
CPAIOR tutorial
May 2009 Slide 1

Tutorial: Operations Research in
Constraint Programming

John Hooker
Carnegie Mellon University

May 2009
Revised June 2009

CPAIOR tutorial
May 2009 Slide 313

Motivation

• Benders decomposition allows us to apply CP and OR to
different parts of the problem.

• It searches over values of certain variables that, when fixed,
result in a much simpler subproblem.

• The search learns from past experience by accumulating
Benders cuts (a form of nogood).

• The technique can be generalized far beyond the original OR
conception.

• Generalized Benders methods have resulted in the greatest
speedups achieved by combining CP and OR.

CPAIOR tutorial
May 2009 Slide 314

Benders Decomposition in the Abstract

Benders decomposition
can be applied to
problems of the form

min (,)
(,)

,x y

f x y
S x y
x D y D∈ ∈

When x is fixed to some
value, the resulting
subproblem is much
easier:

min (,)
(,)

y

f x y
S x y
y D∈

…perhaps
because it
decouples into
smaller problems.

For example, suppose x assigns jobs to machines, and y schedules
the jobs on the machines.

When x is fixed, the problem decouples into a separate scheduling
subproblem for each machine.

CPAIOR tutorial
May 2009 Slide 315

Benders Decomposition
We will search over assignments to x. This is the master problem.

In iteration k we assume x = xk
and solve the subproblem

min (,)
(,)

k

k

y

f x y
S x y
y D∈

and get optimal
value vk

We generate a Benders cut (a type of nogood) 1()kv B x+≥

The Benders cut says that if we set x = xk again, the resulting cost v
will be at least vk. To do better than vk, we must try something else.

It also says that any other x will result in a cost of at least Bk+1(x),
perhaps due to some similarity between x and xk.

that satisfies Bk+1(xk) = vk. Cost in the original problem

CPAIOR tutorial
May 2009 Slide 316

Benders Decomposition
We will search over assignments to x. This is the master problem.

In iteration k we assume x = xk
and solve the subproblem

min (,)
(,)

k

k

y

f x y
S x y
y D∈

and get optimal
value vk

We generate a Benders cut (a type of nogood) 1()kv B x+≥

that satisfies Bk+1(x) = vk. Cost in the original problem

We add the Benders cut to the master problem, which becomes
min

(), 1, , 1i

x

v
v B x i k
x D
≥ = +

∈

 Benders cuts
generated so far

CPAIOR tutorial
May 2009 Slide 317

Benders Decomposition

We now solve the
master problem

min
(), 1, , 1i

x

v
v B x i k
x D
≥ = +

∈

 to get the next
trial value xk+1.

The master problem is a relaxation of the original problem, and its
optimal value is a lower bound on the optimal value of the original
problem.

The subproblem is a restriction, and its optimal value is an upper
bound.

The process continues until the bounds meet.

The Benders cuts partially define the projection of the feasible set
onto x. We hope not too many cuts are needed to find the optimum.

CPAIOR tutorial
May 2009 Slide 318

Classical Benders Decomposition

The classical method
applies to problems
of the form

min ()
()

, 0x

f x cy
g x Ay b
x D y

+

+ ≥

∈ ≥

and the subproblem
is an LP

()
min ()

()
0

k

k

f x cy
Ay b g x
y

λ

+

≥ −

≥

()max () ()

0

k kf x b g x
A c

λ

λ

λ

+ −

≤

≥

whose dual is

Let λk solve the dual.

By strong duality, Bk+1(x) = f(x) + λk(b − g(x)) is the tightest lower
bound on the optimal value v of the original problem when x = xk.

Even for other values of x, λλλλk remains feasible in the dual. So by
weak duality, Bk+1(x) remains a lower bound on v.

CPAIOR tutorial
May 2009 Slide 319

Classical Benders

min
(), 1, , 1i

x

v
v B x i k
x D
≥ = +

∈



So the master problem becomes

min
() (()), 1, , 1i

x

v
v f x b g x i k
x D

λ≥ + − = +

∈



In most applications the master problem is

• an MILP

• a nonlinear programming problem (NLP), or

• a mixed integer/nonlinear programming problem (MINLP).

