
Lecture 11
Supervised Learning

Artificial Neural Networks

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Slides by Stuart Russell and Peter Norvig

Neural Networks
Other Methods and IssuesCourse Overview

4 Introduction
4 Artificial Intelligence
4 Intelligent Agents

4 Search
4 Uninformed Search
4 Heuristic Search

4 Uncertain knowledge and
Reasoning

4 Probability and Bayesian
approach

4 Bayesian Networks
4 Hidden Markov Chains
4 Kalman Filters

Learning
Supervised
Decision Trees, Neural
Networks
Learning Bayesian Networks
Unsupervised
EM Algorithm

Reinforcement Learning
Games and Adversarial Search

Minimax search and
Alpha-beta pruning
Multiagent search

Knowledge representation and
Reasoning

Propositional logic
First order logic
Inference
Plannning

2

Neural Networks
Other Methods and IssuesOutline

1. Neural Networks
Feedforward Networks

Single-layer perceptrons
Multi-layer perceptrons

2. Other Methods and Issues

3

Neural Networks
Other Methods and IssuesA neuron in a living biological system

Axon

Cell body or Soma

Nucleus

Dendrite

Synapses

Axonal arborization

Axon from another cell

Synapse

Signals are noisy “spike trains” of electrical potential

4

Neural Networks
Other Methods and Issues

In the brain: > 20 types of neurons with 1014 synapses

(compare with world population = 7× 109)
Additionally, brain is parallel and reorganizing while computers are serial and
static
Brain is fault tolerant: neurons can be destroyed.

5

Neural Networks
Other Methods and Issues

Observations of neuroscience

Neuroscientists: view brains as a web of clues to the biological
mechanisms of cognition.

Engineers: The brain is an example solution to the problem of cognitive
computing

6

Neural Networks
Other Methods and IssuesApplications

supervised learning: regression and classification

associative memory

optimization:

grammatical induction, (aka, grammatical inference)
e.g. in natural language processing

noise filtering

simulation of biological brains

7

Neural Networks
Other Methods and IssuesArtificial Neural Networks

 “The neural network” does not exist. There are different paradigms for
neural networks, how they are trained and where they are used.

Artificial Neuron

Each input is multiplied by a weighting factor.

Output is 1 if sum of weighted inputs exceeds the threshold value;
0 otherwise.

Network is programmed by adjusting weights using feedback from
examples.

8

Neural Networks
Other Methods and IssuesMcCulloch–Pitts “unit” (1943)

Output is a function of weighted inputs:

ai = g(ini) = g

∑
j

Wj,iaj



Output

Σ
Input

Links

Activation

Function

Input

Function

Output

Links

a0 = −1 ai = g(ini)

ai

g
iniWj,i

W0,i

Bias Weight

aj

A gross oversimplification of real neurons, but its purpose is
to develop understanding of what networks of simple units can do

9

Neural Networks
Other Methods and IssuesActivation functions

Non linear activation functions

(a)
 (b)

+1 +1

iniini

g(ini)g(ini)

(a) is a step function or threshold function
(mostly used in theoretical studies)

(b) is a continuous activation function, e.g., sigmoid function 1/(1 + e−x)
(mostly used in practical applications)

Changing the bias weight W0,i moves the threshold location
10

Neural Networks
Other Methods and IssuesImplementing logical functions

AND

W0 = 1.5

W1 = 1

W2 = 1

OR

W2 = 1

W1 = 1

W0 = 0.5

NOT

W1 = –1

W0 = – 0.5

McCulloch and Pitts: every (basic) Boolean function can be implemented
(eventually by connecting a large number of units in networks, possibly
recurrent, of arbitrary depth)

11

Neural Networks
Other Methods and IssuesNetwork structures

Architecture: definition of number of nodes and interconnection structures
and activation functions g but not weights.

Feed-forward networks:
no cycles in the connection graph

single-layer perceptrons (no hidden layers)

multi-layer perceptrons (one or more hidden layers)

Feed-forward networks implement functions, have no internal state

Recurrent networks:
– Hopfield networks have symmetric weights (Wi,j = Wj,i)

g(x) = sign(x), ai = {1, 0}; associative memory
– recurrent neural nets have directed cycles with delays

=⇒ have internal state (like flip-flops), can oscillate etc.

