DM826 – Spring 2012 Modeling and Solving Constrained Optimization Problems

Lecture 3 Examples of global constraints

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

[Based on slides by Stefano Gualandi, Politecnico di Milano]

Outline

1. Modeling: Global Constraints

Resume

- First example: Send More Money modelling in MILP and CP
- Second example: sudoku CP models
- Overview on constraint programming: representation (language) + reasoning (search + propagation) backtracking value/bound/domain checking

Outline

1. Modeling: Global Constraints

Global Constraint: Sum

Sum constraint

Let x_1, x_2, \ldots, x_n be variables. To each variable x_i , we associate a scalar $c_i \in \mathbb{Q}$. Furthermore, let z be a variable with domain $D(z) \subseteq \mathbb{Q}$. The sum constraint is defined as

$$\operatorname{sum}([x_1,\ldots,x_n],z,c) = \left\{ (d_1,\ldots,d_n,d) \mid \forall i, d_i \in D(x_i), d \in D(z), d = \sum_{i=1,\ldots,n} c_i d_i \right\}.$$

In Comet: Atmost but with \leq relation In Gecode: linear(home, x, IRT_GR, c)

Global Constraint: Knapsack

Knapsack constraint

Rather than constraining the sum to be a specific value, the knapsack constraint states the sum to be within a lower bound l and an upper bound u, i.e., such that D(z) = [l, u]. The knapsack constraint is defined as

$$egin{aligned} & ext{knapsack}([x_1,\ldots,x_n],z,c) = \ & \left\{ (d_1,\ldots,d_n,d) \mid d_i \in D(x_i) \, orall i, d \in D(z), d \leq \sum_{i=1,\ldots,n} c_i d_i
ight\} \cap \ & \left\{ (d_1,\ldots,d_n,d) \mid d_i \in D(x_i) \, orall i, d \in D(z), d \geq \sum_{i=1,\ldots,n} c_i d_i
ight\}. \end{aligned}$$

$$\min D(z) \leq \sum_{i=1,\dots,n} c_i x_i \leq \max D(z)$$

CP Modeling Guidelines [Hooker, 2011]

- 1. A specially-structured subset of constraints should be replaced by a single global constraint that **captures the structure**, when a suitable one exists. This produces a more succinct model and can allow more effective filtering and propagation.
- 2. A global constraint should be replaced by a more specific one when possible, to exploit more effectively the special structure of the constraints.
- 3. The addition of redundant constraints (i..e, constraints that are implied by the other constraints) can improve propagation.
- When two alternate formulations of a problem are available, including both (or parts of both) in the model may improve propagation.
 Different variables are linked through the use of channeling constraints.

Third example: Car Sequencing Problem

Car Sequencing Problem

- an assembly line makes 50 cars a day
- 4 types of cars
- each car type is defined by options: {air conditioning, sun roof}

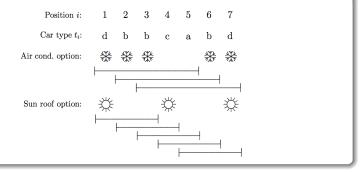
type	air cond.	sun roof	demand
а	no	no	20
b	yes	no	15
с	no	yes	8
d	yes	yes	7

- at most 3 cars in any sequence of 5 can be given air conditioning
- at most 1 in any sequence of 3 can be given a sun roof

Task: sequence the car types so as to meet demands while observing capacity constraints of the assembly line.

Car Sequencing Problem

Sequence constraints



Car Sequencing Problem: CP model

Car Sequencing Problem

Let t_i be the decision variable that indicates the type of car to assign to each position *i* in the sequence.

cardinality($[t_1, \ldots, t_{50}]$, (a, b, c, d), (20, 15, 8, 7), (20, 15, 8, 7)) sequence($[t_1, \ldots, t_{50}]$, $\{b, d\}$, 5, 0, 3), sequence($[t_11, \ldots, t_{50}]$, $\{c, d\}$, 3, 0, 1), $t_i \in \{a, b, c, d\}$, $i = 1, \ldots, 50$.

