ID2204: Constraint Programming

Constraint Propagation

Lecture 04, 2010-04-01

Christian Schulte g;@e&
cschulte@kth.se $ KTH & %

% VETENSKAP %
@89 OCH KONST

Software and Computer Systems %9 gﬁg
School of Information and Communication Technology ‘”%X&

KTH — Royal Institute of Technology

Stockholm, Sweden KTH Information and

Communication Technology

mailto:cschulte@kth.se

Naive Constraint Propagation

Naive Constraint Propagation

Looking for
propagate : Mx S—-> S

performing constraint propagation

start from some initial store

return store on which all propagation has been
performed

ignore efficiency, focus on principle idea

2010-04-01 1D2204, 1.04, Christian Schulte, ICT, KTH

44

Pierre Flener
M = set of all models
S = set of all stores

‘ Naive Propagation Function
V = set of decision variables

U = universe = common domain

propagate((V,U,P), s) =setof propagaiors of model
s = store to start from

while peP and p(s) #s do

S 1= p(8);
return s;

= What is returned as result?
= Does it terminate?

2010-04-01 1D2204, 1.04, Christian Schulte, ICT, KTH 45

Pierre Flener
V = set of decision variables
U = universe = common domain
P = set of propagators of model
s = store to start from

Termination

Consider store s; at /-th iteration of loop with
S, Initial store

Sit1 < S
That is, s; form strictly decreasing sequence:

cannot be infinite
remember: (S,<) is well-founded!

Loop terminates!

2010-04-01 1D2204, 1.04, Christian Schulte, ICT, KTH

46

‘Result Computed

= Assume propagate((V,U,P),s)=s

sol((V,U,P),s) = sol((V,U,P),s’)

no solutions removed

for all peP. p(s’) = s
no further propagation possible
the weakest simultaneous fixpoint: unique (by mono.)

NB: a strongest simultaneous fixpoint would be a solution
(hence not unique), which would violate solution preservatlon

2010-04-01 1D2204, 1.04, Christian Schulte, ICT, KTH

Pierre Flener
the

Pierre Flener

Pierre Flener

Pierre Flener
: unique (by mono.)

Pierre Flener
NB: a strongest simultaneous fixpoint would be a solution (hence not unique), which would violate solution preservation

Pierre Flener

Weakest Simultaneous Fixpoint

Assume propagate((V,U,P), s)=¢
Then

s weakest sim. fixpoint with s'< s
that is

for all pe P p(s)=§

clear, follows from termination of loop

weakest fixpoint?
any other fixpoint is stronger

2010-04-01 1D2204, 1.04, Christian Schulte, ICT, KTH

48

Why Naiver

Always searches all propagators of model for
propagator which can contract strictly

2010-04-01

maintain propagators which are known to have fixpoint
computed

might have to find out by having propagators which do
no contraction

take variables into account which connect two
propagators

1D2204, 1.04, Christian Schulte, ICT, KTH 52

Realistic Constraint
Propagation

Improving Propagation

ldea: propagator narrows domain of some

(few) variables

re-propagate only propagators sharing modified
variables

Maintain a set of “dirty” propagators

not known whether at fixpoint for current store
all other propagators have fixpoint computed
only propagate "dirty" propagators

2010-04-01 1D2204, 1.04, Christian Schulte, ICT, KTH

54

Propagator Variables

Variables var(p) of propagator p

variables of interest

No input considered from other variables
No output computed on other variables

2010-04-01 1D2204, 1.04, Christian Schulte, ICT, KTH

55

Variable Dependencies

No output on other variables
for all se S, for all xe(V-var(p))
p(s)(x)=5(x)
No input from other variables
forall s,, s, €S
if (for all xevar(p): s,(x)=5s,(x)),
then (for all xevar(p):
pP(S1)(X)=p(S,)(x))

2010-04-01 1D2204, 1.04, Christian Schulte, ICT, KTH

56

Idea: Improved Propagation

maintain set N of “dirty” propagators

choose propagator to run next from N and
remove from N

compute modified variables

add propagators sharing variables with

modified variables to N
iIncluding the running propagator!

