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arc consitency does not remove all inconsistencies: even if a CSP is arc
consistent there might be no solution

stronger consistencies techniques are studied:
path consistency
restricted path consistency
k-consistency
(i , j)-consistent
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Given P = 〈X ,DE , C〉 normalized and xi , xj :

the pair (vi , vj) ∈ D(xi )× D(xj) is p-path consistent iff forall
Y = (xi = xk1 , . . . , xkp = xj) with Ckq ,kq+1 ∈ C
∃τ : τ [Y ] = (vi = vk1 , . . . , vkq+1 = vj) ∈ πY (DE) and
(vkq , vkq+1) ∈ Ckp,kq+1 , q = 1, . . . , p

the CSP P is p-path consistent iff for any (xi , xj), i 6= j any locally
consistent pair of values is path consistent.

Example

P = 〈X = (x1, x2, x3),D(xi ) = {1, 2}, C ≡ {x1 6= x2, x2 6= x3}〉

Not path consistent: e.g., for (x1, 1), (x3, 2) there is no x2
P = 〈X ,DE , C ∪ {x1 = x3}〉 is path consistent
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Alternative definition:
constraint composition:
Cx1,x3 = Cx1,x2 · Cx2,x3 = {(a, b) | ∃c((a, c) ∈ Cx1,x2 , (c , b) ∈ Cx2,x3)}
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Example

〈x < y , y < z , x < z ; x ∈ [0..4], y ∈ [1..5], z ∈ [6..10]〉

is path consistent. Indeed:

Cx,z ={(a, c) | a < c , a ∈ [0..4], c ∈ [6..10]}
Cx,y ={(a, b) | a < b, a ∈ [0..4], b ∈ [1..5]}
Cy ,z ={(b, c) | b < c , b ∈ [1..5], c ∈ [6..10]}

Example

〈x < y , y < z , x < z ; x ∈ [0..4], y ∈ [1..5], z ∈ [5..10]〉

is not path consistent. Indeed:
Cx,z = {(a, c) | a < c , a ∈ [0..4], c ∈ [5..10]} and for 4 ∈ [0..4] and
5 ∈ [5..10] no b ∈ [1..5] such that 4 < b and b < 5.
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2-path consistency if the path has length 2

CSP is p-path consistent ⇐⇒ 2-path consistent (Montanari, 1974).
Proof by induction.

Hence, sufficient to enforce consistency on paths of length 2.

path consistency algorithms work with path of length two only and, like
AC algorithms, make these paths consistent with revisions.

Even if PC eliminates more inconsitencies than AC, seldom used in
practice because of efficiency issues

PC require extensional representation of constraints and hence huge
amount memory.

Restricted PC does AC and PC only when a variable is left with one
value.
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Given P = 〈X ,DE , C〉, and set of variables Y ⊆ X with |Y | = k − 1:

a locally consistent instantiation I on Y is k-consistent iff for any kth
variable xik ∈ X \ Y ∃ a value vik ∈ D(xik ) : I ∪ {xik , vik} is locally
consistent
the CSP P is k-consistent iff for all Y of k − 1 variables any locally
consistent I on Y is k-consistent.

Example

arc-consistent 6= 2-consistent

D(x1) = D(x2) = {1, 2, 3}, x1 ≤ x2, x1 6= x2

arc consistent, every value has a support on one constraint
not 2-consistent, x1 = 3 cannot be extended to x2 and x2 = 1 not to x1 with
both constraints
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Example

D(xi ) = {1, 2}, i = 1, 2, 3; C = {(1, 1, 1), (2, 2, 2)}

is P path consistent? Yes because no binary variable such that X (C ) ⊆ Y
is P 3-consistent? No, because (x1, 1), (x2, 2) is locally consistent but cannot
be extended consistently to x3.

