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Global Constraints
Soft Constraints
Optimization ConstraintsDeclarative and Operational Semantic

Declarative Semantic: specify what the constraint means. Evaluation
criteria is expressivity.

Operational Semantic: specify how the constraint is computed, i.e., is
kept consistent with its declarative semantic. Evaluation criteria are
efficiency and effectiveness.

Example

So far, we have defined only the Declarative Semantic of the alldifferent
constraint, not its Operational Semantic.
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Global Constraints
Soft Constraints
Optimization ConstraintsDomain Consistency

Definition
A constraint C on the variables x1, . . . , xm with respective domains
D1, . . . ,Dm is called domain consistent (or hyper-arc consistent) if for each
variable xi and each value di ∈ Di there exists compatible values in the
domains of all the other variables of C , that is, there exists a tuple
(d1, . . . , di , . . . , dk) ∈ C .

4



Global Constraints
Soft Constraints
Optimization ConstraintsConsistency and Filtering Algorithms

Different level of consistency (arc, bound, range, domain) are maintained
by different filtering algorithms, which must be able to:
1. Check consistency of C w.r.t. the current variable domains
2. Remove inconsistent values from the variable domains

The stronger is the level of consistency, the higher is the complexity of
the filtering algorithm.

... again the alldifferent case

There exists in literature several filtering algorithms for the alldifferent
constraints.
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Soft Constraints
Optimization ConstraintsDomain consistency for alldifferent

1. build value graph G = (X ,D(X ),E )

2. compute maximum matching M in G
3. if |M| < |X | then return false
4. mark all arcs in GM that are not in M as unused
5. compute SCCs in GM and mark all arcs in a SCC as used
6. perform breadth-first in GM search starting from M-free vertices, and

mark all traversed arcs as used if they belong to an even path
7. for all arcs (xi , d) in GM marked as unused do

D(xi ) := D(xi ) \ d
ifD(xi ) = ∅ then return false

8. return true

Overall complexity: O(n
√

m + (n + m) + m)
It can be updated incrementally if other constraints remove some values.
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Global Constraints
Soft Constraints
Optimization ConstraintsRelaxed Consistency

Definition
A constraint C on the variables x1, . . . , xm with respective domains
D1, . . . ,Dm is called bound(Z) consistent if for each variable xi and each
value di ∈ {min(Di ),max(Di )} there exists compatible values between the
min and max domain of all the other variables of C , that is, there exists a
value dj ∈ [min(Di ),max(Di )] for all j 6= i such that (d1, . . . , di , . . . , dk) ∈ C .

Definition
A constraint C on the variables x1, . . . , xm with respective domains
D1, . . . ,Dm is called range consistent if for each variable xi and each value
di ∈ Di there exists compatible values between the min and max domain of
all the other variables of C , that is, there exists a value
dj ∈ [min(Di ),max(Di )] for all j 6= i such that (d1, . . . , di , . . . , dk) ∈ C .
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Global Constraints
Soft Constraints
Optimization ConstraintsBound Consistency [Mehlorn&Thiel2000]

Definition (Convex Graph)

A bipartite graph G = (X ,Y ,E ) is convex if the vertices of Y can be
assigned distinct integers from [1, |Y |] such that for every vertex x ∈ X , the
numbers assigned to its neighbors form a subinterval of [1, |Y |].

In convex graph we can find a matching in linear time.
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Global Constraints
Soft Constraints
Optimization ConstraintsSurvey of complexity: effectiveness and efficiency

Consistency Idea Complexity Amort. Reference(s)
arc O(n2) [VanHentenryck1989]
bound Hall O(n log n) [Puget1998]

Flows [Mehlhorn&Thiel2000]
Hall [Lopez&All2003]

O(n) [Mehlhorn&Thiel2000]
[Lopez&All2003]

range Hall O(n2) [Leconte1996]
domain Flows O(n

√
m) O(n

√
k) [Régin1994],[Costa1994]

Where n = number of variables, m =
∑

i∈1...n |Di |, and
k = number of values removed.
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gcc
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Optimization ConstraintsFiltering

regular
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Soft Constraints
Optimization ConstraintsFiltering

subsetsum
10 ≤ 2x1 + 3x2 + 4x3 + 5x4 ≤ 12
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disjunctive
cumulative
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Exercise:
linear
element
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Global Constraints
Soft Constraints
Optimization ConstraintsFiltering Algorithm Design

1. Filtering algorithms based on a generic algorithm
Simple “square” constraint using element:

element(y , [2, 4, 8, 16, 32], x), x ∈ {1, 2, 3, 4, 5}

2. Filtering algorithms based on existing algorithms
Reuse existing algorithms for filtering (e.g., flows algorithms, dynamic
programming).