Car Sequencing Problem: MIP model

$$\begin{pmatrix} AC_{i} = 0 \\ SR_{i} = 0 \end{pmatrix} \vee \begin{pmatrix} AC_{i} = 1 \\ SR_{i} = 0 \end{pmatrix} \vee \begin{pmatrix} AC_{i} = 0 \\ SR_{i} = 1 \end{pmatrix} \vee \begin{pmatrix} AC_{i} = 1 \\ SR_{i} = 1 \end{pmatrix}$$

$$AC_{i} = AC_{i}^{a} + AC_{i}^{b} + AC_{i}^{c} + AC_{i}^{d}$$

$$SR_{i} = SR_{i}^{a} + SR_{i}^{b} + SR_{i}^{c} + SR_{i}^{d}$$

$$AC_{i}^{a} = 0, \quad AC_{i}^{b} = \delta_{ib}, \quad AC_{i}^{c} = 0, \quad AC_{i}^{d} = \delta_{id}$$

$$SR_{i}^{a} = 0, \quad SR_{i}^{b} = 0, \quad SR_{i}^{c} = \delta_{ic}, \quad SR_{i}^{d} = \delta_{id}$$

$$\delta_{ia} + \delta_{ib} + \delta_{ic} + \delta_{id} = 1$$

$$\delta_{ij} \in \{0, 1\}, \quad j = a, b, c, d$$

$$AC_{i} = \delta_{ib} + \delta_{id} \leq 1, \quad i = 1, \dots, 50$$

$$\delta_{ib} + \delta_{ic} + \delta_{id} \leq 1, \quad i = 1, \dots, 50$$

$$\delta_{ij} \in \{0, 1\}, \quad j = b, c, d, \quad i = 1, \dots, 50$$

$$\sum_{i=1}^{50} \delta_{ia} = 20, \quad \sum_{i=1}^{50} \delta_{ib} = 15, \quad \sum_{i=1}^{50} \delta_{ic} = 8, \quad \sum_{i=1}^{50} \delta_{id} = 7, \quad i = 1, \dots, 50$$

$$\sum_{i=1}^{i+4} AC_{j} \leq 3, \quad i = 1, \dots, 46$$

$$\sum_{j=i}^{i+2} SR_{j} \leq 1, \quad j = 1, \dots, 48$$

Global Constraint: cardinality

cardinality or gcc (global cardinality constraint)

Let x_1, \ldots, x_n be assignment variables whose domains are contained in $\{v_1, \ldots, v_{n'}\}$ and let $\{c_{v_1}, \ldots, c_{v_{n'}}\}$ be count variables whose domains are sets of integers. Then

$$\begin{aligned} \texttt{cardinality}([x_1, ..., x_n], [c_{v_1}, ..., c_{v_{n'}}]) = \\ \{(w_1, ..., w_n, o_1, ..., o_{n'}) \mid w_j \in D(x_j) \forall j, \\ & \texttt{occ}(v_i, (w_1, ..., w_n)) = o_i \in D(c_{v_i}) \forall i\}. \end{aligned}$$

(occ number of occurrences)

 \rightsquigarrow generalization of alldifferent

In Gecode: count

Global Constraint: among and sequence

among

Let x_1, \ldots, x_n be a tuple of variables, S a set of variables, and I and u two nonnegative integers

```
among([x_1, ..., x_n], S, I, u)
```

At least l and at most u of variables take values in S

sequence

Let x_1, \ldots, x_n be a tuple of variables, S a set of variables, and I and u two nonnegative integers, s a positive integer.

```
sequence([x_1, ..., x_n], S, I, u, s)
```

At least l and at most u of variables take values in S for s consecutive variables

Employee Scheduling problem

Four nurses are to be assigned to eight-hour shifts. Shift 1 is the daytime shift, while shifts 2 and 3 occur at night. The schedule repeats itself every week. In addition,

- 1. Every shift is assigned exactly one nurse.
- 2. Each nurse works at most one shift a day.
- 3. Each nurse works at least five days a week.
- 4. To ensure a certain amount of continuity, no shift can be staffed by more than two different nurses in a week.
- 5. To avoid excessive disruption of sleep patterns, a nurse cannot work different shifts on two consecutive days.
- 6. Also, a nurse who works shift 2 or 3 must do so at least two days in a row.

