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Learning Graphical Models
Unsupervised LearningCourse Overview
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Learning Graphical Models
Unsupervised LearningOutline

1. Learning Graphical Models
Parameter Learning in Bayes Nets
Bayesian Parameter Learning

2. Unsupervised Learning
k-means
EM Algorithm
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Learning Graphical Models
Unsupervised LearningOutline

Methods:

1. Bayesian learning

2. Maximum a posteriori and maximum likelihood learning

Bayesian networks learning with complete data

a. ML parameter learning

b. Bayesian parameter learning
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Learning Graphical Models
Unsupervised LearningFull Bayesian learning

View learning as Bayesian updating of a probability distribution
over the hypothesis space

H hypothesis variable, values h1, h2, . . ., prior Pr(h)

dj gives the outcome of random variable Dj (the jth observation)
training data d= d1, . . . , dN

Given the data so far, each hypothesis has a posterior probability:

P(hi |d) = αP(d|hi )P(hi )

where P(d|hi ) is called the likelihood

Predictions use a likelihood-weighted average over the hypotheses:

Pr(X |d) =
∑

i

Pr(X |d, hi )P(hi |d) =
∑

i

Pr(X |hi )P(hi |d)

Or predict according to the most probable hypothesis
(maximum a posteriori)
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Learning Graphical Models
Unsupervised LearningExample

Suppose there are five kinds of bags of candies:
10% are h1: 100% cherry candies
20% are h2: 75% cherry candies + 25% lime candies
40% are h3: 50% cherry candies + 50% lime candies
20% are h4: 25% cherry candies + 75% lime candies
10% are h5: 100% lime candies

Then we observe candies drawn from some bag:
What kind of bag is it? What flavour will the next candy be?
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Learning Graphical Models
Unsupervised LearningPosterior probability of hypotheses
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Learning Graphical Models
Unsupervised LearningPrediction probability
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Learning Graphical Models
Unsupervised LearningMAP approximation

Summing over the hypothesis space is often intractable
(e.g., 18,446,744,073,709,551,616 Boolean functions of 6 attributes)

Maximum a posteriori (MAP) learning: choose hMAP maximizing
P(hi |d)
I.e., maximize P(d|hi )P(hi ) or logP(d|hi ) + logP(hi )
Log terms can be viewed as (negative of)

bits to encode data given hypothesis + bits to encode hypothesis
This is the basic idea of minimum description length (MDL) learning

For deterministic hypotheses, P(d|hi ) is 1 if consistent, 0 otherwise
=⇒ MAP = simplest consistent hypothesis
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Learning Graphical Models
Unsupervised LearningML approximation

For large data sets, prior becomes irrelevant

Maximum likelihood (ML) learning: choose hML maximizing P(d|hi )
I.e., simply get the best fit to the data; identical to MAP for uniform
prior
(which is reasonable if all hypotheses are of the same complexity)

ML is the “standard” (non-Bayesian) statistical learning method
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Learning Graphical Models
Unsupervised LearningParameter learning by ML

Bag from a new manufacturer; fraction θ of cherry candies?

Any θ is possible: continuum of hypotheses hθ
θ is a parameter for this simple (binomial) family of models

Suppose we unwrap N candies, c cherries and `= N − c limes
These are i.i.d. (independent, identically distributed)
observations, so

Flavor

P F=cherry( )

θ

P(d|hθ) =
N∏

j = 1

P(dj |hθ) = θc · (1− θ)`

Maximize this w.r.t. θ—which is easier for the log-likelihood:

L(d|hθ) = logP(d|hθ) =
N∑

j = 1

logP(dj |hθ) = c log θ + ` log(1− θ)

dL(d|hθ)

dθ
=

c
θ
− `

1− θ
= 0 =⇒ θ =

c
c + `

=
c
N

Seems sensible, but causes problems with 0 counts!
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Learning Graphical Models
Unsupervised LearningMultiple parameters

P F=cherry( )

Flavor

Wrapper

P( )W=red | FF

cherry

2
lime θ

1θ

θ
Red/green wrapper depends probabilistically on flavor:
Likelihood for, e.g., cherry candy in green wrapper:

P(F = cherry ,W = green|hθ,θ1,θ2)

= P(F = cherry |hθ,θ1,θ2)P(W = green|F = cherry , hθ,θ1,θ2)

= θ · (1− θ1)

N candies, rc red-wrapped cherry candies, etc.:

P(d|hθ,θ1,θ2) = θc(1− θ)` · θrc
1 (1− θ1)gc · θr`

2 (1− θ2)g`

L = [c log θ + ` log(1− θ)]

+ [rc log θ1 + gc log(1− θ1)]

+ [r` log θ2 + g` log(1− θ2)]
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Learning Graphical Models
Unsupervised LearningMultiple parameters contd.