2010-04-01 1D2204, 1.04, Christian Schulte, ICT, KTH

57

Pierre Flener
(as propagators need not be idempotent)

Pierre Flener

‘ Improved Propagation

propagate((V,U,P), s,)
S:=8,; N:=P,;
while N# J do
choose p € N,
s’ = p(s); N:= N-{p};
MV ={xeV|s(x)#s(x)}, (modified variables)
DP:={qg e P|exists x € var(q): x e MV};
N ;= Nu DP; (maintain set N of dirty propagators)
S:=§;
return s;

(dependent
propagators)

2010-04-01 1D2204, 1.04, Christian Schulte, ICT, KTH 58

Pierre Flener

Pierre Flener
(modified variables)

Pierre Flener
(dependent propagators)

Pierre Flener
(maintain set N of dirty propagators)

Questions

What does it compute

does it compute simultaneous fixpoint?
the weakest?
Important: loop invariant

Termination?
stores are not any longer strictly stronger

2010-04-01 1D2204, 1.04, Christian Schulte, ICT, KTH

59

Summary:

Propagators
compute with stores
are contracting and monotonic
maintain solutions
strong enough to decide for assignments

Nalve propagation
terminates
computes weakest simultaneous fixpoint

Dependency directed propagation
if variables shrink, rerun dependent propagators only
computes weakest simultaneous fixpoint
terminates

2010-04-01 1D2204, 1.04, Christian Schulte, ICT, KTH

64

Pierre Flener
domains of some

Pierre Flener

Pierre Flener

Pierre Flener

Improving Propagation
Further

General Idea

Essential: knowledge on fixpoint for a
propagator
So far: only implicit knowledge

Here: let us make knowledge explicit
propagators provide information

2010-04-13 1D2204, 1.05, Christian Schulte, ICT, KTH

We Are Done! What Now?

Suppose the following propagator
p(s) = {x =2 (s(x) N {1,2,3})}

implements domain constraint xe{1,2,3}

After executing p once, no further execution
needed:

if s < p(s) then p(s’)=¢

We can safely delete p from model
otherwise, pointless re-execution!

2010-04-13 1D2204, 1.05, Christian Schulte, ICT, KTH

Subsumed Propagators

Propagator p subsumed by store s, iff

forall 8 <s: p(s)=¢
all stronger stores are fixpoints
p entailed by s
s subsumes p (s entails p)

2010-04-13 1D2204, 1.05, Christian Schulte, ICT, KTH

Pierre Flener
Definition:

Pierre Flener

‘ Reminder: Propagator for <

= Propagator p_. for x<y

P< (S) =
{ x> {nes(x)| n<max(s(y)) },

y 2 {nes(y) | nzmin(s(x)) }}

Example:
p_<=is subsumed by {x : {1,2,3}, y : {3,4,5}}.
p_<=is not subsumed by {x : {1,2,3,4}, y : {3,4,5}}.

2010-04-13 1D2204, 1.05, Christian Schulte, ICT, KTH

Pierre Flener
Example:
p_<= is subsumed by {x : {1,2,3}, y : {3,4,5}}.
p_<= is not subsumed by {x : {1,2,3,4}, y : {3,4,5}}.

Pierre Flener

We Are Done! What Next?

After executing p. on store s we have
P<(P<(S))= p<(S)

max(s(y)) does not change!

min(s(x)) does not change!
What happens: as var(p.)={x,y}, p- is added
to DP

but: s’ is fixpoint for p_
no need to include in DP

2010-04-13 1D2204, 1.05, Christian Schulte, ICT, KTH

Pierre Flener
and hence to N

Pierre Flener

Pierre Flener

‘ First Attempt: Idempotent Functions

Definition:
= A function f e X > Xis idempotent, if
forall x e X: f(f(x)) = f(x)

= Very strong property for a propagator:
required for all stores!

An example of a non-idempotent propagator is given
in Example 2.9 on page 19 of Course Notes.
A domain consistent propagator is necessarily idempotent.
A bounds(Z) consistent propagator is not necessarily idempotent.

2010-04-13 1D2204, 105, Christian Schulte, ICT, KTH

Pierre Flener

Pierre Flener

Pierre Flener
An example of a non-idempotent propagator is given
in Example 2.9 on page 19 of Course Notes.

Pierre Flener
Definition:

Pierre Flener
A domain consistent propagator is necessarily idempotent.
A bounds(Z) consistent propagator is not necessarily idempotent.

