
DM826 – Spring 2012

Modeling and Solving Constrained Optimization Problems

Lecture 5
Constraint Propagation
and Local Consistency

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Reasoning with Constraints

Constraint Propagation, aka:

constraint relaxation
filtering algorithms
narrowing algorithms
constraint inference
simplification algorithms
label inference
local consistency enforcing
rules iteration
chaotic iteration

2

Local Consistency define properties that the constraint problem must satisfy
after constraint propagation

Rules iteration defines properties on the process of propagation itself, that is
is kind and order of operations of reduction applied to the
problem

3

Notation and Terminology

Finite domains w.l.g. D ⊆ Z

Constraint C : relation on a (ordered) subsequence of variables

X (C) = (xi1 , . . . , xi|X (C)|) is the scheme or scope

|X (C)| is the arity of C (unary/binary/non-binary)

C ⊆ Z|X (C)| containing combinations of valid values (or tuples)
τ ∈ Z|X (C)|

constraint check: testing whether a τ satisfies C

C: a t-tuple of constraints C = (C1, . . . ,Ct)

expression
extensional: specifies satisfying tuples (aka table in Comet,
extensional via DFA or TupleSet in gecode).
eg. c(x1, x2) = {(2, 2), (2, 3), (3, 2), (3, 3)}
intensional: specifies the characteristic function. eg. alldiff(x1, x2, x3)

4

CSP
Input:

Variables X = (x1, . . . , xn)

Domain Expression DE = {x1 ∈ D(x1), . . . , xn ∈ D(xn)}

a constrained satisfaction problem (CSP) is

P = 〈X , DE , C〉

C finite set of constraints each on a subsequence of X .
C ∈ C on Y = (y1, . . . , yk) is C ⊆ D(y1)× . . .× D(yk)

(v1, . . . , vn) ∈ D(x1)× . . .× D(xn) is a solution of P
if for each constraint Ci ∈ C on xi1 . . . , xim it is

(vi1 , . . . , vim) ∈ Ci

CSP normalized: iff two different constraints do not involve exactly the same vars
CSP binary iff for all Ci ∈ C, |X (C)| = 2

5

Notation and Terminology

Given a tuple τ on a sequence Y of variables and W ⊆ Y ,

τ [W] is the restriction of τ to variables in W (ordered accordingly)

τ [xi] is the value of xi in τ

if X (C) = X (C ′) and C ⊆ C ′ then for all τ ∈ C the reordering of τ
according to X (C ′) satisfies C ′.

Example

C (x1, x2, x3) : x1 + x2 = x3
C ′(x1, x2, x3) : x1 + x2 ≤ x3

C ⊆ C ′

6

Notation and Terminology

Given Y ⊆ X (C), πY (C) denotes the projection of C on Y . It contains
tuples on Y that can be extended to a tuple on X (C) satisfying C .

given X (C1) = X (C2), C1 ∪ C2 contains the tuples τ that satisfy both c1
and c2

join of {C1 . . .Ck} is the relation with scheme ∪k
i=1X (Ci) that contains

tuples such that τ [X (ci)] ∈ ci for all 1 ≤ i ≤ k .

7

Notation and Terminology
Given P = 〈X , DE , C〉 the instantiation I is a tuple on
Y = (x1, . . . , xk) ⊆ X : ((x1, v1), . . . , (xk , vk))

I on Y is valid iff ∀xi ∈ Y , I [xi] ∈ D(xi)

I on Y is locally consistent on Y iff it is valid and for all C ∈ C with
X (C) ⊆ Y , I [X (C)] satisfies C

a solution to P is an instantiation I on X (C) which is locally consistent

I on Y is globally consistent if it can be extended to a solution, i.e.,
there exists s ∈ sol(P) with I = s[Y]

Example

P = 〈X = (x1, x2, x3, x4),DE = {D(xi) = {1..5}, ∀i},
C = {C1 ≡ alldiff(x1, x2, x3),C2 ≡ x1 ≤ x2 ≤ x3,C3 ≡ x4 ≥ 2x2}〉

πx1,x2(C1) ≡ (x1 6= x2)
I1 = ((x1, 1), (x2, 2), (x4, 7)) is not valid
I2 = ((x1, 1), (x2, 1), (x4, 3)) is local consistent since C3 only one with X (C3) ⊆ Y
and I2[X (C3)] satisfies C3

I2 is not global consistent: sol(P) = {(1, 2, 3, 4), (1, 2, 3, 5)}
8

Notation and Terminology
CSP is NP-complete!
 solved by extending partial instantiations to global consistent ones

P’ is a tightening of P if
XP′ = XP , DEP′ ⊆ DE , ∀C ∈ C,∃C ′ ∈ C,X (C ′) = X (C) and C ′ ⊆ C .
That is, any instantiation I on Y ⊆ XP locally inconsistent for P is locally
inconsistent for P ′.

SP is the space of all tightening for P

We are interested in the tightenings that preserve the set of solutions
(sol(P ′) = sol(P)) whose space is denoted Ssol

P and among them the
smallest

P∗ ∈ Ssol
P is global consistent if any instantiation I on Y ⊆ X which is locally

consistent in P∗ can be extended to a solution of P.

