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Naive Constraint Propagation




Naive Constraint Propagation

Looking for
propagate : Mx S—-> S

performing constraint propagation

start from some initial store

return store on which all propagation has been
performed

ignore efficiency, focus on principle idea
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Pierre Flener
M = set of all models
S = set of all stores


‘ Naive Propagation Function
V = set of decision variables

U = universe = common domain

propagate((V,U,P), s)  =setof propagaiors of model
s = store to start from

while peP and p(s) #s do

S 1= p(8);
return s;

= What is returned as result?
= Does it terminate?
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Pierre Flener
V = set of decision variables
U = universe = common domain
P = set of propagators of model
s = store to start from


Termination

Consider store s; at /-th iteration of loop with
S, Initial store

Sit1 < S
That is, s; form strictly decreasing sequence:

cannot be infinite
remember: (S,<) is well-founded!

Loop terminates!
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‘Result Computed

= Assume propagate((V,U,P),s)=s

sol((V,U,P),s) = sol((V,U,P),s’)

no solutions removed

for all peP. p(s’) = s
no further propagation possible
the weakest simultaneous fixpoint: unique (by mono.)

NB: a strongest simultaneous fixpoint would be a solution
(hence not unique), which would violate solution preservatlon
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Pierre Flener
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Pierre Flener
: unique (by mono.)

Pierre Flener
NB: a strongest simultaneous fixpoint would be a solution (hence not unique), which would violate solution preservation

Pierre Flener



Weakest Simultaneous Fixpoint

Assume propagate((V,U,P), s)=¢
Then

s weakest sim. fixpoint with s'< s
that is

for all pe P p(s)=§

clear, follows from termination of loop

weakest fixpoint?
any other fixpoint is stronger
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Why Naiver

Always searches all propagators of model for
propagator which can contract strictly

2010-04-01

maintain propagators which are known to have fixpoint
computed

might have to find out by having propagators which do
no contraction

take variables into account which connect two
propagators
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Realistic Constraint
Propagation




Improving Propagation

ldea: propagator narrows domain of some

(few) variables

re-propagate only propagators sharing modified
variables

Maintain a set of “dirty” propagators

not known whether at fixpoint for current store
all other propagators have fixpoint computed
only propagate "dirty" propagators
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Propagator Variables

Variables var(p) of propagator p

variables of interest

No input considered from other variables
No output computed on other variables
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Variable Dependencies

No output on other variables
for all se S, for all xe(V-var(p))
p(s)(x)=5(x)
No input from other variables
forall s,, s, €S
if (for all xevar(p): s,(x)=5s,(x)),
then (for all xevar(p):
pP(S1)(X)=p(S,)(x))
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Idea: Improved Propagation

maintain set N of “dirty” propagators

choose propagator to run next from N and
remove from N

compute modified variables

add propagators sharing variables with

modified variables to N
iIncluding the running propagator!
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Pierre Flener
(as propagators need not be idempotent)

Pierre Flener



‘ Improved Propagation

propagate((V,U,P), s,)
S:=8,; N:=P,;
while N# J do
choose p € N,
s’ = p(s); N:= N-{p};
MV ={xeV|s(x)#s(x)}, (modified variables)
DP:={qg e P|exists x € var(q): x e MV};
N ;= Nu DP; (maintain set N of dirty propagators)
S:=§;
return s;

(dependent
propagators)
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Pierre Flener
(modified variables)

Pierre Flener
(dependent propagators)

Pierre Flener
(maintain set N of dirty propagators)


Questions

What does it compute

does it compute simultaneous fixpoint?
the weakest?
Important: loop invariant

Termination?
stores are not any longer strictly stronger
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Summary:

Propagators
compute with stores
are contracting and monotonic
maintain solutions
strong enough to decide for assignments

Nalve propagation
terminates
computes weakest simultaneous fixpoint

Dependency directed propagation
if variables shrink, rerun dependent propagators only
computes weakest simultaneous fixpoint
terminates
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domains of some
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Improving Propagation
Further




General Idea

Essential: knowledge on fixpoint for a
propagator
So far: only implicit knowledge

Here: let us make knowledge explicit
propagators provide information
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We Are Done! What Now?