13

Neural Networks
Other Methods and IssuesUse

Neural Networks are used in classification and regression

Boolean classification:
- value over 0.5 one class
- value below 0.5 other class

k-way classification
- divide single output into k portions
- k separate output unit

continuous output
- identity activation function in output unit

14

Neural Networks
Other Methods and IssuesSingle-layer NN (perceptrons)

Input
Units Units

Output
Wj,i

-4 -2 0 2 4x1
-4

-2
0

2
4

x2

0
0.2
0.4
0.6
0.8

1
Perceptron output

Output units all operate separately—no shared weights
Adjusting weights moves the location, orientation, and steepness of cliff

15

Neural Networks
Other Methods and IssuesExpressiveness of perceptrons

Consider a perceptron with g = step function (Rosenblatt, 1957, 1960)
The output is 1 when: ∑

j

Wjxj > 0 or W · x > 0

Hence, it represents a linear separator in input space:
- hyperplane in multidimensional space
- line in 2 dimensions

Minsky & Papert (1969) pricked the neural network balloon

16

Neural Networks
Other Methods and IssuesPerceptron learning

Learn by adjusting weights to reduce error on training set
The squared error for an example with input x and true output y is

E =
1
2
Err2 ≡ 1

2
(y − hW(x))2 ,

Find local optima for the minimization of the function E (W) in the vector of
variables W by gradient methods.

Note, the function E depends on constant values x that are the inputs to the
perceptron.

The function E depends on h which is non-convex, hence the optimization
problem cannot be solved just by solving ∇E (W) = 0

17

Neural Networks
Other Methods and IssuesDigression: Gradient methods

Gradient methods are iterative approaches:

find a descent direction with respect to the objective function E
move W in that direction by a step size

The descent direction can be computed by various methods, such as gradient
descent, Newton-Raphson method and others. The step size can be
computed either exactly or loosely by solving a line search problem.

Example: gradient descent

1. Set iteration counter t = 0, and make an initial guess W0 for the
minimum

2. Repeat:
3. Compute a descent direction pt = ∇(E (Wt))
4. Choose αt to minimize f (α) = E (Wt − αpt) over α ∈ R+

5. Update Wt+1 = Wt − αtpt , and t = t + 1
6. Until ‖∇f (Wk)‖ < tolerance

Step 3 can be solved ’loosely’ by taking a fixed small enough value α > 0
18

Neural Networks
Other Methods and IssuesPerceptron learning

In the specific case of the perceptron, the descent direction is computed by
the gradient:

∂E
∂Wj

= Err · ∂Err
∂Wj

= Err · ∂

∂Wj

y − g(
n∑

j = 0

Wjxj)


= −Err · g ′(in) · xj

and the weight update rule (perceptron learning rule) in step 5 becomes:

W t+1
j = W t

j + α · Err · g ′(in) · xj

For threshold perceptron, g ′(in) is undefined: Original perceptron learning
rule (Rosenblatt, 1957) simply omits g ′(in)

19

Neural Networks
Other Methods and IssuesPerceptron learning contd.

function Perceptron-Learning(examples,network) returns perceptron weights
inputs: examples, a set of examples, each with input
x = x1, x2, . . . , xn and output y

inputs: network, a perceptron with weights Wj , j = 0, . . . , n and
activation function g

repeat
for each e in examples do

in←
∑n

j=0 Wjxj [e]
Err← y [e]− g(in)
Wj←Wj + α · Err · g ′(in) · xj [e]

end
until all examples correctly predicted or stopping criterion is reached
return network

Perceptron learning rule converges to a consistent function
for any linearly separable data set

20

Neural Networks
Other Methods and IssuesNumerical Example

The (Fisher’s or Anderson’s) iris data set gives the measurements in
centimeters of the variables petal length and width, respectively, for 50 flowers
from each of 2 species of iris. The species are “Iris setosa”, and “versicolor”.

4 5 6 7 8

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Petal Dimensions in Iris Blossoms

Length

W
id

th

S

S
S

SS

SS

S

S

S

SS

S

S

S

S

SS S

S

S

S S
S

S V

VV
V

V

V V

V

V V

V

V

V

V

V
V

V

V

V
VV

V

VV

V

S
V

 Setosa Petals
Versicolor Petals

> head(iris.data)

Sepal.Length Sepal.Width Species id
6 5.4 3.9 setosa -1
4 4.6 3.1 setosa -1
84 6.0 2.7 versicolor 1
31 4.8 3.1 setosa -1
77 6.8 2.8 versicolor 1
15 5.8 4.0 setosa -1

21

> sigma <- function(w, point) {
+ x <- c(point, 1)
+ sign(w %*% x)
+ }
> w.0 <- c(runif(1), runif(1), runif(1))
> w.t <- w.0
> for (j in 1:1000) {
+ i <- (j - 1)%%50 + 1
+ diff <- iris.data[i, 4] - sigma(w.t, c(iris.data[i, 1], iris.data[i, 2]))
+ w.t <- w.t + 0.2 * diff * c(iris.data[i, 1], iris.data[i, 2], 1)
+ }