CPAIOR tutorial
May 2009 Slide 320

Example: Machine Scheduling

• Assign 5 jobs to 2 machines (A and B), and schedule the
machines assigned to each machine within time windows.

• The objective is to minimize makespan.

• Assign the jobs in the master
problem, to be solved by MILP.

• Schedule the jobs in the
subproblem, to be solved by CP.

Time lapse between
start of first job and
end of last job.

CPAIOR tutorial
May 2009 Slide 321

Machine Scheduling

Job Data Once jobs are assigned, we can
minimize overall makespan by
minimizing makespan on each
machine individually.

So the subproblem decouples.

Machine A
Machine B

CPAIOR tutorial
May 2009 Slide 322

Machine Scheduling

Job Data Once jobs are assigned, we can
minimize overall makespan by
minimizing makespan on each
machine individually.

So the subproblem decouples.

Minimum makespan
schedule for jobs 1, 2, 3, 5

on machine A

CPAIOR tutorial
May 2009 Slide 323

Machine Scheduling

()

min
, all

, all

disjunctive (),() , all

j

j

j x j

j j j x j

j j ij j

M
M s p j

r s d p j

s x i p x i i

≥ +

≤ ≤ −

= =

Start time of job j

Time windows
Jobs cannot overlap

The problem is

CPAIOR tutorial
May 2009 Slide 324

Machine Scheduling

()

min
, all

, all

disjunctive (),() , all

j

j

j x j

j j j x j

j j ij j

M
M s p j

r s d p j

s x i p x i i

≥ +

≤ ≤ −

= =

Start time of job j

Time windows
Jobs cannot overlap

The problem is

For a fixed assignment the subproblem on each machine i is

()

min
, all with

, all with

disjunctive (),()

j

j

j x j j

j j j x j j

j j ij j

M
M s p j x i
r s d p j x i

s x i p x i

≥ + =

≤ ≤ − =

= =

x

CPAIOR tutorial
May 2009 Slide 325

Benders cuts

Suppose we assign jobs 1,2,3,5 to machine A in iteration k.

We can prove that 10 is the optimal makespan by proving that the
schedule is infeasible with makespan 9.

Edge finding derives infeasibility by reasoning only with jobs 2,3,5.
So these jobs alone create a minimum makespan of 10.

So we have a Benders cut
2 3 4

1
10 if

()
0 otherwisek

x x x A
v B x+

= = =
≥ = 



CPAIOR tutorial
May 2009 Slide 326

Benders cuts

We want the master problem to be an MILP, which is good for
assignment problems.

So we write the Benders cut
2 3 4

1
10 if

()
0 otherwisek

x x x A
v B x+

= = =
≥ = 



Using 0-1 variables: ()2 3 510 2
0

A A Av x x x
v
≥ + + −

≥ = 1 if job 5 is
assigned to
machine A

CPAIOR tutorial
May 2009 Slide 327

Master problem

The master problem is an MILP:

{ }

5

1

5

1

5 5

1 3

2 3 5

4

min

10, etc.

10, etc.

, 2 , etc., ,

v 10(2)
8

0,1

Aj Aj
j

Bj Bj
j

ij ij ij ij
j j

A A A

B

ij

v

p x

p x

v p x v p x i A B

x x x
v x
x

=

=

= =

≤

≤

≥ ≥ + =

≥ + + −

≥

∈





 

Constraints derived from time windows

Constraints derived from release times

Benders cut from machine A

Benders cut from machine B

CPAIOR tutorial
May 2009 Slide 328

Stronger Benders cuts

If all release times are the same, we can strengthen the Benders cuts.

We are now using the cut 1
ik

ik ij ik
j J

v M x J
∈

 
≥ − + 

 


Min makespan
on machine i
in iteration k

Set of jobs
assigned to
machine i in
iteration k

A stronger cut provides a useful bound even if only some of the jobs in
Jik are assigned to machine i: (1)

ik

ik ij ij
j J

v M x p
∈

≥ − −

These results can be generalized to cumulative scheduling.

CPAIOR tutorial
May 2009 Slide 329