Example

〈x1 6= x2, x1 6= x3, x1 6= x3; x1 ∈ {0, 1}, x2 ∈ {0, 1}, x3 ∈ {0, 1}〉
〈x1 6= x2, x1 6= x3; x1 ∈ {a, b}, x2 ∈ {a}, ..., xk ∈ {a}〉

Given k > 1.
there exists a CSP that is (k − 1)-consistent but not k-consistent
there exists a CSP that is not (k − 1)-consistent but is k-consistent

9



Higher Order Consistencies
Weaker arc consistencies
Generic Rules Iteration

P is strongly k-consistent iff it is j-consistent ∀j ≤ k

constructing one requires O(nkdk) time and O(nk−1dk−1) space.

if P is strongly n-consistent then it is globally consistent

(i , j)-consistent: any consistnt instantiation of i different variables can be
extended to a consistent instantiation including any j additional variables
k consistency ≡ (k − 1, k) consistent

strongly (i , j)-consistent
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reduce calls to Revise in coarse-grained algorithms (Forward Checking)
reduce amount of work of Revise (Bound consistency)
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Given P binary and Y ⊆ X : |D(xi )| = 1∀xi ∈ Y :

P is forward checking consistent according to instantiation I on Y iff it
is locally consistent and for all xi ∈ Y , for all xj ∈ X \ Y for all
C (xi , xj) ∈ C is arc consistent on C (xi , xj).

(all constraints between assigned and not assigned variables are
consistent.)

O(ed) time
Extension to non-binary constraints
A search procedure maintaining forward checking does not need to check
consistency of values of the current variable against already instantiated
ones 6= chronological backtracking
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Defined only by procedure, not by fixed point definition

Algorithm partial lookahead and full lookahead
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domains inherit total ordering on Z,
minD(x) and maxD(x) called bounds of D(x)

Given P and C ,
a bounded support τ on C is a tuple that satisfies C and such that for
all xi ∈ X (C ), minD(xi ) ≤ τ [xi ] ≤ maxD(xi ),
that is, τ ∈ C ∪ πX (C)(D I ) (instead of D)

D I (xi ) = {v ∈ Z | min
D

(xi ) ≤ v ≤ max
D

(xi )}

C is bound(Z) consistent iff ∀xi ∈ X its bounds belong to a bounded
support on C

C is range consistent iff ∀xi ∈ X all its values belong to a bounded
support on C

C is bound(D) consistent iff ∀xi ∈ X its bounds belong to a support on
C
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GAC < (bound(D), range) < bound(Z) (strictly stronger)
bound(D) and range are incomparable

most of the time gain in efficiency

Example

sum(x1, . . . , xk , k)

GAC is NP-complete (reduction from SubSet problem).
But bound(Z) is polynomial: test ∀1 ≤ i ≤ n:
minD(xi ) ≥ k −

∑
j 6=i maxD(xj)

maxD(xi ) ≤ k −
∑

j 6=i minD(xj)
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Algorithms for constraint propagation:

scheduling steps of atomic reduction

termination criterion: local consistency

How to schedule the application of reduction rules to guarantee
termination?

How to avoid (at low cost) the application of redunant rules?

Have all derivations the same result?

How can we characterize it?
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Given P a reduction rule is a function f from SP to SP for all P ′ ∈ SP ,
f (P ′) ∈ SP .
(most cases take care of one a single variable and a single constraints):

Given C in P a propagator f for C is a reduction rule from SP to SP that
tightens only domains independently of the constraints other than C .

Properties of propagators:
Given P, f can be:

contracting: f (P) ≤ P
monotonic if P1 ≤ P2 ⇒ f (P1) ≤ f (P2)
idempotent if f (f (P)) = f (P)
commuting if fg(P) = gf (P)
subsumed by P iff ∀P1 ≤ P : f (P1) = P1
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Iteration: Let P = 〈X ,DE , C〉 and F = {f1, . . . , fk} a finite set of
propagators on SP . An iteration of F on P is a sequence 〈P0,P1, . . .〉 of
elements of SP defined by

P0 = P

Pj = fnj (Pj−1)

where j > 0 and nj ∈ [1, . . . , k].

P is stable for F iff ∀f ∈ F , f (P) = P
there may be several stable P but if F are monotonic then unique

Let P = 〈X ,DE , C〉 and F = {f1, . . . , fk}. If 〈P0,P1, . . .〉is infinite
iteration of F where each f ∈ F is activated infinitely often then there
exists j ≥ 0 such that Pj is stable for F (j is finite)

If P is stable for F then it is its weakest simultaneous fixed point
(greatest mutual fixed point of all propagators).
A strongest simultaneous fixed point would be a solution (hence not
unique) which would violate solution preservation
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If the propagator is contracting then Generic-Iteration terminates.
If propagator is monotonic then the final result does not change with the
order in which propagators are applied.

Example

Set of propagators FAC = {fij | xi ∈ X , cj ∈ C} all monotonic. ⇒ terminates
in arc consistency closure, which is fixed point for FAC .
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