4 5 6 7 8

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Petal Dimensions in Iris Blossoms

Length

W
id

th

S

S

S

S

S

S

S

S S

S

S
S

S

S
S

S

S

S
S

S

S

S

S

S

S

V

V

V

V
V

V

V
V

V

V

V

V

V

V

V
V

V

V

V

V

V

V
V

V

V

S
V

 Setosa Petals
Versicolor Petals

S

S

S

S

S

S

S

S S

S

S
S

S

S
S

S

S

S
S

S

S

S

S

S

S

V

V

V

V
V

V

V
V

V

V

V

V

V

V

V
V

V

V

V

V

V

V
V

V

V

Neural Networks
Other Methods and IssuesMultilayer Feed-forward

W1,3

1,4W

2,3W

2,4W

W3,5

4,5W

1

2

3

4

5

Feed-forward network = a parametrized family of nonlinear functions:

a5 = g(W3,5 · a3 + W4,5 · a4)

= g(W3,5 · g(W1,3 · a1 + W2,3 · a2) + W4,5 · g(W1,4 · a1 + W2,4 · a2))

Adjusting weights changes the function: do learning this way!

24

Neural Networks
Other Methods and IssuesNeural Network with two layers

25

Neural Networks
Other Methods and IssuesExpressiveness of MLPs

All continuous functions with 2 layers, all functions with 3 layers

-4 -2 0 2 4x1
-4

-2
0

2
4

x2

0
0.2
0.4
0.6
0.8

1

hW(x1, x2)

-4 -2 0 2 4x1
-4

-2
0

2
4

x2

0
0.2
0.4
0.6
0.8

1

hW(x1, x2)

Combine two opposite-facing threshold functions to make a ridge
Combine two perpendicular ridges to make a bump
Add bumps of various sizes and locations to fit any surface
Proof requires exponentially many hidden units

27

Neural Networks
Other Methods and IssuesBackpropagation Algorithm

Supervised learning method to train multilayer feedforward NNs with
diffrerentiable transfer functions.

Adjust weights along the negative of the gradient of performance
function.

Forward-Backward pass.

Sequential or batch mode

Convergence time vary exponentially with number of inputs

Avoid local minima by simulated annealing and other metaheuristics

28

Neural Networks
Other Methods and IssuesMultilayer perceptrons

Layers are usually fully connected;
numbers of hidden units typically chosen by hand

Input units

Hidden units

Output units ai

Wj,i

aj

Wk,j

ak

29

Neural Networks
Other Methods and IssuesBack-propagation learning

Output layer: same as for single-layer perceptron,

Wj,i ←Wj,i + α× aj ×∆i

where ∆i = Err i × g ′(ini).
Note: the general case has multiple output units hence: Err = (y − hw (x))

Hidden layer: back-propagate the error from the output layer:

∆j = g ′(inj)
∑

i

Wj,i∆i (sum over the multiple output units)

Update rule for weights in hidden layer:

Wk,j ←Wk,j + α× ak ×∆j .

(Most neuroscientists deny that back-propagation occurs in the brain)

30

Neural Networks
Other Methods and IssuesBack-propagation derivation

The squared error on a single example is defined as

E =
1
2

∑
i

(yi − ai)
2 ,

where the sum is over the nodes in the output layer.

∂E
∂Wj,i

= −(yi − ai)
∂ai

∂Wj,i
= −(yi − ai)

∂g(ini)

∂Wj,i

= −(yi − ai)g ′(ini)
∂ini

∂Wj,i
= −(yi − ai)g ′(ini)

∂

∂Wj,i

∑
j

Wj,iaj


= −(yi − ai)g ′(ini)aj = −aj∆i

31

Neural Networks
Other Methods and IssuesBack-propagation derivation contd.

For the hidden layer:

∂E
∂Wk,j

= −
∑

i

(yi − ai)
∂ai

∂Wk,j
= −

∑
i

(yi − ai)
∂g(ini)

∂Wk,j

= −
∑

i

(yi − ai)g ′(ini)
∂ini

∂Wk,j
= −

∑
i

∆i
∂

∂Wk,j

∑
j

Wj,iaj


= −

∑
i

∆iWj,i
∂aj

∂Wk,j
= −

∑
i

∆iWj,i
∂g(inj)

∂Wk,j

= −
∑

i

∆iWj,ig ′(inj)
∂inj

∂Wk,j

= −
∑

i

∆iWj,ig ′(inj)
∂

∂Wk,j

(∑
k

Wk,jak

)
= −

∑
i

∆iWj,ig ′(inj)ak = −ak∆j

32

Neural Networks
Other Methods and IssuesNumerical Example

The (Fisher’s or Anderson’s) iris data set gives the measurements in
centimeters of the variables petal length and width, respectively, for 50 flowers
from each of 2 species of iris. The species are “Iris setosa”, and “versicolor”.