Employee Scheduling problem

Feasible Solutions

Solution viewed as assigning workers to shifts.

	Sun	Mon	Tue	Wed	Thu	Fri	Sat
Shift1	А	В	А	А	А	Α	Α
Shift2	С	С	С	В	В	В	В
Shift3	D	D	D	D	С	С	D

Solution viewed as assigning shifts to workers.

	Sun	Mon	Tue	Wed	Thu	Fri	Sat
Worker A	1	0	1	1	1	1	1
Worker B	0	1	0	2	2	2	2
Worker C	2	2	2	0	3	3	0
Worker D	3	3	3	3	0	0	3

Employee Scheduling problem

Feasible Solutions

Let w_{sd} be the nurse assigned to shift *s* on day *d*, where the domain of w_{sd} is the set of nurses $\{A, B, C, D\}$. Let t_{id} be the shift assigned to nurse *i* on day *d*, and where shift 0 denotes a

day off.

$$\begin{aligned} & \text{alldiff}(w_{1d}, w_{2d}, w_{3d}), d = 1, \dots, 7\\ & \text{cardinality}(W, (A, B, C, D), (5, 5, 5, 5), (6, 6, 6, 6))\\ & \text{nvalues}(\{w_{s1}, \dots, w_{s7}\}, 1, 2), s = 1, 2, 3\\ & \text{alldiff}(t_{Ad}, t_{Bd}, t_{Cd}, t_{Dd}), d = 1, \dots, 7\\ & \text{cardinality}(\{t_{i1}, \dots, t_{i7}\}, 0, 1, 2), i = A, B, C, D\\ & \text{stretch-cycle}((t_{i1}, \dots, t_{i7}), (2, 3), (2, 2), (6, 6), P), i = A, B, C, D\\ & w_{t_{id}d} = i, \forall i, d, \quad t_{w_{sd}s} = s, \forall s, d \end{aligned}$$

Global Constraint: nvalues

nvalues

Let x_1, \ldots, x_n be a tuple of variables, and l and u two nonnegative integers nvalues($[x_1, \ldots, x_n], l, u$)

At least / and at most u different values among the variables

```
\rightsquigarrow generalization of alldifferent
```

Global Constraint: stretch

stretch

Let x_1, \ldots, x_n be a tuple of variables with finite domains, v an m-tuple of possible values of the variables, l an m-tuple of lower bounds and u an m-tuple of upper bounds.

A stretch is a is a maximal sequence of consecutive variables that take the same value, i.e., x_j, \ldots, x_k for v if $x_j = \ldots = x_k = v$ and $x_{j-1} \neq v$ (or j = 1) and $x_{k+1} \neq v$ (or k = n).

 $stretch([x_1,...,x_n],v,l,u)$ $stretch-cycle([x_1,...,x_n],v,l,u)$

for each $j \in \{1, ..., m\}$ any stretch of value v_j in x have length at least l_j and at most u_j .

