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Modelling
CP OverviewResume

First example: Send More Money
first experience on modelling in MILP and CP

SAT models

impose modelling rules (propositional calculus)

MILP models
impose modelling rules: linear inequalities and objectives
emphasis on tightness and compactness of LP, strength of bounds
(remove dominated constraints)

CP models
a large variety of algorithms communicating with each other: global
constraints
more expressiveness
emphasis on exploiting substructres, include redundant constraints
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Modelling
CP OverviewSecond example: Sudoku

How can you solve the following Sudoku?

4 3 8 2 5
6

1 9 4
9 4 7

6 8
1 2 3

8 2 5
5

3 4 9 7 1
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Modelling
CP OverviewSudoku: ILP model

Let yijt be equal to 1 if digit t appears in cell (i , j). Let N be the set
{1, . . . , 9}, and let Jkl be the set of cells (i , j) in the 3× 3 square in position
k, l . ∑

j∈N

yijt = 1, ∀i , t ∈ N,

∑
j∈N

yjit = 1, ∀i , t ∈ N,

∑
i,j∈Jkl

yijt = 1, ∀k, l = {1, 2, 3}, t ∈ N,

∑
t∈N

yijt = 1, ∀i , j ∈ N,

yijat = 1, ∀i , j ∈ given instance.
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Modelling
CP OverviewSudoku: CP model

Xij ∈ N, ∀i , j ∈ N,

Xij = at , ∀i , j ∈ given instance,
alldifferent([X1i , . . . ,X9i ]), ∀i ∈ N,

alldifferent([Xi1, . . . ,Xi9]), ∀i ∈ N,

alldifferent({Xij | ij ∈ Jkl}), ∀k, l ∈ {1, 2, 3}.
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Modelling
CP OverviewSudoku: CP model (revisited)

Xij ∈ N, ∀i , j ∈ N,

Xij = at , ∀i , j ∈ given instance,
alldifferent([X1i , . . . ,X9i ]), ∀i ∈ N,

alldifferent([Xi1, . . . ,Xi9]), ∀i ∈ N,

alldifferent({Xij | ij ∈ Jkl}), ∀k, l ∈ {1, 2, 3}.

Redundant Constraint:

∑
j∈N

Xij = 45, ∀i ∈ N,

∑
j∈N

Xji = 45, ∀i ∈ N,

∑
ij∈Skl

Xij = 45, k, l ∈ {1, 2, 3}.
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Modelling
CP OverviewConstraint Reasoning
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Modelling
CP OverviewGeneral Purpose Algorithms

Search algorithms

organize and explore the search tree

Search tree with branching factor at the top level nd and at the next
level (n − 1)d . The tree has n! · dn leaves even if only dn possible
complete assignments.

Insight: CSP is commutative in the order of application of any given set
of action (the order of the assignment does not influence final answer)

Hence we can consider search algs that generate successors by
considering possible assignments for only a single variable at each node
in the search tree.
The tree has dn leaves.

Backtracking search

depth first search that chooses one variable at a time and backtracks when a
variable has no legal values left to assign.

11



Modelling
CP OverviewBacktrack Search

12



Modelling
CP OverviewBacktrack Search

No need to copy solutions all the times but rather extensions and undo
extensions

Since CSP is standard then the alg is also standard and can use general
purpose algorithms for initial state, successor function and goal test.

Backtracking is uninformed and complete. Other search algorithms may
use information in form of heuristics
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CP OverviewGeneral Purpose Backtracking

Implementation refinements

1) [Search] Which variable should we assign next, and in what order should
its values be tried?

2) [Propagation] What are the implications of the current variable
assignments for the other unassigned variables?

3) [Search] When a path fails – that is, a state is reached in which a
variable has no legal values can the search avoid repeating this failure in
subsequent paths?
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CP OverviewSearch

1) Which variable should we assign next, and in what order should its values
be tried?

Select-Initial-Unassigned-Variable
degree heuristic (reduces the branching factor) also used as tied breaker

Select-Unassigned-Variable
Most constrained variable (DSATUR) = fail-first heuristic
= Minimum remaining values (MRV) heuristic (speeds up pruning)

Order-Domain-Values
least-constraining-value heuristic (leaves maximum flexibility for
subsequent variable assignments)

NB: If we search for all the solutions or a solution does not exists, then the
ordering does not matter.
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Branching (aka, Labelling)

1. Pick a variable x with at least two values
2. Pick value v from D(x)
3. Branch with

x = v
x ≤ v

x 6= v
x > v

The constraints for branching become part of the model in the
subproblems generated

The inner nodes (blue circles)
are choices, the red square leaf
nodes are failures, and the
green diamond leaf node is a
solution.
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Lexicographic First-fail
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CP OverviewConstraint Propagation

2) What are the implications of the current variable assignments for the other
unassigned variables?