Computing P∗ is exponential in time and space search a close P in
polynomial time and space

Define a property Φ that states necessary conditions on instantiations that
enter in the definition of local consistency

9

Constraint Propagation

We reach a P that is Φ consistent by constraint propagation:

tighten DE
tighten C, ex: x1 + x2 ≤ x3 x1 + x2 = x3

add C to C
this is implemented by

reduction rules: sufficient conditions to rule out values that have no
chance to appear in a solution (defined through local consistency
property Φ).
rules iterations: a set of reduction rules for each set of constraint that
tighten the problem

Focus on domain-based tightenings

10

Domain-based tightenings

The space SP of domain-based tightenings of P is the set of problems
P ′ = 〈X ′,DE ′, C′〉 such that XP′ = XP , DEP′ ⊆ DE , C′ = C

Task:
Finding a tightening P∗ in Ssol

P ⊆ SP (the set that contains all problems that
preserve the solutions of P) such that:
forall xi ∈ XP , DP∗(xi) contains only values that belong to a solution itself,
i.e., DP∗(xi) = π{xi}(sol(P))

It is clearly NP-hard since it corresponds to solving P itself.

Reduction rules:

D(xi)← D(xi)∩{vi |D(x1)×D(xj−1)×{vi}×. . .D(xj+1)×. . .D(xk)∩C 6= ∅}

Rules iterations

Define Φ: e.g., unary, arc, path, k-consistency
11

Domain-based local consistency

Domain-based local consistency property Φ specifies a necessary condition on
values to belong to solutions

A domain-based property Φ is stable under union iff for any Φ-consistent
problem P1 = (X ,DE , C) and P2 = (X ,DE , C) the problem
P ′ = (X ,DE1 ∪ DE2,C) is Φ-consistent.

Example

Φ for each constraint C and variable xi ∈ X (C), at least half of the values in
D(xi) belong to a valid tuple satisfying C .

P = 〈X = (x1, x2),DE = {D1(x1) = {1, 2},D1(x2) = {2}},C ≡ {x1 = x2}〉 (1)
P = 〈X = (x1, x2),DE = {D2(x1) = {2, 3},D2(x2) = {2}},C ≡ {x1 = x2}〉 (2)

Both are Φ consistent but they are not stable under union.

12

Domain-based tightenings
Note: Not all Φ-consistent tightenings preserve the solutions
We search for the Φ-closure Φ(P) (the union of all P ′ ∈ SP Φ-consistent)

≡ enforcing Φ consistency

sol(φ(P)) = sol(P)

Example

P = 〈X = (x1, x2, x3, x4),DE = {D(xi) = {1, 2},∀i},
C = {C1 ≡ x1 ≤ x2,C2 ≡ x2 ≤ x3,C3 ≡ x1 6= x3}〉

Φ all values for all variables can be extended consistently to a second variable

P ′ = 〈X = (x1, x2, x3, x4),DE = {D(x1) = 1,D(x2) = 1,D(x3) = 2,∀i},
C = {C1 ≡ x1 ≤ x2,C2 ≡ x2 ≤ x3,C3 ≡ x1 6= x3}〉

P’ is consistent but it does not contain (1, 2, 2) which is in sol(P)
Φ(P) : 〈X ,DEΦ, C〉 with DΦ(x1) = 1,DΦ(x2) = {1, 2},DΦ(x3) = 2

13

Domain-based tightenings

Proposition (Fixed Point): If a domain based consistency property Φ is
stable under union, then for any P, the P’ with DEP′ obtained by iteratively
removing values that do not satisfy Φ until no such value exists is the
Φ-closure of P.

Contrary to P∗, Φ(P) can be computed by a greedy algorithm:

Corollary If a domain-based consistency property Φ is polynomial to check,
finding Φ(P) is polynomial as well.

enforcing Φ consistency ≡ finding closure Φ(P)

Possible to define a partial order
(For a, b, elements of a poset P, if a ≤ b or b ≤ a, then a and b are
comparable. Otherwise they are incomparable)
That is, Φ1 is at least as strong as another Φ2 if for any P: Φ1(P) ≤ Φ2(P),
ie, XΦ1(P) = XΦ2(P), DEΦ1(P) ⊆ DEΦ2(P), CΦ1(P) = CΦ2(P)

(any instantiation I on Y ⊆ XΦ2(P) locally inconsistent in Φ2(P) is locally
inconsistent in Φ1(P))

14

Arc Consistency
(On binary CSP)
Arc consistency: every value in a domain is consistent with every constraint.

C = c(x , y) with DE = {D(x),D(y)} is arc consistent iff
∀a ∈ D(x) there exists b ∈ D(y) such that (a, b) ∈ C
∀b ∈ D(y) there exists a ∈ D(x) such that (a, b) ∈ C

P is arc consistent iff it is AC for all its binary constraints

In general arc consistency does not imply global consistency.
An arc consistent but inconsistent CSP:

6=

=x ∈ {a, b} y ∈ {a, b}

A consistent but not arc consistent CSP:

=

x ∈ {a, b} y ∈ {a}

15

Generalized Arc Consistency (GAC)

Given arbitrary (non-normalized, non-binary) P, C ∈ C, xi ∈ X (C)

(Value) v ∈ D(xi) is consistent with C in DE iff ∃ a valid tuple τ for
C : vi = τ [xi]. τ is called support for (xi , vi)

(Variable) DE is GAC on C for xi iff all values in D(xi) are consistent
with C in DE (i.e., D(xi) ⊆ π{xi}(C ∩ π{X (C)}(DE)))

(Problem) P is GAC iff DE is GAC for all v in X on all C ∈ C

P is arc inconsistent iff the only domain tighter than DE which
is GAC for all variables on all constraints is the empty set.

(aka, hyperarc consistency, domain consistency)
Example: arc consistency 6= 2-consistency, AC < 2C on non-normalized
binary CSP, and incomparable on arbitrary CSP

16

References

Bessiere C. (2006). Constraint propagation. In Handbook of Constraint
Programming, edited by F. Rossi, P. van Beek, and T. Walsh, chap. 3. Elsevier.
Also as Technical Report LIRMM 06020, March 2006.

17

