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Course Overview

v/ Introduction
v Atrtificial Intelligence
v Intelligent Agents
v/ Search
v/ Uninformed Search
v/ Heuristic Search
¢ Uncertain knowledge and
Reasoning
v/ Probability and Bayesian
approach
v/ Bayesian Networks
v/ Hidden Markov Chains
v/ Kalman Filters

Learning

o Supervised

Decision Trees, Neural
Networks

Learning Bayesian Networks
Unsupervised

EM Algorithm

Reinforcement Learning

Games and Adversarial Search

Minimax search and
Alpha-beta pruning
Multiagent search

Knowledge representation and

Reasoning
o Propositional logic
o First order logic
o Inference
e Plannning



Decision Trees
-Nearest Neighbor

Machine Learning Cincar Models

What? Parameters, network structure, hidden concepts,
What from? inductive + unsupervised, reinforcement, supervised
What for? prediction, diagnosis, summarization
How? passive vs active, online vs offline
Type of outputs regression, classification

Details generative, discriminative



Decision Trees
-Neares t Neighbor

Supervised Learning Eime ol

Given a training set of V example input-output pairs

{(a,y1), (x2,¥2)5 -5 (v, yw) }

where each y; was generated by an unknwon function y = f(x),
find a hypothesis function h from an hypothesis space 7/ that approximates
the true function f

Measure the accuracy of the hypotheis on a test set made of new examples.
We aim a good generalization



Supervised Learning

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)
E.g., curve fitting:

f(x)
A

/‘/ vd
ﬁ<//]
e W

Ockham's razor: maximize a combination of consistency and simplicity



ecision Trees
-Neares t Neighbor
Linear Models

if we have a probability on the hypothesis:

h* = argmax,c4, Pr(h | data) = argmax,,, Pr(data | h) Pr(h)

Trade off between the expressiveness of a hypothesis space and the
complexity of finding a good hypothesis within that space.



Decision Trees
k-Nearest Neighbor

Outline Linear Models

1. Decision Trees

2. k-Nearest Neighbor

3. Linear Models



Learning Decision Trees

Decision Trees

A decision tree of a pair (x, y) represents a function that takes the input
attribute x (Boolean, discrete, continuous) and outputs a simple Boolean y.

E.g., situations where | will/won't wait for a table. Training set:

Attributes Target

Example Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait
X1 T F F T Some 355 F T French 0-10 T
X T F F T Full s F F Thai 30-60 F
X3 F T F F Some s F F Burger 0-10 T
Xg T F T T Full 3 F F Thai 10-30 T
Xg T F T F Full 358 F T French =60 F
Xe F T F T Some 55 T T Italian 0-10 T
X7 F T F F None s T F Burger 0-10 F
Xg F F F T Some 55 T T Thai 0-10 T
Xo F T T F Full $ T F Burger > 60 F
X10 T T T T Full 558 F T Italian 10-30 F
X711 F F F F None 3 F F Thai 0-10 F
X712 T T T T Full $ F F Burger 30-60 T

Classification of examples positive (T) or negative (F)




Decision Trees
-Nearest Neighbor

Decision trees Cincar Models

One possible representation for hypotheses
E.g., here is the "true” tree for deciding whether to wait:

Patrons?

None g Full

WaitEstimate?

>60

Alternate?

No

| Reservation? || Fri/Sat?

|
No I/ \ Yes

Alternate?

No Yes

No




Decision Trees
-Nearest Neighbor

Example Linear Models
CREDIT
NO. RISK HISTORY DEBT COLLATERAL INCOME
1. high bad high none $0 to $15k
2. high unknown high none $15 to $35k
3. moderate unknown low none $15 to $35k
4. high unknown low none $0 to $15k
5. low unknown low none over $35k
6. low unknown low adequate over $35k
7. high bad low none 30 to $15k
moderate bad low adequate aver $35k
low good low none over $35k
low good high adequate over $35k
high good high none $0to $15k
moderate good high none $15 to $35k
low good high none over $35k
high bad high none $15 to $35k

Table 10.1 Data from credit history of loan applications

10



Decision Trees

Example

credit history?

good

unknown/bad\\

collateral? debt?

none/\mequate high low

high low
/ \ /N / \

collateral?

debt?

collateral?

none adequate none adequate

income?

income?

