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Motivation

• Benders decomposition allows us to apply CP and OR to 
different parts of the problem.

• It searches over values of certain variables that, when fixed, 
result in a much simpler subproblem.

• The search learns from past experience by accumulating 
Benders cuts (a form of nogood).

• The technique can be generalized far beyond the original OR 
conception.

• Generalized Benders methods have resulted in the greatest 
speedups achieved by combining CP and OR.
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Benders Decomposition in the Abstract

Benders decomposition 
can be applied to 
problems of the form

min ( , )
( , )

,x y

f x y
S x y
x D y D∈ ∈

When x is fixed to some 
value, the resulting 
subproblem is much 
easier:

min ( , )
( , )

y

f x y
S x y
y D∈

…perhaps 
because it 
decouples into 
smaller problems.

For example, suppose x assigns jobs to machines, and y schedules 
the jobs on the machines.  

When x is fixed, the problem decouples into a separate scheduling 
subproblem for each machine.
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Benders Decomposition
We will search over assignments to x.  This is the master problem.

In iteration k we assume x = xk
and solve the subproblem

min ( , )
( , )

k

k

y

f x y
S x y
y D∈

and get optimal 
value vk

We generate a Benders cut (a type of nogood) 1( )kv B x+≥

The Benders cut says that if we set x = xk again, the resulting cost v
will be at least vk.  To do better than vk, we must try something else.

It also says that any other x will result in a cost of at least Bk+1(x), 
perhaps due to some similarity between x and xk.

that satisfies Bk+1(xk) = vk.   Cost in the original problem
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Benders Decomposition
We will search over assignments to x.  This is the master problem.

In iteration k we assume x = xk
and solve the subproblem

min ( , )
( , )

k

k

y

f x y
S x y
y D∈

and get optimal 
value vk

We generate a Benders cut (a type of nogood) 1( )kv B x+≥

that satisfies Bk+1(x) = vk.   Cost in the original problem

We add the Benders cut to the master problem, which becomes
min

( ),  1, , 1i

x

v
v B x i k
x D
≥ = +

∈

 Benders cuts 
generated so far
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Benders Decomposition

We now solve the 
master problem

min
( ),  1, , 1i

x

v
v B x i k
x D
≥ = +

∈

 to get the next 
trial value xk+1.

The master problem is a relaxation of the original problem, and its 
optimal value is a lower bound on the optimal value of the original 
problem.

The subproblem is a restriction, and its optimal value is an upper 
bound.

The process continues until the bounds meet.

The Benders cuts partially define the projection of the feasible set 
onto x.  We hope not too many cuts are needed to find the optimum.
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Classical Benders Decomposition

The classical method 
applies to problems 
of the form

min ( )
( )

, 0x

f x cy
g x Ay b
x D y

+

+ ≥

∈ ≥

and the subproblem
is an LP

( )
min ( )

( )
0

k

k

f x cy
Ay b g x
y

λ

+

≥ −

≥

( )max ( ) ( )

0

k kf x b g x
A c

λ

λ

λ

+ −

≤

≥

whose dual is

Let λk solve the dual.

By strong duality, Bk+1(x) = f(x) + λk(b − g(x)) is the tightest lower 
bound on the optimal value v of the original problem when x = xk.

Even for other values of x, λλλλk remains feasible in the dual.  So by 
weak duality,  Bk+1(x) remains a lower bound on v.
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Classical Benders

min
( ),  1, , 1i

x

v
v B x i k
x D
≥ = +

∈



So the master problem becomes

min
( ) ( ( )),  1, , 1i

x

v
v f x b g x i k
x D

λ≥ + − = +

∈



In most applications the master problem is

• an MILP

• a nonlinear programming problem (NLP), or 

• a mixed integer/nonlinear programming problem (MINLP).
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Example: Machine Scheduling

• Assign 5 jobs to 2 machines (A and B), and schedule the 
machines assigned to each machine within time windows.

• The objective is to minimize makespan.

• Assign the jobs in the master 
problem, to be solved by MILP.

• Schedule the jobs in the 
subproblem, to be solved by CP.

Time lapse between 
start of first job and 
end of last job.
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Machine Scheduling

Job Data Once jobs are assigned, we can 
minimize overall makespan by 
minimizing makespan on each 
machine individually.

So the subproblem decouples.

Machine A
Machine B
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Machine Scheduling

Job Data Once jobs are assigned, we can 
minimize overall makespan by 
minimizing makespan on each 
machine individually.

So the subproblem decouples.

Minimum makespan
schedule for jobs 1, 2, 3, 5 

on machine A
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Machine Scheduling

( )

min
, all 

,  all 

disjunctive ( ),( ) ,  all 

j

j

j x j

j j j x j

j j ij j

M
M s p j

r s d p j

s x i p x i i

≥ +

≤ ≤ −

= =

Start time of job j

Time windows
Jobs cannot overlap

The problem is
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Machine Scheduling

( )

min
, all 

,  all 

disjunctive ( ),( ) ,  all 

j

j

j x j

j j j x j

j j ij j

M
M s p j

r s d p j

s x i p x i i

≥ +

≤ ≤ −

= =

Start time of job j

Time windows
Jobs cannot overlap

The problem is

For a fixed assignment      the subproblem on each machine i is

( )

min
, all  with 

,  all  with 

disjunctive ( ),( )

j

j

j x j j

j j j x j j

j j ij j

M
M s p j x i
r s d p j x i

s x i p x i

≥ + =

≤ ≤ − =

= =

x
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Benders cuts

Suppose we assign jobs 1,2,3,5 to machine A in iteration k.  

We can prove that 10 is the optimal makespan by proving that the 
schedule is infeasible with makespan 9.

Edge finding derives infeasibility by reasoning only with jobs 2,3,5.  
So these jobs alone create a minimum makespan of 10.

So we have a Benders cut
2 3 4

1
10 if 

( )
0 otherwisek

x x x A
v B x+

= = =
≥ = 


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Benders cuts

We want the master problem to be an MILP, which is good for 
assignment problems.

So we write the Benders cut
2 3 4

1
10 if 

( )
0 otherwisek

x x x A
v B x+

= = =
≥ = 



Using 0-1 variables: ( )2 3 510 2
0

A A Av x x x
v
≥ + + −

≥ = 1 if job 5 is 
assigned to 
machine A
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Master problem

The master problem is an MILP:

{ }

5

1

5

1

5 5

1 3

2 3 5

4

min

10, etc.

10, etc.

,  2 , etc.,  ,

v 10( 2)
8

0,1

Aj Aj
j

Bj Bj
j

ij ij ij ij
j j

A A A

B

ij

v

p x

p x

v p x v p x i A B

x x x
v x
x

=

=

= =

≤

≤

≥ ≥ + =

≥ + + −

≥

∈





 

Constraints derived from time windows

Constraints derived from release times

Benders cut from machine A

Benders cut from machine B
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Stronger Benders cuts

If all release times are the same, we can strengthen the Benders cuts. 

We are now using the cut 1
ik

ik ij ik
j J

v M x J
∈

 
≥ − + 

 


Min makespan
on machine i
in iteration k

Set of jobs 
assigned to 
machine i in 
iteration k

A stronger cut provides a useful bound even if only some of the jobs in 
Jik are assigned to machine i: (1 )

ik

ik ij ij
j J

v M x p
∈

≥ − −

These results can be generalized to cumulative scheduling.
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