Derivatives of L contain only the relevant parameter:

∂L
∂θ

=
c
θ
− `

1− θ
= 0 =⇒ θ =

c
c + `

∂L
∂θ1

=
rc
θ1
− gc

1− θ1
= 0 =⇒ θ1 =

rc
rc + gc

∂L
∂θ2

=
r`
θ2
− g`

1− θ2
= 0 =⇒ θ2 =

r`
r` + g`

With complete data, parameters can be learned separately
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Learning Graphical Models
Unsupervised LearningContinuous models

P(x) =
1√
2πσ

exp−
(x−µ)2

2σ2

Parameters µ and σ2

Maximum likelihood:
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Learning Graphical Models
Unsupervised LearningContinuous models, Multiple param.
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Maximizing P(y |x) =
1√
2πσ

e−
(y−(θ1x+θ2))2

2σ2 w.r.t. θ1, θ2

= minimizing E =
N∑

j = 1

(yj − (θ1xj + θ2))2

That is, minimizing the sum of squared errors gives the ML solution
for a linear fit assuming Gaussian noise of fixed variance
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Learning Graphical Models
Unsupervised LearningSummary

Full Bayesian learning gives best possible predictions but is intractable

MAP learning balances complexity with accuracy on training data

Maximum likelihood assumes uniform prior, OK for large data sets

1. Choose a parameterized family of models to describe the data
requires substantial insight and sometimes new models

2. Write down the likelihood of the data as a function of the parameters
may require summing over hidden variables, i.e., inference

3. Write down the derivative of the log likelihood w.r.t. each parameter

4. Find the parameter values such that the derivatives are zero
may be hard/impossible; gradient techniques help
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Learning Graphical Models
Unsupervised LearningBayesian Parameter Learning

If small data set the ML method leads to premature conclusions:
From the Flavor example:

P(d|hθ) =
N∏

j = 1

P(dj |hθ) = θc · (1− θ)` =⇒ θ =
c

c + `

If N = 1 and c = 1, l = 0 we conclude θ = 1. Laplace adjustment can
mitigate this result but it is artificial.
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Learning Graphical Models
Unsupervised Learning

Bayesian approach:

P(θ|d) = αP(d|θ)P(θ)

we saw the likelihood to be

p(X = 1|θ) = Bern(θ) = θ

which is known as Bernoulli distribution. Further, for a set of n observed
outcomes d = (x1, . . . , xn) of which s are 1s, we have the binomial sampling
model:

p(D = d|θ) = p(s|θ) = Bin(s|θ) =

(
n
s

)
θs(1− θ)n−s (1)
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Learning Graphical Models
Unsupervised LearningThe Beta Distribution

We define the prior probability p(θ) to be Beta distributed

p(θ) = Beta(θ|a, b) =
Γ(a + b)

Γ(a)Γ(b)
θa−1(1− θ)b−1
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Reasons for this choice:
provides flexiblity varying the hyperparameters a and b
Eg. the uniform distribution is included in this family with a = 1, b = 1

conjugancy property
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Learning Graphical Models
Unsupervised Learning

Eg: we observe N = 1, c = 1, l = 0:

p(θ|d) = αp(d|θ)p(θ)

= αBin(d |θ)p(θ)

= αBeta(θ|a + c , b + l).
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Learning Graphical Models
Unsupervised LearningIn Presence of Parents

Denote by Paj
i the jth parent variable/node of Xi

p(xi |paj
i ,θi ) = θij ,

where pa1
i , . . . ,pa

qi
i , qi =

∏
Xi∈Pai

ri , denote the configurations of Pai ,
and θi = (θij), j = 1, . . . , qi , are the local parameters of variable i .

In the case of no missing values, that is, all variables of the network have
a value in the random sample d, and independence among parameters,
the parameters remain independent given d, that is,

p(θ|d) =
d∏

i=1

qi∏
j=1

p(θij |d)

In other terms, we can update each vector parameter θij independently,
just as in the one-variable case. Assuming each vector has the prior
distribution Beta(θij |aij , bij), we obtain the posterior distribution

p(θij |d) = Beta(θij |aij + sij , bij + n − sij)

where sij is the number of cases in d in which Xi = 1 and Pai = paj
i . 23



Learning Graphical Models
Unsupervised LearningOutline

1. Learning Graphical Models
Parameter Learning in Bayes Nets
Bayesian Parameter Learning

2. Unsupervised Learning
k-means
EM Algorithm
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Learning Graphical Models
Unsupervised LearningK-means clustering

Init: select k cluster centers at
random
repeat

assign data to nearest center.
update cluster center to the
centroid of assigned data points

until no change ;
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Learning Graphical Models
Unsupervised LearningExpectation-Maximization Algorithm

Generalization of k-means that uses soft assignments
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Mixture model: exploit an hidden variable z

p(x) =
∑

z

p(x, z) =
∑

z

p(x | z)p(z)

Both p(x | z) and p(z) are unknown:

assume p(x | z) is multivariate Gaussian distribution N(µi , σi )

assume p(z) is multinomial distribution with parameter θi
 µi , σi , θi are unkown
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Learning Graphical Models
Unsupervised Learning

E-step: Assume we know µi , σi , θi ,
calculate for each sample j the probability of coming from i

pij = αθi (2π)−N/2|Σ|−1 exp{−1/2(x− µ)Σ(x− µ)T}

M-step: update µi , σi , θi :

πi =
∑

j

pij

N

µi =
∑

j

pijxj∑
j pij

Σi =

∑
j pij(xj − µi )(xj − µj)

T∑
j pij
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Learning Graphical Models
Unsupervised Learning

the ML method on
∏

j p(xj | µi , σi , θi ) does not lead to a closed form.
Hence we need to proceed by assuming values for some parameters and
deriving the others as a consequence of these choices.

The procedure finds local optima

It can be proven that the procedure converges

pij are soft guesses as opposed to hard links in the k-means algorithm
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