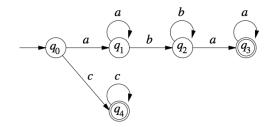
In addition:

 $stretch([x_1, ..., x_n], v, l, u, P)$

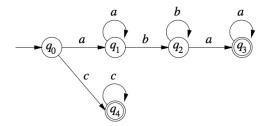
with *P* set of patterns, i.e., pairs $(v_j, v_{j'})$. It imposes that a stretch of values v_j must be followed by a stretch of value $v_{j'}$

Global Constraint: regular

"regular" constraint Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA and let $X = \{x_1, x_2, \dots, x_n\}$ be a set of variables with $D(x_i) \subseteq \Sigma$ for $1 \le i \le n$. Then regular(X, M) = $\{(d_1, \dots, d_n) \mid \forall i, d_i \in D(x_i), [d_1, d_2, \dots, d_n] \in L(M)\}.$



Global Constraint: regular



Example

Given the problem

 $x_1 \in \{a, b, c\}, \quad x_2 \in \{a, b, c\}, \quad x_3 \in \{a, b, c\}, \quad x_4 \in \{a, b, c\},$

 $regular([x_1, x_2, x_3, x_4], M).$

One solution to this CSP is $x_1 = a, x_2 = b, x_3 = a, x_4 = a$.

Global Constraint: element

"element" constraint

Let y be an integer variable, z a variable with finite domain, and c an array of constants, i.e., $c = [c_1, c_2, ..., c_n]$. The element constraint states that z is equal to the y-th variable in c, or $z = c_y$. More formally:

 $element(y, z, [c_1, ..., c_n]) = \{(e, f) \mid e \in D(y), f \in D(z), f = c_e\}.$

"channel" constraint

Let y be an integer variable, z a variable with finite domain, and c an array of variables, i.e., $x = [x_1, x_2, ..., x_n]$. The element constraint states that z is equal to the y-th variable in c, or $z = x_y$. More formally:

$$\begin{aligned} & \texttt{channel}([y_1, \dots, y_n], [x_1, \dots, x_n]) = \\ & \{([e_1, \dots, e_n], [d_1, \dots, d_n]) \mid e_i \in D(y_i), \forall i, d_j \in D(x_j), \forall j, f_i = j \land e_j = i\}. \end{aligned}$$

Assignment problems

The assignment problem is to find a minimum cost assignment of *m* tasks to *n* workers $(m \le n)$.

Each task is assigned to a different worker, and no two workers are assigned the same task.

If assigning worker *i* to task *j* incurs cost c_{ij} , the problem is simply stated:

$$\begin{array}{ll} \min & \sum_{i=1,\ldots,n} c_{ix_i} \\ & \texttt{alldiff}([x_1,\ldots,x_n]), \\ & x_i \in D_i, \forall i=1,\ldots,n. \end{array}$$

Note: cost depends on position. Recall: with n = m min weighted bipartite matching (Hungarian method) with supplies/demands transshipment problem

Circuit problems

Given a directed weighted graph G = (N, A), find a circuit of min cost:

$$\min \sum_{i=1,\ldots,n} c_{x_i \times i+1} \\ \texttt{alldiff}([x_1,\ldots,x_n]), \\ x_i \in D_i, \forall i = 1,\ldots,n.$$

Note: cost depends on sequence.

An alternative formulation is

$$\begin{array}{ll} \min & \sum_{i=1,\ldots,n} c_{iy_i} \\ & \texttt{circuit}([y_1,\ldots,y_n]), \\ & y_i \in D_i = \{j \mid (i,j) \in A\}, \forall i = 1,\ldots,n. \end{array}$$

Global Constraint: circuit

"circuit" constraint

Let $X = \{x_1, x_2, ..., x_n\}$ be a set of variables with respective domains $D(x_i) \subseteq \{1, 2, ..., n\}$ for i = 1, 2, ..., n. Then

 $\texttt{circuit}(x_1,...,x_n) = \{(d_1,...,d_n) \mid \forall i, d_i \in D(x_i), d_1,...,d_n \text{ is cyclic } \}.$

Circuit problems

A model with redundant constraints is as follows:

min z $z \geq \sum c_{x_i x_{i+1}}$ *i*=1....*n* $z \geq \sum c_{iy_i}$ *i*=1....*n* alldiff($[x_1, \ldots, x_n]$), $\operatorname{circuit}([y_1, \ldots, y_n]),$ $x_1 = y_{x_n} = 1, \quad x_{i+1} = y_{x_i}, i = 1, \dots, n-1$ $x_i \in \{1, \ldots, n\}, \forall i = 1, \ldots, n,$ $v_i \in D_i = \{i \mid (i, j) \in A\}, \forall i = 1, ..., n.$