$0 to $15k $15 to §35k  over $35k $0to $15k $151t0 $35k over §35k

/

e 10.13 A decision tree for credit risk assessment.

Figur
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Decision Trees

Expressiveness

Decision trees can express any function of the input attributes.
E.g., for Boolean functions, truth table row — path to leaf:

A B AxorB
F F F
F T T
T F T
T T F

Trivially, there is a consistent decision tree for any training set

w/ one path to leaf for each example (unless f nondeterministic in x)
but it probably won't generalize to new examples

Prefer to find more compact decision trees

12



Decision Trees
-Nearest Neighbor

Hypothesis spaces Lincar Model

How many distinct decision trees with n Boolean attributes??

= number of Boolean functions

= number of distinct truth tables with 2 rows = 22" functions

E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees

More expressive hypothesis space
— increases chance that target function can be expressed @
— increases number of hypotheses consistent w/ training set
= may get worse predictions @

There is no way to search the smallest consistent tree among 22"

13



Decision Trees

Heuristic approach
Greedy divide-and-conquer:

o test the most important attribute first

o divide the problem up into smaller subproblems that can be solved
recursively

function DTL(examples, attributes, default) returns a decision tree

if examples is empty then return default
else if all examples have the same classification then return the classification
else if attributes is empty then return Plurality Value(examples)
else
best < Choose-Attribute(attributes, examples)
tree < a new decision tree with root test best
for each value v; of best do
examples; <— {elements of examples with best = v;}
subtree <— DTL(examples;, attributes — best, Mode(examples))
add a branch to tree with label v; and subtree subtree
return tree

14



Decision Trees

Choosing an attribute

Idea: a good attribute splits the examples into subsets that are (ideally) “all
positive” or “all negative”

000000 000000
000000 000000
Patrons?
None Some Full French Italian Thai Burger
0000 00 o o 00 o0
o0 0000 o e 00 o0

Patrons? is a better choice—gives information about the classification

15



Decision Trees
k

Information

The more clueless | am about the answer initially, the more information is
contained in the answer

0 bits to answer a query on a coin with only head

1 bit to answer query to a Boolean question with prior (0.5,0.5)

2 bits to answer a query on a fair die with 4 faces a query on a coin with 99%
probability of returing head brings less information than the query on a fair
coin.

Shannon formalized this concept with the concept of entropy.
For a random variable X with values x; and probability Pr(x,) has entropy:

H(X) = =) Pr(xx)log, Pr(x)

16



@ Suppose we have p positive and 11 negative examples is a training set,
then the entropy is H({(p/(p + n),n/(p + n)))
E.g., for 12 restaurant examples, p = =6 so we need 1 bit to classify a
new example information of the table

@ An attribute A splits the training set E into subsets £, ..., Ey4, each of

which (we hope) needs less information to complete the classification

o Let E; have p; positive and n; negative examples
~ H((pi/(pi + ni).ni/(pi + n;))) bits needed to classify a new example
on that branch
~+ expected entropy after branching is

pi + n;

Remainder(A) =
p+n

H((pi/(pi + ni), ni/(pi + ni)))

o The information gain from attribute A is

Gain(A) = H((p/(p + n),n/(p + n))) — Remainder(A)

= choose the attribute that maximizes the gain



Decision Trees
-Nearest Neighbor

Example contd. Cinear Modas

Decision tree learned from the 12 examples:

Patrons?

Burger

Fri/Sat?

