9, 10, 11, 12]
m.lubSize(A): 9 # num. of elements in the least upper bound
m.lubMin(A): 1 # minimum element of least upper bound
m.lubMax(A): 12 # maximum element of least upper bound
m.lubRanges(A): [(1, 4), (8, 12)]

```
m.unknownValues(A): [4, 8, 9, 10, 11, 12]
m.unknownSize)(A): 6 # num. of unknown elements (elements in lub but not in glb)
m.unknownRanges(A): [(4, 4), (8, 12)]
```

m.cardMin(A): 3 # cardinality minimum
m.cardMax(A): 4 # cardinality maximum

Array of set variables:

```
Space.setvars(int N, ...)
groups = m.setvars(g*w, intset(), 0, g*s-1, s, s)
```

size $g \cdot w,$ where each group can contain the players $0...g \cdot s - 1$ and has cardinality s

```
w = 4;
g = 3;
s = 3;
golfers = g * s;
Golfer = range(golfers)
m=space()
groups = m.setvars(g*w, intset(), 0, g*s-1, s, s)
```

Constraints on FS variables

Space.dom(x, SRT_SUB, 1, 10); Space.dom(x, SRT_SUP, 1, 3); Space.dom(y, SRT_DISJ, IntSet(4, 6));

Space.cardinality(x, 3, 5);

Constraints on FS variables Relation constraints

Space.rel(x, SRT_SUB, y)

Space.rel(x, IRT_GR, y)

Constraints on FS variables Set operations

Space.rel(x, SOT_UNION, y, SRT_EQ, z)

Space.rel(SOT_UNION, x, y)

Constraints on FS variables

Space.element(x, y, z)

for an array of set variables or constants x, an integer variable y, and a set variable z.

It constrains z to be the element of array x at index y (where the index starts at 0).

Constraints on FS variables Set Global Cardinality

bounds the minimum and maximum number of occurrences of an element in an array of set variables:

$\forall v \in U : I_v \leq |\mathcal{S}_v| \leq u_v$

where S_v is the set of set variables that contain the element v, i.e., $S_v = \{s \in S : v \in s\}$

(not present in gecode)

Constraints on FS variables Set Global Cardinality

Bessiere et al. [2004]

	orall i < j					
$\forall k \dots$	$ X_i \cap X_j = 0$	$ X_i \cap X_j \le k$	$ X_i \cap X_j \ge k$	$ X_i \cap X_j = k$		
	Disjoint	Intersect<	Intersect>	Intersect_		
-	polynomial	polynomial	polynomial	NP-hard		
	decomposable	decomposable	decomposable	$not\ decomposable$		
	NEDisjoint	NEIntersect<	NEIntersect>	FCIntersect_		
$ X_k > 0$	polynomial	polynomial	polynomial	NP-hard		
	$not\ decomposable$	decomposable	decomposable	$not\ decomposable$		
	FCDisjoint	FCIntersect<	FCIntersect>	NEIntersect_		
$ X_{k} = m_{k}$	poly on sets, NP-hard on multisets	NP-hard	NP-hard	NP-hard		
	$not\ decomposable$	$not \ decomposable$	$not \ decomposable$	$not \ decomposable$		

Table 1. Intersection × Cardinality.

 Table 2. Partition + Intersection × Cardinality.

	$\bigcup_i X_i = X \land \forall i < j \ldots$					
$\forall k \dots$	$ X_i \cap X_j = 0$	$ X_i \cap X_j \le k$	$ X_i \cap X_j \ge k$	$ X_i \cap X_j = k$		
-	Partition: polynomial	?	?	?		
	decomposable					
$ X_k > 0$	NEPartition: polynomial	?	?	?		
	$not\ decomposable$					
	FCPartition					
$ X_k = m_k$	polynomial on sets, NP-hard on multisets	?	?	?		
	$not\ decomposable$					

Constraints on FS variables

Constraints connecting set and integer variables

the integer variable y is equal to the cardinality of the set variable x.

Space.cardinality(x, y);

Minimal and maximal elements of a set:

Space.min(x, y);

Weighted sets: assigns a weight to each possible element of a set variable x, and then constrains an integer variable y to be the sum of the weights of the elements of x

e = [6, 1, 3, 4, 5, 7, 9] w = [6, -1, 4, 1, 1, 3, 3] Space.weights(e, w, x, y)

enforces that x is a subset of $\{1, 3, 4, 5, 7, 9\}$ (the set of elements), and that y is the sum of the weights of the elements in x, where the weight of the element 1 would be -1, the weight of 3 would be 4 and so on. Eg. Assigning x to the set $\{3, 7, 9\}$ would therefore result in y be set to 4 + 3 + 3 = 10