More

- bin-packing(x|w, u, k) pack items in k bins such that they do not exceed capacity u
- clique(x|G, k) requires that a given graph contain a clique of size k
- cycle(x|y) select edges such that they form exactly y directed cycles in a graph.
- cutset(x|G, k) requires that for the set of selected vertices V', the set $V \setminus V'$ induces a subgraph of G that contains no cycles.
- conditional(\mathcal{D}, \mathcal{C}) between set of constrains $\mathcal{D} \Rightarrow \mathcal{C}$
- diffn((x¹, Δx¹),..., (x^m, Δx^m)) arranges a given set of multidimensional boxes in *n*-space such that they do not overlap (aka, nooverlap)

Scheduling Constraints

cumulative for RCPSP

- r_j release time of job j
- p_j processing time
- d_j deadline
- c_j resource consumption
- C limit not to be exceeded at any point in time

Let s be an n-tuple of (integer/real) values denoting the starting time of each job

$cumulative([s_j], [p_j], [c_j], C) :=$

$$\{([d_j], [p_j], [c_j], C) \mid \forall t \sum_{i \mid d_i \le t \le d_i + p_i} c_i \le C\}$$

[Aggoun and Beldiceanu, 1993]

Scheduling Constraints

With $c_j = 1$ forall j and C = 1:

"disjunctive" scheduling

Let (s_1, \ldots, s_n) be a tuple of (integer/real)-valued variables indicating the starting time of a job *j*. Let (p_1, \ldots, p_n) be the processing times of each job.

$$\begin{aligned} \texttt{disjunctive}([s_1, \dots, s_n], [p_1, \dots, p_n]) = \\ \{[d_1, \dots, d_n] \mid \forall i, j, i \neq j \ (d_i + p_i \leq d_j) \lor (d_j + p_j \leq d_i)\} \end{aligned}$$

Reified constraints

- Constraints are in a big conjunction
- How about disjunctive constraints?

 $A + B = C \quad \lor \quad C = 0$

or soft constraints?

• Solution: reify the constraints:

$$\begin{array}{ll} (A+B=C & \Leftrightarrow & b_0) & \land \\ (C=0 & \Leftrightarrow & b_1) & \land \\ (b_0 & \lor & b_1 & \Leftrightarrow & true) \end{array}$$

- These kind of constraints are dealt with in efficient way by the systems
- Then if optimization problem (soft constraints) $\Rightarrow \min \sum_i b_i$

Global Constraint Catalog

Global Constraint Catalog

Corresponding author: Nicolas Beldiceanu nicolas.beldiceanu@emn.fr

Online version: Sophie Demassey sophie.demassey@emn.fr

Google Search O Web O Cata	log
all formats • html • pdf	

Global Constraint Catalog html / 2009-12-16

Search by:

NAME Keyword	Meta-keyword	Argument pattern	Graph description	
	Bibliography	Index		

Reywords (ex: Assignment, Bound consistency, Soft constraint,...) can be searched by Meta-keywords (ex: Application area, Filtering, Constraint type,...)

About the catalogue

The catalogue presents a list of 348 global constraints issued from the literature in constraint programming and from popular constraint systems. The semantic of each constraint is given together with a description in terms of graph properties and/or automata.

References

Hooker J.N. (2011). Hybrid modeling. In *Hybrid Optimization*, edited by P.M. Pardalos, P. van Hentenryck, and M. Milano, vol. 45 of **Optimization and Its Applications**, pp. 11–62. Springer New York.

van Hoeve W. and Katriel I. (2006). Global constraints. In *Handbook of Constraint Programming*, chap. 6. Elsevier.