Petal.Length
Petal.Width

Sepal.Length

setosa

Petal.Length
Petal.Width

Sepal.Length

versicolor

Petal.Length
Petal.Width

Sepal.Length

virginica

●● ●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●
●
●

●●

●

●

● ●●

●

●
●

●
●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

Petal.Length

Petal.Width

Sepal.Length

33

Neural Networks
Other Methods and IssuesNumerical Example

> samp <- c(sample(1:50, 25), sample(51:100, 25), sample(101:150, 25))
> Target <- class.ind(iris$Species)
> ir.nn <- nnet(Target ~ Sepal.Length * Petal.Length * Petal.Width, data = iris, subset = samp,
+ size = 2, rang = 0.1, decay = 5e-04, maxit = 200, trace = FALSE)
> test.cl <- function(true, pred) {
+ true <- max.col(true)
+ cres <- max.col(pred)
+ table(true, cres)
+ }
> test.cl(Target[-samp,], predict(ir.nn, iris[-samp, c(1, 3, 4)]))

cres
true 1 2 3

1 25 0 0
2 0 22 3
3 0 2 23

34

Neural Networks
Other Methods and IssuesLearning structures

Beside weights also structure can be learned:

Optimal brain damage: iteratively remove single edegs or units if
performance does not worsen after weights are re-learned

Tiling: iteralively add units and links and re-learn weights

35

Neural Networks
Other Methods and IssuesHandwritten digit recognition

400–300–10 unit MLP = 1.6% error

LeNet: 768–192–30–10 unit MLP = 0.9% error
http://yann.lecun.com/exdb/lenet/

Current best (kernel machines, vision algorithms) ≈ 0.6% error

Humans are at 0.2% – 2.5 % error

36

http://yann.lecun.com/exdb/lenet/

Neural Networks
Other Methods and IssuesAnother Practical Example

37

Neural Networks
Other Methods and IssuesDirections of research in ANN

Representational capability assuming unlimited number of neurons
(no training)

Numerical analysis or approximation theoretic: how many hidden units
are necessary to achieve a certain approximation error? (no training)
Results for single hidden layer and multiple hidden layers

Sample complexity: how many samples are needed to characterize a
certain unknown mapping.

Efficient learning: backpropagation has the curse of dimensionality
problem

38

Neural Networks
Other Methods and IssuesApproximation properties

NNs with 2 hidden layers and arbitrarily many nodes can approximate any
real-valued function up to any desired accuracy, using continuous activation
functions

E.g.: required number of hidden units grows exponentially with
number of inputs.
2n/n hidden units needed to encode all Boolean functions of n
inputs

However profs are not constructive.

More interest in efficiency issues: NNs with small size and depth

Size-depth trade off: more layers more costly to simulate

39

Neural Networks
Other Methods and IssuesOutline

1. Neural Networks
Feedforward Networks

Single-layer perceptrons
Multi-layer perceptrons

2. Other Methods and Issues

40

Neural Networks
Other Methods and IssuesTraining and Assessment

Use different data for different tasks:

Training and Test data: holdout cross validation

If little data: k-fold cross validation

Avoid peeking:

Weights learned on training data.

Parameters such as learning rate α and net topology compared on
validation data

Final assessment on test data

41

Neural Networks
Other Methods and IssuesEnsemble Methods

Use majority rule to predict among K hypothesis learned.

If the hypothesis are independent this yields a considerable reduction of
misclassification

Boosting: weight adaptively the examples

42

Neural Networks
Other Methods and IssuesLearning Theory

Probably approximately correct (PAC) learning

Vapnik-Chervonenkis (VC) dimensions provide information-theoretic
bounds to sample complexities in continuous function classes

43

Neural Networks
Other Methods and IssuesSummary

Supervised learning

Decision trees

Linear models

Neural Networks
Perceptron learning rule: an algorithm for learning weights in single
layered networks.
Perceptrons: linear separators, insufficiently expressive
Multi-layer networks are sufficiently expressive
Many applications: speech, driving, handwriting, fraud detection, etc.

k nearest neighbor, non-parametric regression

44

	Neural Networks
	Feedforward Networks

	Other Methods and Issues