Substantially simpler than “true” tree—a more complex hypothesis isn't
justified by small amount of data

18



ecision Trees

-Neares t Neighbor
Performance measurement Linear Models

Learning curve = % correct on test set as a function of training set size

]
%09
B
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C
507
[$)
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0.4

0 10 20 30 40 50 60 70 80 90100
Training set size

Restaurant data; graph averaged over 20 trials
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Decision Trees
. . . k-Neares t Neighbor
Overflttmg and Prun|ng Cincar Modele

Pruning by statistical testing
under the null hyothesis expected numbers, p, and 7,

N .karnk

b = p Pi Nk
p+n

p+n

d
— — 2
A — Z Pk Pk ( Nk nk)
k=1 ik

x? distribution with p + n — 1 degrees of freedom
Early stopping misses combinations of attributes that are informative



Further Issues

(]

Missing data

Multivalued attributes

(]

(4]

Continuous input attributes

(]

Continuous-valued output attributes

Decision Trees
-Nearest Neighbor
Linear Models

22



Decision Trees
k-Nearest Neighbor

Decision Trees Cincar Models
8 ——
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Decision Trees

Decision Tree Types

o Classification tree analysis is when the predicted outcome is the class to
which the data belongs. lterative Dichotomiser 3 (ID3), C4.5, (Quinlan,
1986)

o Regression tree analysis is when the predicted outcome can be
considered a real number (e.g. the price of a house, or a patient's length
of stay in a hospital).

o Classification And Regression Tree (CART) analysis is used to refer to
both of the above procedures, first introduced by (Breiman et al., 1984)

@ CHi-squared Automatic Interaction Detector (CHAID). Performs
multi-level splits when computing classification trees. (Kass, G. V. 1980).

@ A Random Forest classifier uses a number of decision trees, in order to
improve the classification rate.

@ Boosting Trees can be used for regression-type and classification-type
problems.

Used in data mining (most are included in R, see rpart and party packages,
and in Weka, Waikato Environment for Knowledge Analysis)

24



Outline

1. Decision Trees

2. k-Nearest Neighbor

3. Linear Models

Decision Trees
k-Nearest Neighbor
Linear Models

25



k-Nearest Neighbor

Non-parametric learning

o When little data available ~~parametric learning (restricted from the
model selected)

@ When massive data we can let hypothesis grow from data ~~non
parametric learning
instance based: construct from training instances

26



Decision Trees
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Predicting Bankruptcy Uincar Modds

L R B 8-

3 0.2 No 7 - - * No
1 0.3 NO .Yes
4 05 No 61 = .

2 0.7 No 5

0 1.0 No LG - ® -

1 1.2 No

1 1.7 No 31 = .

6 0.2 VYes 2 o © n
7 03 Yes 1 - ° ° é

6 0.7 Yes 0 _

3 1.1 Yes ! w 5 !
2 1.5 Yes 0 0.5 1 1.5 2
4 1.7 Yes R

2 19 Yes

L: #late payments / year
R: expenses / income



Decision Trees
k-Nearest Neighbor

Nearest Neighbor Linear Model

Basic idea:

@ Remember all your data

@ When someone asks a question

o find nearest old data point
o return answer associated with it

. o o o °
e o ®
o o ° o e °
L] e o
e o o, . ®e @ °
® 2 ¢ eg0
® o . e o " .
® o °o® ®e ® e}
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k-Nearest Neighbor

o Find k observations closest to x and average the response

=i 3

X €Nj(x)

o For qualitative use majority rule
@ Needed a distance measure:

o Euclidean
o Standardization x’ = *~* (Mahalanobis, scale invariant)

e Hamming

29



Decision Trees

.. k-Nearest Neighbor
Predlctmg Bankru ptcy P g

8 5

7 o * No

61{ = o =Yes

5 o

L4 °

31 o o

2 ° ° [ B

1 o o .

