DM826 - Spring 2012
Modeling and Solving Constrained Optimization Problems

Lecture 12
 Global Variables

Marco Chiarandini
Department of Mathematics \& Computer Science University of Southern Denmark

Resume

- Modelling in IP and CP
- Global constraints
- Local consistency notions
- Filtering algorithms for global constraints Scheduling
- Search
- Set variables
- Symmetries

Global Variables

Global variables: complex variable types representing combinatorial structures in which problems find their most natural formulation

Eg:
sets, multisets, strings, functions, graphs
bin packing, set partitioning, mapping problems
We will see:

- Set variables
- Graph variables

Outline

1. Set Variables

2. Graph Variables

Finite-Set Variables

- A finite-domain integer variable takes values from a finite set of integers.
- A finite-domain set variable takes values from the power set of a finite set of integers.
Eg.: domain of x is the set of subsets of $\{1,2,3\}$:

$$
\{\},\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}
$$

Finite-Set Variables

Recall the shift-assignment problem
We have a lower and an upper bound on the number of shifts that each worker is to staff (symmetric cardinality constraint)

- one variable for each worker that takes as value the set of shifts covererd by the worker. \rightsquigarrow exponential number of values
- set variables with domain $D(x)=[/ b(x), u b(x)]$
$D(x)$ consists of only two sets:
- $l b(x)$ mandatory elements
- $u b(x) \backslash l b(x)$ of possible elements

The value assigned to x should be a set $s(x)$ such that $l b \subseteq s(x) \subseteq u b(x)$

In practice good to keep dual views with channelling

Finite-Set Variables

Example:
domain of x is the set of subsets of $\{1,2,3\}$:

$$
\{\},\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}
$$

can be represented in space-efficient way by:

$$
[\} . .\{1,2,3\}]
$$

The representation is however an approximation!
Example:
domain of x is the set of subsets of $\{1,2,3\}$:

$$
\{\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\}\}
$$

cannot be captured exactly by an interval. The closest interval would be still:

$$
[\} . .\{1,2,3\}]
$$

\rightsquigarrow we store additionally cardinality bounds: \#[i..j]

Set Variables

Definition
set variable is a variable with domain $D(x)=[l b(x), u b(x)]$
$D(x)$ consists of only two sets:

- $l b(x)$ mandatory elements (intersection of all subsets)
- $u b(x) \backslash l b(x)$ of possible elements (union of all subsets)

The value assigned to x must be a set $s(x)$ such that $l b \subseteq s(x) \subseteq u b(x)$
We are not interested in domain consistency but in bound consistency:
Enforcing bound consistency
A bound consistency for a constraint C defined on a set variable \times requires that we:

- Remove a value v from $u b(x)$ if there is no solution to C in which $v \in s(x)$.
- Include a value $v \in u b(x)$ in $l b(x)$ if in all solutions to $C, v \in s(x)$.

Social Golfers Problem

Find a schedule for a golf tournament:

- $g \cdot s$ golfers
- who want to play a tournament in g groups of s golfers each over w weeks
- such that no two golfers play against each other more than once during the tournament.

A solution for the instance $w=4, g=3, s=3$ (players are numbered from 0 to 8)

	Group 0				Group 1				Group 2			
Week 0	0	1	2	3	4	5	6	7	8			
Week 1	0	3	6	1	4	7	2	5	8			
Week 2	0	4	8	1	5	6	2	3	7			
Week 3	0	5	7	1	3	8	2	4	6			

