
DM826 – Spring 2012

Modeling and Solving Constrained Optimization Problems

Lecture 3
Examples of global constraints

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

[Based on slides by Stefano Gualandi, Politecnico di Milano]



Modeling: Global ConstraintsOutline

1. Modeling: Global Constraints

2



Modeling: Global ConstraintsResume

First example: Send More Money
modelling in MILP and CP

Second example: sudoku CP models

Overview on constraint programming:
representation (language) + reasoning (search + propagation)
backtracking
value/bound/domain checking
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Modeling: Global ConstraintsGlobal Constraint: Sum

Sum constraint
Let x1, x2, . . . , xn be variables. To each variable xi , we associate a scalar
ci ∈ Q. Furthermore, let z be a variable with domain D(z) ⊆ Q. The sum
constraint is defined as

sum([x1, . . . , xn], z , c) =(d1, . . . , dn, d) | ∀i , di ∈ D(xi ), d ∈ D(z), d =
∑

i=1,...,n

cidi

 .

In Comet: Atmost but with ≤ relation
In Gecode: linear(home, x, IRT_GR, c)
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Modeling: Global ConstraintsGlobal Constraint: Knapsack

Knapsack constraint

Rather than constraining the sum to be a specific value, the knapsack
constraint states the sum to be within a lower bound l and an upper bound
u, i.e., such that D(z) = [l , u]. The knapsack constraint is defined as

knapsack([x1, . . . , xn], z , c) =(d1, . . . , dn, d) | di ∈ D(xi )∀i , d ∈ D(z), d ≤
∑

i=1,...,n

cidi

∩(d1, . . . , dn, d) | di ∈ D(xi )∀i , d ∈ D(z), d ≥
∑

i=1,...,n

cidi

 .

minD(z) ≤
∑

i=1,...,n

cixi ≤ maxD(z)
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Modeling: Global ConstraintsCP Modeling Guidelines [Hooker, 2011]

1. A specially-structured subset of constraints should be replaced by a
single global constraint that captures the structure, when a suitable
one exists. This produces a more succinct model and can allow more
effective filtering and propagation.

2. A global constraint should be replaced by a more specific one when
possible, to exploit more effectively the special structure of the
constraints.

3. The addition of redundant constraints (i..e, constraints that are implied
by the other constraints) can improve propagation.

4. When two alternate formulations of a problem are available, including
both (or parts of both) in the model may improve propagation.
Different variables are linked through the use of channeling constraints.
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Modeling: Global ConstraintsThird example: Car Sequencing Problem

Car Sequencing Problem

an assembly line makes 50 cars a day
4 types of cars
each car type is defined by options: {air conditioning, sun roof}

type air cond. sun roof demand
a no no 20
b yes no 15
c no yes 8
d yes yes 7

at most 3 cars in any sequence of 5 can be given air conditioning
at most 1 in any sequence of 3 can be given a sun roof

Task: sequence the car types so as to meet demands while observing
capacity constraints of the assembly line.
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Modeling: Global ConstraintsCar Sequencing Problem

Sequence constraints

9



Modeling: Global ConstraintsCar Sequencing Problem: CP model

Car Sequencing Problem

Let ti be the decision variable that indicates the type of car to assign to each
position i in the sequence.

cardinality([t1, . . . , t50], (a, b, c , d), (20, 15, 8, 7), (20, 15, 8, 7))

sequence([t1, . . . , t50], {b, d}, 5, 0, 3),

sequence([t11, . . . , t50], {c , d}, 3, 0, 1),

ti ∈ {a, b, c , d}, i = 1, . . . , 50.
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Modeling: Global ConstraintsCar Sequencing Problem: MIP model
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Modeling: Global ConstraintsGlobal Constraint: cardinality

cardinality or gcc (global cardinality constraint)

Let x1, . . . , xn be assignment variables whose domains are contained in
{v1, . . . , vn′} and let {cv1 , . . . , cvn′} be count variables whose domains are
sets of integers. Then

cardinality([x1, ..., xn],[cv1 , ..., cvn′ ]) =

{(w1, ...,wn, o1, ..., on′) | wj ∈ D(xj)∀j ,
occ(vi , (w1, ...,wn)) = oi ∈ D(cvi )∀i}.