Suppose the following propagator
p(s) = {x =2 (s(x) N {1,2,3})}

implements domain constraint xe{1,2,3}

After executing p once, no further execution
needed:

if s < p(s) then p(s’)=¢

We can safely delete p from model
otherwise, pointless re-execution!
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Subsumed Propagators

Propagator p subsumed by store s, iff

forall 8 <s: p(s)=¢
all stronger stores are fixpoints
p entailed by s
s subsumes p (s entails p)
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Definition:

Pierre Flener



‘ Reminder: Propagator for <

= Propagator p_. for x<y

P< (S) =
{ x> {nes(x)| n<max(s(y)) },

y 2 {nes(y) | nzmin(s(x)) }}

Example:
p_<=is subsumed by {x : {1,2,3}, y : {3,4,5}}.
p_<=is not subsumed by {x : {1,2,3,4}, y : {3,4,5}}.
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Pierre Flener
Example:
p_<= is subsumed by {x : {1,2,3}, y : {3,4,5}}.
p_<= is not subsumed by {x : {1,2,3,4}, y : {3,4,5}}.
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We Are Done! What Next?

After executing p. on store s we have
P<(P<(S))= p<(S)

max(s(y)) does not change!

min(s(x)) does not change!
What happens: as var(p.)={x,y}, p- is added
to DP

but: s’ is fixpoint for p_
no need to include in DP
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and hence to N
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‘ First Attempt: Idempotent Functions

Definition:
= A function f e X > Xis idempotent, if
forall x e X: f(f(x)) = f(x)

= Very strong property for a propagator:
required for all stores!

An example of a non-idempotent propagator is given
in Example 2.9 on page 19 of Course Notes.
A domain consistent propagator is necessarily idempotent.
A bounds(Z) consistent propagator is not necessarily idempotent.
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Pierre Flener
An example of a non-idempotent propagator is given
in Example 2.9 on page 19 of Course Notes.

Pierre Flener
Definition:

Pierre Flener
A domain consistent propagator is necessarily idempotent.
A bounds(Z) consistent propagator is not necessarily idempotent.


Second Attempt: Weak Idempotence

A function f € X 2> Xis idempotent on x € X
if
f((x)) = f(x)

statement on just one element

For a propagator: if p is idempotent on s, it
does not mean that p is idempotent on s” with
S<s
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Pierre Flener
x is a fixpoint of f:

Pierre Flener



How to Find Out?

Given store s and propagator p

Does s subsume p?
try all s' < s: way toocostly

Is p idempotent on s?

apply p to s: that is what we tried
to avoid in 1st place
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Status Messages

Solution: propagator returns status and tells
result

propagator p is function
pe S> SMx S
with
SM = {fix, nofix, subsumed}
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Propagator with Status

Assume propagator p and store s

if p(s) = (fix, §'), then
s is fixpoint for p

iIf p(s) = (subsumed, s’), then
S subsumes p

if p(s) = (nofix, s’), then
no further knowledge
always safe (as before)
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Propagator for < with Subsumption

Propagator p. for x< y
p< (S) =
if max(s(x)) < min(s(y)) then
(subsumed, s)
else
(fix,
{ x =2 {nes(x)| n<max(s(y)) }
y 2 { nes(y) | nz min(s(x)) }})

but subsumption could also be tested for in the else case!
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but subsumption could also be tested for in the else case!

Pierre Flener



Propagator for = with
Subsum ptl ON (better version)
Propagator p_ for x < y
ep(s) =lets' =ps)in
if max(s'(x)) < min(s'(y)) then
(subsumed, s')
else

(fixpt, s')

ID2204, LO5, Christian Schulte, ICT,
2008-04-09 KTH
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(better version)
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What to Return?

Propagation function now also needs to

return the set of propagators
In case of subsumption, propagators are removed
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Improved Propagation

propagate((V,U,P), s,)

S:=8,; N:=P;

while N# J do
choose p € N,
(Sm,S’):= p(S); N:=N- {p},
if sm=subsumed then P := P - {p},; end
MV ={xeV|sx)#s(x)}
DP:={qg e P|exists x € var(q): x € MV};
if sm=fix then DP := DP — {p}; end
N:=Nuvu DP;
S =8|

return (P,S);
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Correctness

Are the optimizations correct?