Second Attempt: Weak Idempotence

A function f € X 2> Xis idempotent on x € X
if
f((x)) = f(x)

statement on just one element

For a propagator: if p is idempotent on s, it
does not mean that p is idempotent on s” with
S<s

2010-04-13 1D2204, 1.05, Christian Schulte, ICT, KTH

Pierre Flener
x is a fixpoint of f:

Pierre Flener

How to Find Out?

Given store s and propagator p

Does s subsume p?
try all s' < s: way toocostly

Is p idempotent on s?

apply p to s: that is what we tried
to avoid in 1st place

2010-04-13 1D2204, 1.05, Christian Schulte, ICT, KTH

Pierre Flener
o

Pierre Flener

Pierre Flener

Status Messages

Solution: propagator returns status and tells
result

propagator p is function
pe S> SMx S
with
SM = {fix, nofix, subsumed}

2010-04-13 1D2204, 1.05, Christian Schulte, ICT, KTH

Propagator with Status

Assume propagator p and store s

if p(s) = (fix, §'), then
s is fixpoint for p

iIf p(s) = (subsumed, s’), then
S subsumes p

if p(s) = (nofix, s’), then
no further knowledge
always safe (as before)

2010-04-13 1D2204, 1.05, Christian Schulte, ICT, KTH

Propagator for < with Subsumption

Propagator p. for x< y
p< (S) =
if max(s(x)) < min(s(y)) then
(subsumed, s)
else
(fix,
{ x =2 {nes(x)| n<max(s(y)) }
y 2 { nes(y) | nz min(s(x)) }})

but subsumption could also be tested for in the else case!

2010-04-13 1D2204, 1.05, Christian Schulte, ICT, KTH

Pierre Flener
but subsumption could also be tested for in the else case!

Pierre Flener

Propagator for = with
Subsum ptl ON (better version)
Propagator p_ for x < y
ep(s) =lets' =ps)in
if max(s'(x)) < min(s'(y)) then
(subsumed, s')
else

(fixpt, s')

ID2204, LO5, Christian Schulte, ICT,
2008-04-09 KTH

45

Pierre Flener
(better version)

Pierre Flener

Pierre Flener

What to Return?

Propagation function now also needs to

return the set of propagators
In case of subsumption, propagators are removed

2010-04-13 1D2204, 1.05, Christian Schulte, ICT, KTH

Improved Propagation

propagate((V,U,P), s,)

S:=8,; N:=P;

while N# J do
choose p € N,
(Sm,S’):= p(S); N:=N- {p},
if sm=subsumed then P := P - {p},; end
MV ={xeV|sx)#s(x)}
DP:={qg e P|exists x € var(q): x € MV};
if sm=fix then DP := DP — {p}; end
N:=Nuvu DP;
S =8|

return (P,S);

2010-04-13 1D2204, 1.05, Christian Schulte, ICT, KTH

Correctness

Are the optimizations correct?

How to prove:

invariant is still invariant
solutions remain the same
still computes the same

argument: fixpoints!

2010-04-13 1D2204, 1.05, Christian Schulte, ICT, KTH

Propagation Events

Propagation Events

Many propagators

simple to decide whether still at fixpoint for changed
domain

based on how domain has changed

How domain changes described by
propagation event
or just event

2010-04-13 1D2204, 1.05, Christian Schulte, ICT, KTH

Propagator for <

Propagator p. for x< y

P< (S) =
{ x> {nes(x)| n<max(s(y)) },

y 2 {nes(y) | nzmin(s(x)) }}

must be propagated only if max(s(y)) or min(s(x))
changes

2010-04-13 1D2204, 1.05, Christian Schulte, ICT, KTH

Propagator for 7

Propagator p, for x # y
P (S) =
{ x 2 s(x) - single(s(
y =2 s(y) - single(s(

where: single({n})
single(N)

y))
X)

_/v

{n}
& (otherwise)

must be propagated only if x or y become assigned

2010-04-13 1D2204, 1.05, Christian Schulte, ICT, KTH

Events

Typical events

fix(x) X becomes assigned

min(x) minimum of x changes

max(x) maximum of x changes

any(x) domain of x changes
Clearly overlap

fix(x) occurs: min(x) or max(x) occur

any(x) occurs
min(x) or max(x) occur: any(x) occurs

2010-04-13 1D2204, 1.05, Christian Schulte, ICT, KTH

Pierre Flener
Do not mix up the "fix" status message
with the "fix(x)" propagation event.