0 T . - )

0 0.5 1 1.5 2
R

D(x', x") = v’z (L' - L + (SR' 3Ry
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Predicting Bankruptcy

r
OFRr NWHAMhUONO®

Decision Trees

-Nearest Neighbor

inear Models

D(x',x*)y = 3 (L'~ L¥)* + (5R' - 5R*)?
|




@ Learning is fast

o Lookup takes about n computations
with k-d trees can be faster

@ Memory can fill up with all that data

@ Problem: Course of dimensionality b9 — %1 = b= %

k-Nearest Neighbor

Qe

32



Decision Trees

k-Nearest Neighbor e Woda

8 "
2 & *No
6! = " =Yes
5 J

L4 - o [
3 =]
2 @ o [ ] n
1 ° o
0 :

0 0.5 1 1.5 2
R

* Find the k nearest points
* Predict output according to the majority
e Choose k using cross-validation

33
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Backruptcy Example Lincar Models

7 - a * No
= Yes

o
*

0 0.5 1.5 2

o
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1-Nearest Neighbor

Decision Trees
k-Nearest Neighbor
Linear Models

-
O N W HhUuoONO®
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Outline

1. Decision Trees

2. k-Nearest Neighbor

3. Linear Models

Decision Trees
k-Nearest Neighbor
Linear Models

36



Decision Trees
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Linear Models Cinear Models

Univariate case
Hypotheisis space made by linear functions

hy(x) = wix + wo
Find w by min squared loss function:

N N
L(he) =Y L2 (v, hw(9)) = D (v = hu(x3))?
j=1

j=1

w* = argmin L(hy(x))

oL

OTVO =-2(y—hu(x))=0
oL

oy =2(y — hu(x))x =0

wo. wy in closed form.

37



Decision Trees
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Linear Models

Multivariate case
hw(x) = wo + wixy + ... 4+ Wox, = w - X
w* = argmin,, Z Lo (y;, wx;)
J
w* = (XTX)"!XTy in closed form
@ Basis functions: fixed non linear functions ¢;(x):

P,
hw (x) = wo + 3251 9i(x)
o To avoid overfitting, regularization: EmpLoss(h) + A - Complexity(h)

Complexity(h) Z [w; |9

38
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Non-Parametric Regression Linear Models

Instance based methods
Similar idea as k-nearest neighbor:
For a query point x, solve following regression problem:

w* = argmin, S K([lxq — 1)y — w - x)?
J

where K is a kernel function (eg, radial kernel)

39



Decision Trees
-Nearest Neighbor

Linear Classification Linear Models
7.5 7.5
7 8 o) 7 o]
6.5 6.5 B
6 6
55 55
= 51, = 51,
4.5 o] 4.5 o)
4 © 4 ©
35 . . 35
3 3
25 25
4.5 5 55 6 6.5 7 4.5 5 55 6 6.5 7
X1 X1

decision boundary described by ax; + bx, =0

1 fw-x>0

hy(x) =
(x) 0 otherwise

step function: gradient not defined
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Logistic Regression Lincar Model

1
~ 1+exp(—w-x)

hu (%)

1.0
I

0.8

/(1 + exp(-x))
0.6

0.4

0.2

0.0

g'(z) = g(2)(1 — g(2))
g'(w-x)=g(w-x)(1—g(w-x) = hy(x)(1 = hu(x))

o = =2y — hy(x)) g/ x)x

41
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Gradient Descent Cincar Models

Finding local minima of derivable continuous functions

w <— any initial value
repeat
for each w; in w do
L Wi <— W — « oL

ow;

until convergence ;

Batch gradient descent: L is the sum
of the contribution of each example.
Guaranteed to converge.

Stochastic gradient descent: one
example at a time in random order.
Online. Not guaranteed to converge.

42
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Gradient Descent for Step Function Linear Models

In step function gradient not defined.
However, the update rule:

w; < w; — aly — hw(x))x;

ensures convergence when data are linearly separable. Otherwise unsure.

43
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