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Course Overview

v/ Introduction
v Atrtificial Intelligence
v Intelligent Agents
v/ Search
v/ Uninformed Search
v/ Heuristic Search
v/ Uncertain knowledge and
Reasoning
v/ Probability and Bayesian
approach
v/ Bayesian Networks
v/ Hidden Markov Chains
v Kalman Filters

(]

(]

Learning

v

v

Supervised

Decision Trees, Neural
Networks

Learning Bayesian Networks
Unsupervised

EM Algorithm

Reinforcement Learning

Games and Adversarial Search

Minimax search and
Alpha-beta pruning
Multiagent search

Knowledge representation and
Reasoning

Propositional logic
First order logic
Inference
Plannning



Learning Graphical Models

Outl i ne Unsupervised Learning

1. Learning Graphical Models
Parameter Learning in Bayes Nets
Bayesian Parameter Learning

2. Unsupervised Learning
k-means
EM Algorithm



Outline

Methods:

1. Bayesian learning
2. Maximum a posteriori and maximum likelihood learning
Bayesian networks learning with complete data

a. ML parameter learning

b. Bayesian parameter learning

Learning Graphical Models



Learnmg Graphncal Mode|s

Full Bayesian learning Unsuperviaed Learning
o View learning as Bayesian updating of a probability distribution
over the hypothesis space
o H hypothesis variable, values hy, hy, ..., prior Pr(h)

@ d; gives the outcome of random variable D; (the jth observation)
training datad=dy,... dy

@ Given the data so far, each hypothesis has a posterior probability:
P(hild) = aP(d[hi)P(hi)
where P(d|h;) is called the likelihood
@ Predictions use a likelihood-weighted average over the hypotheses:

Pr(X|d) = ZPrX\dh (hild) = ZPrX|h (hi|d)

Or predict according to the most probable hypothesis
(maximum a posteriori)



Example

Learning Graphical Models
Unsupervised Learning

Suppose there are five kinds of bags of candies:

10% are h;:
20% are ho:
40% are hs:
20% are hy:
10% are hs:

100% cherry candies

75% cherry candies + 25% lime candies
50% cherry candies + 50% lime candies
25% cherry candies + 75% lime candies
100% lime candies

Then we observe candies drawn from some bag: ®©© 0000000
What kind of bag is it? What flavour will the next candy be?
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Learning Graphical Models

Prediction probability Unsuperviaed Learning
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Learning Graphical Models

MAP approximation Unsupervised Learning

@ Summing over the hypothesis space is often intractable
(e.g., 18,446,744,073,709,551,616 Boolean functions of 6 attributes)

@ Maximum a posteriori (MAP) learning: choose hyap maximizing
P(hid)
l.e., maximize P(d|h;)P(h;) or log P(d|h;) + log P(h;)
Log terms can be viewed as (negative of)
bits to encode data given hypothesis + bits to encode hypothesis
This is the basic idea of minimum description length (MDL) learning

@ For deterministic hypotheses, P(d|h;) is 1 if consistent, 0 otherwise
— MAP = simplest consistent hypothesis



Learning Graphical Models

ML approximation

o For large data sets, prior becomes irrelevant

@ Maximum likelihood (ML) learning: choose hyi1, maximizing P(d|h;)
l.e., simply get the best fit to the data; identical to MAP for uniform
prior

(which is reasonable if all hypotheses are of the same complexity)

@ ML is the “standard” (non-Bayesian) statistical learning method
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Learning Graphical Models

Parameter learning by ML
Bag from a new manufacturer; fraction 0 of cherry candies? P(F=cherry)
Any 0 is possible: continuum of hypotheses hy (2]

0 is a parameter for this simple (binomial) family of models
Suppose we unwrap /N candies, ¢ cherries and /= N — ¢ limes
These are i.i.d. (independent, identically distributed)

observations, so

N
P(dlhg) = [ ] P(djlhe) = 6° - (1 - 6)"

j=1

Maximize this w.r.t. é—which is easier for the log-likelihood:

N
L(dlhy) = logP(d|hg) =Y logP(d;lhs) = clog0 + Llog(1 — 0)
j=1
dL(d|hy) c I ¢ <
do s 1-e 0 T T w

Seems sensible, but causes problems with 0 counts!
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Learnmg Graphncal Mode|s

Multiple parameters nesaed Lening

P(F=cherry) Red/green wrapper depends probabilistically on flavor:
Likelihood for, e.g., cherry candy in green wrapper:

