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Algorithms to enforce consistency
Higher Order ConsistenciesResume

Definitions
(CSP, restrictions, projections, istantiation, local consistency, global
consistency)

Tigthtenings

Global consistent (any instantiation local consistent can be extended to
a solution) needs exponential time
 local consistency defined by conditions Φ on instantiations

Tightenings by constraint propagation: reduction rules + rules iterations
reduction rules ⇔ Φ
rules iteration: reach fixed point, that is, closure of all tightenings that
are Φ consistent

Domain-based Φ: (generalized) arc consistency
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An arbitrary CSP can be polynomially converted in an equivalent binary CSP.
Proof as exercise

Filtering algorithms have focused on binary. However recently focus on
efficiency issues and non-binary constraints as well.
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Revision: making a constraint arc consistent by propagating the domain from
a variable to anohter
general

D(xi )← D(xi ) ∩ π{xi}(C ∩ πX (C)(DE))

binary
D(xi )← D(xi ) ∩ π{xi}(join(C ,D(xi )))

Complexity: O(d2) or O(rd r )
d values, r arity
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Higher Order ConsistenciesAC1 – Rules Iteration

Binary case

Complexity (Mackworth and Freuder, 1986): O(end3)
e number of arcs, n variables
(ed2 each loop, nd number of loops)
best-case = O(ed)

Arc-consistency is at least O(ed2) in the worst case
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General case

O(er3d r+1) time
O(er) space
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Example

P = 〈X = (x , y , z), DE = {D(x) = D(y) = {1, 2, 3, 4},D(z) = {3}},
C = {C1 ≡ x ≤ y ,C2 ≡ y 6= z}}〉
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Binary case
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Example

P = 〈X = (x , y , z), DE = {D(x) = D(y) = {1, 2, 3, 4},D(z) = {3}},
C = {C1 ≡ x ≤ y ,C2 ≡ y 6= z}}〉
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Binary case
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Example

P = 〈X = (x , y , z), DE = {D(x) = D(y) = {1, 2, 3, 4},D(z) = {3}},
C = {C1 ≡ x ≤ y ,C2 ≡ y 6= z}}〉

12



Algorithms to enforce consistency
Higher Order ConsistenciesReverse2001

Binary case
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Example

P = 〈X = (x , y , z), DE = {D(x) = D(y) = {1, 2, 3, 4},D(z) = {3}},
C = {C1 ≡ x ≤ y ,C2 ≡ y 6= z}}〉
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Example

〈x < y , y < z , z < x ; x , y , z ∈ {1..100000}〉

is inconsistent. Proof: Apply revise to (x , x < y)

〈x < y , y < z , z < x ; x ∈ {1..99999}, y , z ∈ {1..100000}〉,

ecc. we end in a fail.

Disadvantage: large number of steps.
Run time depends on the size of the domains!

Note: we could proof fail by transitivity of <.
 Path consitency involves two constraints together
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Given P = 〈X ,DE , C〉 normalized and xi , xj :

the pair (vi , vj) ∈ D(xi )× D(xj) is p-path consistent iff forall
Y = (xi = xk1 , . . . , xkp = xj) with Ckq ,kq+1 ∈ C
∃τ : τ [Y ] = (vi = vk1 , . . . , vkq+1 = vj) ∈ πY (DE) and
(vkq , vkq+1) ∈ Ckp,kq+1 , q = 1, . . . , p

the CSP P is p-path consistent iff for any (xi , xj), i 6= j any locally
consistent pair of values is path consistent.

Example

P = 〈X = (x,x2, x3),D(xi ) = {1, 2}, C ≡ {x1 6= x2, x2 6= x3}〉

Not path consistent: e.g., (x1, 1), (x3, 2)
P = 〈X ,DE , C ∪ {x1 = x3}〉 is path consistent

2-path consistency if the path has length 2
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