See script

In Gecode

Space.setvar(int glbMin, int glbMax, int lubMin, int lubMax, int cardMin= MIN, int cardMax=MAX)
$A=m \cdot \operatorname{setvar}(0,1,0,5,3,3)$
m.glbValues(A): [0, 1] \# lists of ints representing the greatest lower set bound m.glbSize(A): 2 \# num. of elements in the greatest lower bound
m.glbMin(A): 0 \# minimum element of greatest lower bound
m.glbMax (A): 1 \# maximum of greatest lower bound
m.glbRanges $(A):[(0,1)]$ \# lists of pairs of ints representing the gl set bound
m.lubValues (A): [0, 1, 2, 3, 4, 5]
m.lubSize(A): 6 \# num. of elements in the least upper bound m.lubMin(A): 0 \# minimum element of least upper bound m.lubMax (A): 5 \# maximum element of least upper bound m.lubRanges $(A):[(0,5)]$
m.unknownValues (A): [2, 3, 4, 5]
m. unknownSize(A): 4 \# num. of unknown elements (elements in lub but not in glb) m.unknownRanges (A) : $[(2,5)]$
m.cardMin(A): 3 \# cardinality minimum
m.cardMax(A): 3 \# cardinality maximum

In Gecode

Space.setvar(IntSet glb, int lubMin, int lubMax, int cardMin=MIN, int cardMax=MAX)
$\mathrm{A}=\mathrm{m} . \operatorname{setvar}(\operatorname{intset}(), 0,5,0,4)$

In Gecode

```
Space.setvar(int glbMin, int glbMax, IntSet lub, int cardMin=MIN, int
    cardMax=MAX)
```

```
\(\mathrm{A}=\mathrm{m} . \operatorname{setvar}(1,3, \operatorname{intset}([(1,4),(8,12)]), 2,4)\)
```

m.glbValues(A): [1, 2, 3] \# lists of ints representing the greatest lower set bound
m.glbSize(A): 3 \# num. of elements in the greatest lower bound
m.glbMin(A): 1 \# minimum element of greatest lower bound
m.glbMax (A): 3 \# maximum of greatest lower bound
m.glbRanges $(A):[(1,3)]$ \# lists of pairs of ints representing the corresponding set
bounds
m.lubValues (A): [1, 2, 3, 4, 8, 9, 10, 11, 12]
m.lubSize(A): 9 \# num. of elements in the least upper bound
m.lubMin(A): 1 \# minimum element of least upper bound
m.lubMax (A): 12 \# maximum element of least upper bound
m.lubRanges $(\mathrm{A}):[(1,4),(8,12)]$
m.unknownValues (A): [4, 8, 9, 10, 11, 12]
m. unknownSize) (A): 6 \# num. of unknown elements (elements in lub but not in glb)
m.unknownRanges (A) : $[(4,4),(8,12)]$
m.cardMin(A): 3 \# cardinality minimum
m.cardMax(A): 4 \# cardinality maximum

In Gecode

Array of set variables:

```
Space.setvars(int N, ...)
groups = m.setvars(g*w, intset(), 0, g*s-1, s, s)
```

size $g \cdot w$, where each group can contain the players $0 \ldots g \cdot s-1$ and has cardinality s

```
w = 4;
g = 3;
s = 3;
golfers = g * s;
Golfer = range(golfers)
m=space()
groups = m.setvars(g*w, intset(), 0, g*s-1, s, s)
```


Constraints on FS variables

Space.dom(x, SRT_SUB, 1, 10);
Space.dom(x, SRT_SUP, 1, 3);
Space.dom(y, SRT_DISJ, IntSet (4, 6));

Space.cardinality (x, 3, 5);

Constraints on FS variables

Space.rel (x, IRT_GR, y)

Constraints on FS variables

Space.rel(x, SOT_UNION, y, SRT_EQ, z)

Space.rel(SOT_UNION, x, y)

Constraints on FS variables

Element

Space.element (x, y, z)
for an array of set variables or constants x,
an integer variable y,
and a set variable z.
It constrains z to be the element of array x at index y (where the index starts at 0).

Constraints on FS variables

bounds the minimum and maximum number of occurrences of an element in an array of set variables:

$$
\forall v \in U: I_{v} \leq\left|\mathcal{S}_{v}\right| \leq u_{v}
$$

where \mathcal{S}_{v} is the set of set variables that contain the element v, i.e., $\mathcal{S}_{v}=\{s \in S: v \in s\}$
(not present in gecode)

Constraints on FS variables
 Set Global Cardinality

Bessiere et al. [2004]
Table 1. Intersection \times Cardinality.