X an array of integer variables, SA an array of set variables

Space.channel(X, SA)

$$X_i = j \iff i \in SA_j \quad 0 \le i, j < |X|$$

$$SA_i = s \iff \forall j \in s : X_j = i$$

SA = [{1,2},{3}] X = [1,1,2]

set variable S and an array of Boolean variables X

Space.channel(X, S)

 $X_i = 1 \iff i \in S \quad 0 \le i < |X|$

 $S = \{1, 2\}$ X = [1, 1, 0]

An array of integer variables x can be channeled to a set variable S using

Space.rel(SOT_UNION, x, S)

constrains *S* to be the set $\{x_0, \ldots, x_{|x|-1}\}$

Space.channelSorted(x, y);

constrains y to be the set $\{x_0, \ldots, x_{|x|-1}\}$, and the integer variables in x are sorted in increasing order $(x_i < x_{i+1} \text{ for } 0 \le i < |x|)$

 SA_1 and SA_2 two arrays of set variables

Space.channel(SA1, SA2)

$$SA_1[i] = s \iff \forall j \in s : i \in SA_2[j]$$

$$SA_1[i] = \{j || SA_2[j] \text{ contains} i\}$$

$$SA_2[j] = \{i || SA_1[i] \text{ contains} j\}$$

Example:

SA1 = [{1,2},{3},{1,2}] SA2 = [{1,3},{1,3},{2}]

Constraints on FS variables

set variable x:

Space.convex(x)

The convex hull of a set s is the smallest convex set containing s

Space.convex(x, y)

enforces that the set variable y is the convex hull of the set variable x.

Constraints on FS variables Sequence constraints

enforce an order among an array of set variables x

Space.sequence(x)

sets x being pairwise disjoint, and furthermore $\max(x_i) < \min(x_{i+1})$ for all $0 \le i < |x| - 1$

Space.sequence(x, y)

additionally constrains the set variable y to be the union of the x.

Constraints on FS variables

Value precedence constraints

enforce that a value precedes another value in an array of set variables. x is an array of set variables and both s and t are integers,

Space.precede(x, s, t)

if there exists j ($0 \le j < |x|$) such that $s \in x_j$ and $t \in x_j$, then there must exist i with i < j such that $s \in x_i$ and $t \in x_i$

See script

Outline

1. Set Variables

2. Graph Variables

Graph Variables

Definition

A graph variable is simply two set variables V and E, with an inherent constraint $E \subseteq V \times V$.

Hence, the domain D(G) = [lb(G), ub(G)] of a graph variable G consists of:

- mandatory vertices and edges lb(G) (the lower bound graph) and
- possible vertices and edges $ub(G) \setminus lb(G)$ (the upper bound graph).

The value assigned to the variable G must be a subgraph of ub(G) and a super graph of the lb(G).

Bound consistency on Graph Variables

Graph variables are convinient for possiblity of efficient filtering algorithms

Example:

${\tt Subgraph}({\sf G},{\sf S})$

specifies that S is a subgraph of G. Computing bound consistency for the subgraph constraint means the following:

- 1. If lb(S) is not a subgraph of ub(G), the constraint has no solution (consistency check).
- 2. For each $e \in ub(G) \cap lb(S)$, include e in lb(G).
- 3. For each $e \in ub(S) \setminus ub(G)$, remove *e* from ub(S).

Constraint on Graph Variables

- Tree constraint: enforces the partitioning of a digraph into a set of vertex-disjoint anti-arborescences. (see, [Beldiceanu2005])
- Weghted Spanning Tree constraint: given a weighted undirected graph G = (V, E) and a weight K, the constraint enforces that T is a spanning tree of cost at most K (see, [Regin2008,2010] and its application to the TSP [Rousseau2010]).
- Shorter Path constraint: given a weighted directed graph G = (N, A) and a weight K, the constraint specifies that P is a subset of G, corresponding to a path of cost at most K. (see, [Sellmann2003, Gellermann2005])
- (Weighted) Clique Constraint, (see, [Regin2003]).

References

- Bessiere C., Hebrard E., Hnich B., and Walsh T. (2004). Disjoint, partition and intersection constraints for set and multiset variables. In *Principles and Practice* of *Constraint Programming – CP 2004*, edited by M. Wallace, vol. 3258 of Lecture Notes in Computer Science, pp. 138–152. Springer Berlin / Heidelberg.
- Gervet C. (2006). **Constraints over structured domains**. In *Handbook of Constraint Programming*, edited by F. Rossi, P. van Beek, and T. Walsh, chap. 17, pp. 329–376. Elsevier.
- van Hoeve W. and Katriel I. (2006). **Global constraints**. In *Handbook of Constraint Programming*, chap. 6. Elsevier.