How to prove:

invariant is still invariant
solutions remain the same
still computes the same

argument: fixpoints!
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Propagation Events




Propagation Events

Many propagators

simple to decide whether still at fixpoint for changed
domain

based on how domain has changed

How domain changes described by
propagation event
or just event
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Propagator for <

Propagator p. for x< y

P< (S) =
{ x> {nes(x)| n<max(s(y)) },

y 2 {nes(y) | nzmin(s(x)) }}

must be propagated only if max(s(y)) or min(s(x))
changes
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Propagator for 7

Propagator p, for x # y
P (S) =
{ x 2 s(x) - single(s(
y =2 s(y) - single(s(

where: single({n})
single(N)

y))
X)

\_/v

{n}
& (otherwise)

must be propagated only if x or y become assigned
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Events

Typical events

fix(x) X becomes assigned

min(x) minimum of x changes

max(x) maximum of x changes

any(x) domain of x changes
Clearly overlap

fix(x) occurs: min(x) or max(x) occur

any(x) occurs
min(x) or max(x) occur: any(x) occurs
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Pierre Flener
Do not mix up the "fix" status message
with the "fix(x)" propagation event.

Pierre Flener



Events on Store Change

events(s,s') =
{any(x) | s{x) < s(x) } v
{ min(x) | min s{x) > min s(x) } U
{ max(x) | max s{x) < max s(x) } v
{fix(x) ||s(x)|=1and |s(x)|>1}

where s'< s
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Events: Example

Given stores
s={x—{1,2,3}, x,—{3,4,56},
x;—{0,1}, x,—{7,8,10}}
s'={x,~{1,2}, x,—{3,5,6},
x;—{1}, x,—{7,8,10}}
Then events(s,s') =
{ max(x,), any(x;),

any(xy),
fix(x3), min(x;), any(x;)}
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Events are Monotonic

If " < s'and s' < sthen
events(s,s") =
events(s,s') U events(s',s")

Event occurs on change from sto s"

occurs on change from sto s, or
occurs on change from s' to s"
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Event Sets: First Requirement

Event set for propagator p: es(p)

for all stores s' and s with s' < s and s'(x)= s(x) for all
xe V-var(p)

if p(s)=s and p(s')#s' then
es(p) events(s,s') #J

if store s is fixpoint and changes to non-fixpoint s', then
events from s to s' must be included in es(p)
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FEvent Sets: Second Requirement

Event set for propagator p: es(p)
for all stores s with p(p(s))#p(s):
es(p) events(s,p(s)) #J

if propagator does not compute fixpoint on store s, then
events from s to p(s) must be included in es(p)

does not occur for idempotent propagators
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Pierre Flener
(which compute fixpoints in one go)


Propagator for <

Propagator p. for x< y

P< (S) =
{ x> {nes(x)| n<max(s(y)) },

y 2 {nes(y) | nzmin(s(x)) }}

good one: es(p.) = { max(y), min(x) }
but also: es(p.) = { any(y), any(x)}
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Propagator for 7

Propagator p, for x # y
P(S) =
{ x 2 s(x) - single(s(
y =2 s(y) - single(s(

where: single({n})
single(N)

y))
X)

\_/v

{n}
& (otherwise)

good one: es(p,) = { fix(y), fix(x) }
but also: es(p,) = { any(y), any(x)}
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Taking Advantage from Event Sets

Base decision of propagators to re-propagate
on event sets rather than on modified
variables

DP:={qg e P|events(s,s') n es(q) #J};

Note that the MV set is not needed any more.
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Note that the MV set is not needed any more.
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More Optimizations




Priorities

Choose propagator

according to cost: cheapest first
according to expected impact
general: first-in first-out (queue)
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Propagator Rewriting

Another observation: propagator for
max(x,y)=z

and values for x are smaller than for y

Replace by propagator for y=z
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Summary: Optimizing Propagation

Fixpoint knowledge avoids useless execution
idempotence, subsumption, events
knowledge provided by propagator

More details on optimizing propagation and
propagation in systems

Finite Domain Constraint Programming Systems, Christian

Schulte, Mats Carlsson.

In: Francesca Rossi, Peter van Beek, Toby Walsh, editors,
Handbook of Constraint Programming, Foundations of
Artificial Intelligence, pages 495-526. Elsevier Science
Publishers, 2006.
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