	$\forall i<j \ldots$			
$\forall k \ldots$	$X_{i} \cap X_{j} \mid=0$	$\left\|X_{i} \cap X_{j}\right\| \leq k$	$\left\|X_{i} \cap X_{j}\right\| \geq k$	$X_{i} \cap X_{j} \mid=k$
-	Disjoint polynomial decomposable	Intersect \leq polynomial decomposable	Intersect \geq polynomial decomposable	Intersect $=$ NP-hard not decomposable
$\left\|X_{k}\right\|>0$	NEDisjoint polynomial not decomposable	NEIntersect \leq polynomial decomposable	NEIntersect \geq polynomial decomposable	
$\left\|X_{k}\right\|=m_{k}$	FCDisjoint poly on sets, NP-hard on multisets not decomposable	FCIntersect \leq NP-hard not decomposable	$\begin{gathered} \text { FCIntersect } \geq \\ \text { NP-hard } \\ \text { not decomposable } \end{gathered}$	NEIntersect $=$ NP-hard not decomposable

Table 2. Partition + Intersection \times Cardinality.

	$\bigcup_{i} X_{i}=X \wedge \forall i<j \ldots$			
$\forall k \ldots$	$X_{i} \cap X_{j} \mid=0$	$\left\|X_{i} \cap X_{j}\right\| \leq k \mid$	$\left\|X_{i} \cap X_{j}\right\| \geq k$	$\left\|X_{i} \cap X_{j}\right\|=k$
${ }^{-}$	Partition: polynomial decomposable	?	?	?
$\left\|X_{k}\right\|>0$	NEPartition: polynomial not decomposable	?	?	?
$\left\|X_{k}\right\|=m_{k}$	FCPartition polynomial on sets, NP-hard on multisets not decomposable	?	?	?

Constraints on FS variables

Constraints connecting set and integer variables

the integer variable y is equal to the cardinality of the set variable x .
Space.cardinality (x, y);
Minimal and maximal elements of a set:

```
Space.min(x, y);
```

Weighted sets: assigns a weight to each possible element of a set variable x, and then constrains an integer variable y to be the sum of the weights of the elements of x

```
e = [6, 1, 3, 4, 5, 7, 9]
w = [6, -1, 4, 1, 1, 3, 3]
Space.weights(e, w, x, y)
```

enforces that x is a subset of $\{1,3,4,5,7,9\}$ (the set of elements), and that y is the sum of the weights of the elements in x, where the weight of the element 1 would be -1 , the weight of 3 would be 4 and so on. Eg. Assigning x to the set $\{3,7,9\}$ would therefore result in y be set to $4+3+3=10$

Constraints on FS variables

X an array of integer variables, $S A$ an array of set variables

```
Space.channel (X, SA)
```

$$
\begin{gathered}
X_{i}=j \Longleftrightarrow i \in S A_{j} \quad 0 \leq i, j<|X| \\
S A_{i}=s \Longleftrightarrow \forall j \in s: X_{j}=i
\end{gathered}
$$

$$
\begin{aligned}
& S A=[\{1,2\},\{3\}] \\
& X=[1,1,2]
\end{aligned}
$$

Constraints on FS variables

set variable S and an array of Boolean variables X
Space. channel (X, S)

$$
X_{i}=1 \Longleftrightarrow i \in S \quad 0 \leq i<|X|
$$

$$
\begin{aligned}
& S=\{1,2\} \\
& X=[1,1,0]
\end{aligned}
$$

Constraints on FS variables

An array of integer variables x can be channeled to a set variable S using Space.rel(SOT_UNION, x, S)
constrains S to be the set $\left\{x_{0}, \ldots, x_{|x|-1}\right\}$
Space.channelSorted (x, y);
constrains y to be the set $\left\{x_{0}, \ldots, x_{|x|-1}\right\}$, and the integer variables in x are sorted in increasing order ($x_{i}<x_{i+1}$ for $\left.0 \leq i<|x|\right)$