Definition (Domain consistency)

A constraint C on the variables X1, . . . ,Xk is called domain consistent if for
each variable Xi and each value vi ∈ D(Xi ) (i = 1, . . . , k), there exists a
value vj ∈ D(Xj) for all j 6= i such that (d1, . . . , dk) ∈ C .

Loose definition
Domain filtering is the removal of values from variable domains that are not
consistent with an individual constraint.

Constraint propagation is the repeated application of all domain filtering of
individual constraints until no domanin reduction is possible anymore.
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CP OverviewConstraint Propagation

Three consistency levels
Trade off between speed and propagation

Forward checking

Bounds consistency

Domain consistency
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CP OverviewConstraint Propagation

Problem shown as matrix

Each cell corresponds to a
variable

Instantiated: Shows integer
value (large)

Uninstantiated: Shows values
in domain

Currently active constraint
highlighted

Values removed at a step
shown in blue

Values assigned at a step
shown in red
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Modelling
CP Overviewalldifferent (distinct)

Argument: list of variables

Meaning: variables are pairwise different

Reasoning: Forward Checking (FC)

When variable is assigned to value, remove the value from all other
variables

If a variable has only one possible value, then it is assigned

If a variable has no possible values, then the constraint fails

Constraint is checked whenever one of its variables is assigned

Equivalent to decomposition into binary disequality constraints
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CP OverviewForward checking

H. Simonis’ demo, slides 18-48
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CP OverviewCan we do better?

Example:

P =〈X = (x , y , z),DE = {D(x) = {1, 2},D(x) = {1, 2},D(x) = {1..3}},
C = {C1 ≡ alldiff(x , y , z)}〉
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CP OverviewBound Consistency

Example:
Idea (Hall Intervals)

Take each interval of possible values, say size N

Find all K variables whose domain is completely contained in interval

If K > N then the constraint is infeasible

If K = N then no other variable can use that interval

Remove values from such variables if their bounds change

If K < N do nothing

Re-check whenever domain bounds change
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CP OverviewBound Consistency

Definition
A constraint achieves bounds consistency, if for the lower and upper bound of
every variable, it is possible to find values for all other variables between their
lower and upper bounds which satisfy the constraint.
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Modelling
CP OverviewCan we do better?

Bounds consistency only considers min/max bounds

Ignores "holes" in domain

Sometimes we can improve propagation looking at those holes

Example:

P =〈X = (x , y , z),DE = {D(x) = {1, 3},D(x) = {1, 3},D(x) = {1..3}},
C = {C1 ≡ alldiff(x , y , z)}〉
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Modelling
CP OverviewSolutions and maximal matchings

A Matching is subset of edges which do not coincide in any node

No matching can have more edges than number of variables

Every solution corresponds to a maximal matching and vice versa

If a link does not belong to some maximal matching, then it can be
removed
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CP OverviewDomain Consistency

Definition
A constraint achieves domain consistency, if for every variable and for every
value in its domain, it is possible to find values in the domains of all other
variables which satisfy the constraint.

Also called generalized arc consistency (GAC)

or hyper arc consistency
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CP OverviewCan we still do better?

NO! This extracts all information from this one constraint

We could perhaps improve speed, but not propagation

But possible to use different model

Or model interaction of multiple constraints
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H. Simonis’ demo, slides 80-142
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This does not always happen

Sometimes, two methods produce same amount of propagation

Possible to predict in certain special cases

In general, tradeoff between speed and propagation

Not always fastest to remove inconsistent values early

But often required to find a solution at all

31



Modelling
CP OverviewOptimization Problems

Objective function to minimize F (X1,X2, . . . ,Xn)

Naive approach: find all solutions and choose the best

Branch and Bound approach

Solve a modified Constraint Satisfaction Problem by setting an (upper)
bound z∗ in the objective function

Dichotomic search: U upper bound, L lower bound M = U+L
2
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CP OverviewTypes of Variables and Values

Discrete variables with finite domain:
complete enumeration is O(dn)

Discrete variables with infinite domains:
Impossible by complete enumeration.
Propagation by reasoning on bounds.
Eg, project planning.

Sj + pj ≤ Sk

NB: if only linear constraints, then integer linear programming

Variables with continuous domains (time intervals)
branch and reduce
NB: if only linear constraints or convex functions then mathematical
programming

structured domains (eg, sets, graphs)
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