3. Filtering algorithms based on ad-hoc algorithms
Pay particular attention to incrementality and amortized complexity

4. Filtering algorithms based on model reformulation
See the Constraint Decomposition approach
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Soft Constraints
Optimization ConstraintsSoft Constraints

Soft constraint
A soft constraint is a constraint that may be violated. We measure the
violation of each constraint, and the goal is to minimize the total amount of
violation of all soft-constraints.

Definition

A violation measure for a soft-constraint C (x1, . . . , xn) is a function

µ : D(x1)× · · · × D(xn)→ Q.

This measure is represented by a cost variable z .
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Global Constraints
Soft Constraints
Optimization ConstraintsViolation measures

The variable-based violation measure µvar counts the minimum number
of variables that need to change their value in order to satisfy the
constraint.

The decomposition-based violation measure µdec counts the number of
constraints in the binary decomposition that are violated.
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Global Constraints
Soft Constraints
Optimization ConstraintsThe soft-alldifferent

Definition
Let x1, x2, ..., xn, z be variables with respective finite domains
D(x1),D(x2), ...,D(xn),D(z). Let µ be a violation measure for the
alldifferent constraint. Then

soft-alldifferent(x1, ..., xn, z , µ) =

{(d1, ..., dn, d) | ∀i .di ∈ D(xi ), d ∈ D(z), µ(d1, ..., dn) ≤ d}

is the soft alldifferent constraint with respect to µ.
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Optimization ConstraintsThe soft-alldifferent: an example

Example

Consider the following CSP

x1 ∈ {a, b}, x2 ∈ {a, b}, x3 ∈ {a, b}, x4 ∈ {a, b, c}, z ∈ Z+

soft-alldifferent(x1, x2, x3, x4, µ, z)
min z

We have for instance µvar (b, b, b, b) = 3 and µdec(b, b, b, b) = 6.
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balancing
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Global Constraints
Soft Constraints
Optimization ConstraintsOptimization Constraints

Optimization Constraint bring the costs of variable-value pair into the
declarative semantic of the constraints.

The filtering does take into account the cost, and a tuple may be inconsistent
because it does not lead to a solution of “at least” a given cost.

23



Global Constraints
Soft Constraints
Optimization Constraintsgcc with costs

cardinality or cost_gcc (global cardinality constraint with costs)

Let x1, . . . , xn be assignment variables whose domains are contained in
{v1, . . . , vn′} and let {cv1 , . . . , cvn′} be count variables whose domains are
sets of integers and w(x , d) ∈ Q are costs. Then

cost_gcc([x1, ..., xn], [cv1 , ..., cvn′ ], z ,w) =

{(d1, ..., dn, o1, ..., on′) |
{(d1, ..., dn, o1, ..., on′) ∈ gcc(([x1, ..., xn], [cv1 , ..., cvn′ ]),

∀dj ∈ D(xj) d ∈ D(z)
∑

i

w(xi , di ) ≤ d}.
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Global Constraints
Soft Constraints
Optimization ConstraintsReduced-Cost Based Filtering [Focacci&all1999]

Definition

Let X = {x1, ..., xn} be a set of variables with corresponding finite domains
D(x1), ...,D(xn). We assume that each pair (xi , j) with j ∈ D(xi ) induces a
cost cij .
We extend any global constraint C on X to an optimization constraint opt_C
by introducing
a cost variable z (that we wish to minimize) and defining

opt_C(x1, ..., xn, z , c) = {(d1, ..., dn, d)|(d1, ..., dn) ∈ C (x1, ..., xn),

∀i .di ∈ D(xi ), d ∈ D(z),
∑

i=1,...,n

cidi ≤ d}.
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Optimization ConstraintsLinear Relaxation

We introduce binary variables yij for all i ∈ {1, ..., n} and j ∈ D(xi ), such
that

xi = j ⇔ yij = 1, ∀i = 1, . . . , n, ∀j ∈ D(xi ),

xi 6= j ⇔ yij = 0, ∀i = 1, . . . , n, ∀j ∈ D(xi )
∑

j∈D(xi )

yij = 1, ∀i = 1, . . . , n.

+ constraint dependent linear equation

The reduced-cost are given w.r.t. the objective:∑
i=1,...,n

∑
j∈D(xi )

cijyij
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Example
alldiff

min
∑

i,j ci,jyi,j∑
j∈D(xi )

yij = 1, ∀i = 1, . . . , n∑
i=1,...,n yij ≤ 1, ∀j ∈ D(xi )

yij ≤ 0
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Soft Constraints
Optimization ConstraintsFiltering by Reduced-Cost (aka “variable fixing”)

Recall that reduced-costs estimate the increase of the objective function
when we force a variable into the solution.

Let c̄ij be the reduced cost for the variable-value pair xi = j , and let z∗ be
the optimal value of the current linear relaxation.

We apply the following filtering rule:

if z∗ + c̄ij > maxD(z) then D(xi )← D(xi ) \ {j}.
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