Pierre Flener

Events on Store Change

events(s,s') =
{any(x) | s{x) < s(x) } v
{ min(x) | min s{x) > min s(x) } U
{ max(x) | max s{x) < max s(x) } v
{fix(x) ||s(x)|=1and |s(x)|>1}

where s'< s

2010-04-13 1D2204, 1.05, Christian Schulte, ICT, KTH

Events: Example

Given stores
s={x—{1,2,3}, x,—{3,4,56},
x;—{0,1}, x,—{7,8,10}}
s'={x,~{1,2}, x,—{3,5,6},
x;—{1}, x,—{7,8,10}}
Then events(s,s') =
{ max(x,), any(x;),

any(xy),
fix(x3), min(x;), any(x;)}

2010-04-13 1D2204, 1.05, Christian Schulte, ICT, KTH

Events are Monotonic

If " < s'and s' < sthen
events(s,s") =
events(s,s') U events(s',s")

Event occurs on change from sto s"

occurs on change from sto s, or
occurs on change from s' to s"

2010-04-13 1D2204, 1.05, Christian Schulte, ICT, KTH

Event Sets: First Requirement

Event set for propagator p: es(p)

for all stores s' and s with s' < s and s'(x)= s(x) for all
xe V-var(p)

if p(s)=s and p(s')#s' then
es(p) events(s,s') #J

if store s is fixpoint and changes to non-fixpoint s', then
events from s to s' must be included in es(p)

2010-04-13 1D2204, 1.05, Christian Schulte, ICT, KTH

FEvent Sets: Second Requirement

Event set for propagator p: es(p)
for all stores s with p(p(s))#p(s):
es(p) events(s,p(s)) #J

if propagator does not compute fixpoint on store s, then
events from s to p(s) must be included in es(p)

does not occur for idempotent propagators

2010-04-13 1D2204, 1.05, Christian Schulte, ICT, KTH

Pierre Flener
(which compute fixpoints in one go)

Propagator for <

Propagator p. for x< y

P< (S) =
{ x> {nes(x)| n<max(s(y)) },

y 2 {nes(y) | nzmin(s(x)) }}

good one: es(p.) = { max(y), min(x) }
but also: es(p.) = { any(y), any(x)}

2010-04-13 1D2204, 1.05, Christian Schulte, ICT, KTH

Propagator for 7

Propagator p, for x # y
P(S) =
{ x 2 s(x) - single(s(
y =2 s(y) - single(s(

where: single({n})
single(N)

y))
X)

_/v

{n}
& (otherwise)

good one: es(p,) = { fix(y), fix(x) }
but also: es(p,) = { any(y), any(x)}

2010-04-13 1D2204, 1.05, Christian Schulte, ICT, KTH

Taking Advantage from Event Sets

Base decision of propagators to re-propagate
on event sets rather than on modified
variables

DP:={qg e P|events(s,s') n es(q) #J};

Note that the MV set is not needed any more.

2010-04-13 1D2204, 1.05, Christian Schulte, ICT, KTH

Pierre Flener
Note that the MV set is not needed any more.

Pierre Flener

More Optimizations

Priorities

Choose propagator

according to cost: cheapest first
according to expected impact
general: first-in first-out (queue)

2010-04-13 1D2204, 1.05, Christian Schulte, ICT, KTH

Propagator Rewriting

Another observation: propagator for
max(x,y)=z

and values for x are smaller than for y

Replace by propagator for y=z

2010-04-13 1D2204, 1.05, Christian Schulte, ICT, KTH

Summary: Optimizing Propagation

Fixpoint knowledge avoids useless execution
idempotence, subsumption, events
knowledge provided by propagator

More details on optimizing propagation and
propagation in systems

Finite Domain Constraint Programming Systems, Christian

Schulte, Mats Carlsson.

In: Francesca Rossi, Peter van Beek, Toby Walsh, editors,
Handbook of Constraint Programming, Foundations of
Artificial Intelligence, pages 495-526. Elsevier Science
Publishers, 2006.

2010-04-13 1D2204, 1.05, Christian Schulte, ICT, KTH

http://web.imit.kth.se/~schulte/
http://web.imit.kth.se/~schulte/
http://www.sics.se/~matsc/