(occ number of occurrences)

 generalization of alldifferent

In Gecode: count
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Modeling: Global ConstraintsGlobal Constraint: among and sequence

among

Let x1, . . . , xn be a tuple of variables, S a set of variables, and l and u two
nonnegative integers

among([x1, ..., xn], S , l , u)

At least l and at most u of variables take values in S

sequence

Let x1, . . . , xn be a tuple of variables, S a set of variables, and l and u two
nonnegative integers, s a positive integer.

sequence([x1, ..., xn],S , l , u, s)

At least l and at most u of variables take values in S for s consecutive
variables
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Modeling: Global ConstraintsEmployee Scheduling problem

Four nurses are to be assigned to eight-hour shifts.
Shift 1 is the daytime shift, while shifts 2 and 3 occur at night.
The schedule repeats itself every week. In addition,
1. Every shift is assigned exactly one nurse.
2. Each nurse works at most one shift a day.
3. Each nurse works at least five days a week.
4. To ensure a certain amount of continuity, no shift can be staffed by

more than two different nurses in a week.
5. To avoid excessive disruption of sleep patterns, a nurse cannot work

different shifts on two consecutive days.
6. Also, a nurse who works shift 2 or 3 must do so at least two days in a

row.
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Modeling: Global ConstraintsEmployee Scheduling problem

Feasible Solutions
Solution viewed as assigning workers to shifts.

Sun Mon Tue Wed Thu Fri Sat
Shift1 A B A A A A A
Shift2 C C C B B B B
Shift3 D D D D C C D

Solution viewed as assigning shifts to workers.

Sun Mon Tue Wed Thu Fri Sat
Worker A 1 0 1 1 1 1 1
Worker B 0 1 0 2 2 2 2
Worker C 2 2 2 0 3 3 0
Worker D 3 3 3 3 0 0 3
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Modeling: Global ConstraintsEmployee Scheduling problem

Feasible Solutions
Let wsd be the nurse assigned to shift s on day d , where the domain of wsd is
the set of nurses {A,B,C ,D}.
Let tid be the shift assigned to nurse i on day d , and where shift 0 denotes a
day off.

1. alldiff(w1d ,w2d ,w3d), d = 1, . . . , 7
2. cardinality(W , (A,B,C ,D), (5, 5, 5, 5), (6, 6, 6, 6))

3. nvalues({ws1, . . . ,ws7}, 1, 2), s = 1, 2, 3
4. alldiff(tAd , tBd , tCd , tDd), d = 1, ..., 7
5. cardinality({ti1, . . . , ti7}, 0, 1, 2), i = A,B,C ,D
6. stretch-cycle((ti1, . . . , ti7), (2, 3), (2, 2), (6, 6),P), i = A,B,C ,D
7. wtid d = i ,∀i , d , twsd s = s,∀s, d
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Modeling: Global ConstraintsGlobal Constraint: nvalues

nvalues

Let x1, . . . , xn be a tuple of variables, and l and u two nonnegative integers

nvalues([x1, ..., xn], l , u)

At least l and at most u different values among the variables

 generalization of alldifferent
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Modeling: Global ConstraintsGlobal Constraint: stretch

stretch

Let x1, . . . , xn be a tuple of variables with finite domains, v an m-tuple of
possible values of the variables, l an m-tuple of lower bounds and u an
m-tuple of upper bounds.
A stretch is a is a maximal sequence of consecutive variables that take the
same value, i.e., xj , . . . , xk for v if xj = . . . = xk = v and xj−1 6= v (or j = 1)
and xk+1 6= v (or k = n).

stretch([x1, ..., xn], v , l , u) stretch-cycle([x1, ..., xn], v , l , u)

for each j ∈ {1, . . . ,m} any stretch of value vj in x have length at least lj
and at most uj .

In addition:

stretch([x1, ..., xn], v , l , u,P)

with P set of patterns, i.e., pairs (vj , vj′). It imposes that a stretch of values
vj must be followed by a stretch of value vj′
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Modeling: Global ConstraintsGlobal Constraint: regular

“regular” constraint

Let M = (Q,Σ, δ, q0,F ) be a DFA and let X = {x1, x2, . . . , xn} be a set of
variables with D(xi ) ⊆ Σ for 1 ≤ i ≤ n. Then

regular(X ,M) =

{(d1, ..., dn) | ∀i , di ∈ D(xi ), [d1, d2, . . . , dn] ∈ L(M)}.
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Modeling: Global ConstraintsGlobal Constraint: regular

Example

Given the problem

x1 ∈ {a, b, c}, x2 ∈ {a, b, c}, x3 ∈ {a, b, c}, x4 ∈ {a, b, c},

regular([x1, x2, x3, x4],M).

One solution to this CSP is x1 = a, x2 = b, x3 = a, x4 = a.
20



Modeling: Global ConstraintsGlobal Constraint: element

“element” constraint
Let y be an integer variable, z a variable with finite domain, and c an array
of constants, i.e., c = [c1, c2, . . . , cn]. The element constraint states that z is
equal to the y -th variable in c , or z = cy . More formally:

element(y , z , [c1, . . . , cn]) = {(e, f ) | e ∈ D(y), f ∈ D(z), f = ce}.