Constraints on FS variables

$S A_{1}$ and $S A_{2}$ two arrays of set variables
Space.channel (SA1, SA2)

$$
S A_{1}[i]=s \Longleftrightarrow \forall j \in s: i \in S A_{2}[j]
$$

$$
\begin{aligned}
& S A_{1}[i]=\left\{j \| S A_{2}[j] \text { contains } i\right\} \\
& S A_{2}[j]=\left\{i \| S A_{1}[i] \text { contains } j\right\}
\end{aligned}
$$

Example:

$$
\begin{aligned}
& \text { SA1 }=[\{1,2\},\{3\},\{1,2\}] \\
& \text { SA2 }=[\{1,3\},\{1,3\},\{2\}]
\end{aligned}
$$

Constraints on FS variables

set variable x :
Space. convex (x)

The convex hull of a set s is the smallest convex set containing s
Space.convex (x, y)
enforces that the set variable y is the convex hull of the set variable x.
enforce an order among an array of set variables x
Space. sequence (x)
sets x being pairwise disjoint, and furthermore $\max \left(x_{i}\right)<\min \left(x_{i+1}\right)$ for all $0 \leq i<|x|-1$

Space. sequence (x, y)
additionally constrains the set variable y to be the union of the x.

Constraints on FS variables

Value precedence constraints

enforce that a value precedes another value in an array of set variables. x is an array of set variables and both s and t are integers,

Space.precede(x, s, t)
if there exists $j(0 \leq j<|x|)$ such that $s \in x_{j}$ and $t \in x_{j}$, then there must exist i with $i<j$ such that $s \in x_{i}$ and $t \in x_{i}$

See script

Outline

1. Set Variables

2. Graph Variables

Graph Variables

Definition
A graph variable is simply two set variables V and E, with an inherent constraint $E \subseteq V \times V$.
Hence, the domain $D(G)=[/ b(G), u b(G)]$ of a graph variable G consists of:

- mandatory vertices and edges $l b(G)$ (the lower bound graph) and
- possible vertices and edges $u b(G) \backslash l b(G)$ (the upper bound graph).

The value assigned to the variable G must be a subgraph of $u b(G)$ and a super graph of the $l b(G)$.

Bound consistency on Graph Variables

Graph variables are convinient for possiblity of efficient filtering algorithms
Example:
Subgraph (G,S)
specifies that S is a subgraph of G. Computing bound consistency for the subgraph constraint means the following:

1. If $l b(S)$ is not a subgraph of $u b(G)$, the constraint has no solution (consistency check).
2. For each $e \in u b(G) \cap l b(S)$, include e in $l b(G)$.
3. For each $e \in u b(S) \backslash u b(G)$, remove e from $u b(S)$.

Constraint on Graph Variables

- Tree constraint: enforces the partitioning of a digraph into a set of vertex-disjoint anti-arborescences. (see, [Beldiceanu2005])
- Weghted Spanning Tree constraint: given a weighted undirected graph $G=(V, E)$ and a weight K, the constraint enforces that T is a spanning tree of cost at most K (see, [Regin2008,2010] and its application to the TSP [Rousseau2010]).
- Shorter Path constraint: given a weighted directed graph $G=(N, A)$ and a weight K, the constraint specifies that P is a subset of G, corresponding to a path of cost at most K. (see, [Sellmann2003, Gellermann2005])
- (Weighted) Clique Constraint, (see, [Regin2003]).

References

Bessiere C., Hebrard E., Hnich B., and Walsh T. (2004). Disjoint, partition and intersection constraints for set and multiset variables. In Principles and Practice of Constraint Programming - CP 2004, edited by M. Wallace, vol. 3258 of Lecture Notes in Computer Science, pp. 138-152. Springer Berlin / Heidelberg. Gervet C. (2006). Constraints over structured domains. In Handbook of Constraint Programming, edited by F. Rossi, P. van Beek, and T. Walsh, chap. 17, pp. 329-376. Elsevier.
van Hoeve W. and Katriel I. (2006). Global constraints. In Handbook of Constraint Programming, chap. 6. Elsevier.