“channel” constraint
Let y be an integer variable, z a variable with finite domain, and c an array
of variables, i.e., x = [x1, x2, . . . , xn]. The element constraint states that z is
equal to the y -th variable in c , or z = xy . More formally:

channel([y1, . . . , yn], [x1, . . . , xn]) =

{([e1, . . . , en], [d1, . . . , dn]) | ei ∈ D(yi ),∀i , dj ∈ D(xj),∀j , fi = j∧ej = i}.
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Modeling: Global ConstraintsAssignment problems

The assignment problem is to find a minimum cost assignment of m tasks to
n workers (m ≤ n).
Each task is assigned to a different worker, and no two workers are assigned
the same task.
If assigning worker i to task j incurs cost cij , the problem is simply stated:

min
∑

i=1,...,n

cixi

alldiff([x1, . . . , xn]),

xi ∈ Di ,∀i = 1, . . . , n.

Note: cost depends on position. Recall: with n = m min weighted bipartite
matching (Hungarian method)
with supplies/demands transshipment problem
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Modeling: Global ConstraintsCircuit problems

Given a directed weighted graph G = (N,A), find a circuit of min cost:

min
∑

i=1,...,n

cxi xi+1

alldiff([x1, . . . , xn]),

xi ∈ Di ,∀i = 1, . . . , n.

Note: cost depends on sequence.

An alternative formulation is

min
∑

i=1,...,n

ciyi

circuit([y1, . . . , yn]),

yi ∈ Di = {j | (i , j) ∈ A},∀i = 1, . . . , n.
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Modeling: Global ConstraintsGlobal Constraint: circuit

“circuit” constraint

Let X = {x1, x2, . . . , xn} be a set of variables with respective domains
D(xi ) ⊆ {1, 2, ..., n} for i = 1, 2, ..., n. Then

circuit(x1, . . . , xn) ={(d1, ..., dn) | ∀i , di ∈ D(xi ), d1, ..., dn is cyclic }.
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Modeling: Global ConstraintsCircuit problems

A model with redundant constraints is as follows:

min z

z ≥
∑

i=1,...,n

cxi xi+1

z ≥
∑

i=1,...,n

ciyi

alldiff([x1, . . . , xn]),

circuit([y1, . . . , yn]),

x1 = yxn = 1, xi+1 = yxi , i = 1, . . . , n − 1
xi ∈ {1, . . . , n},∀i = 1, . . . , n,
yi ∈ Di = {j | (i , j) ∈ A},∀i = 1, . . . , n.
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Modeling: Global ConstraintsMore

bin-packing(x |w , u, k) pack items in k bins such that they do not
exceed capacity u

clique(x |G , k) requires that a given graph contain a clique of size k

cycle(x |y) select edges such that they form exactly y directed cycles in
a graph.

cutset(x |G , k) requires that for the set of selected vertices V ′, the set
V \ V ′ induces a subgraph of G that contains no cycles.

conditional(D, C) between set of constrains D ⇒ C

diffn((x1,∆x1), . . . , (xm,∆xm)) arranges a given set of
multidimensional boxes in n-space such that they do not overlap
(aka, nooverlap)
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Modeling: Global ConstraintsScheduling Constraints

cumulative for RCPSP [Aggoun and Beldiceanu, 1993]

rj release time of job j
pj processing time
dj deadline
cj resource consumption
C limit not to be exceeded at any point in time

Let s be an n-tuple of (integer/real) values denoting the starting time of each
job

cumulative([sj ], [pj ], [cj ],C ) :=

{([dj ], [pj ], [cj ],C ) | ∀t
∑

i | di≤t≤di+pi

ci ≤ C}
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Modeling: Global ConstraintsScheduling Constraints

With cj = 1 forall j and C = 1:

“disjunctive” scheduling

Let (s1, . . . , sn) be a tuple of (integer/real)-valued variables indicating the
starting time of a job j . Let (p1, . . . , pn) be the processing times of each job.

disjunctive([s1, . . . , sn], [p1, . . . , pn]) =

{[d1, . . . , dn] | ∀i , j , i 6= j (di + pi ≤ dj) ∨ (dj + pj ≤ di )}
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Modeling: Global ConstraintsReified constraints

Constraints are in a big conjunction

How about disjunctive constraints?

A + B = C ∨ C = 0

or soft constraints?

Solution: reify the constraints:

(A + B = C ⇔ b0) ∧
(C = 0 ⇔ b1) ∧
(b0 ∨ b1 ⇔ true)

These kind of constraints are dealt with in efficient way by the systems

Then if optimization problem (soft constraints) ⇒ min
∑

i bi
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Modeling: Global ConstraintsGlobal Constraint Catalog
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