[Z]
@ P(F = cherry, W = green|hg o, 0,)
F

S EIE) = P(F =cherry|hg o, 0,) P(W = green|F = cherr,
cherry| 91 = 0. (1 - 91)
lime 92

Y
Grore)

N candies, r. red-wrapped cherry candies, etc.:
P(dlhg.o,0,) = 0°(1—0)"-05(1—01)% - 05 (1 — 65)*

,\
I

[clog + Clog(1 — 0)]
[rclog 61 + gc log(1l — 61)]
[relog 62 + g¢ log(1 — 02)]
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Learning Graphical Models

Multiple parameters contd. Unsupervised Learning

Derivatives of L contain only the relevant parameter:

oL _ ¢t — =

00 0 1-—6 o+ /

oL re g T
004 B 01 1*91_0 — Hl_chFgc
oL I & re

90> 0, 1— 0, T hta

With complete data, parameters can be learned separately
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. Learning Graphical Models
Contlnuous mOdeIS Uneunenyised Learning
1 (x—u)?
P (X ) = exp 2(7‘2

V2ro

Parameters ;. and o2
Maximum likelihood:
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Continuous models, Multiple param.

X

- 1 _-(oaxron)?
Maximizing P(y|x) = ———e 202 w.r.t. 01, 0,
2o
= minimizing £ = > (y; — (01 + 02))°

j=1
That is, minimizing the sum of squared errors gives the ML solution
for a linear fit assuming Gaussian noise of fixed variance
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Learning Graphical Models
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Summary

o Full Bayesian learning gives best possible predictions but is intractable

@ MAP learning balances complexity with accuracy on training data

o Maximum likelihood assumes uniform prior, OK for large data sets

1.

Choose a parameterized family of models to describe the data
requires substantial insight and sometimes new models

Write down the likelihood of the data as a function of the parameters
may require summing over hidden variables, i.e., inference

Write down the derivative of the log likelihood w.r.t. each parameter

Find the parameter values such that the derivatives are zero
may be hard/impossible; gradient techniques help

Learning Graphical Models
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Learning Graphical Models
) b ;

. . phi
Bayesian Parameter Learning msupervised Learning

If small data set the ML method leads to premature conclusions:
From the Flavor example:

N
P(dlhe) = [] P(dilhe) =0°-(1-0)" = 0=

j=1

If N=1and ¢ =1, / =0 we conclude ¢ = 1. Laplace adjustment can
mitigate this result but it is artificial.
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Learning Graphical Models
Unsupervised Learning

Bayesian approach:

P(0|d) = aP(d|0)P(6)

we saw the likelihood to be
p(X =1|0) = Bern(0) =6

which is known as Bernoulli distribution. Further, for a set of n observed
outcomes d = (x, ..., x,) of which s are 1s, we have the binomial sampling
model:

p(D = d[0) = p(s0) = Bin(s|6) = (:_’)95(1 P W
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. . . Learning Graphical Models
The Beta Distribution Unsupervised Learming

We define the prior probability p(¢) to be Beta distributed

M(a+ b)
0) = Beta(fa, b) = - ~——56"1(1 — )1
p(6) = Beta(f]a, b) = £y (1)
- [5.5] 7, v
) ' 5
5 1s A .
1 g
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< 1 &
2
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Reasons for this choice:

@ provides flexiblity varying the hyperparameters a and b
Eg. the uniform distribution is included in this family with a =1, b =1

@ conjugancy property



Eg: we observe N =1, c =1,/ =0:
p(01d) = ap(d|6)p(0)
= aBin(d|0)p(6)
= aBeta(f|la+ c, b+ /).

Learning Graphical Models
Unsupervised Learning
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Learning Graphncal Mode|s

In Presence of Parents earning Craphical Mo

@ Denote by Paf: the jth parent variable/node of X;
p(xlpal. 6;) — 6
where pal,... pa’, g = [ [x,cpa, ri» denote the configurations of Pa;,

and 0; = (0;), j=1,..., ,qi, are the local parameters of variable /.

@ In the case of no missing values, that is, all variables of the network have
a value in the random sample d, and independence among parameters,
the parameters remain independent given d, that is,

d qi

p(6ld) = [T ] r(0s1d)

i=1j=1

@ In other terms, we can update each vector parameter 6;; independently,
just as in the one-variable case. Assuming each vector has the prior
distribution Beta(0;i|aj;, bjj), we obtain the posterior distribution

p(&u\d) = Bota(@,-j|a,-j + Sij, bU +n— S,'j)

where s;; is the number of cases in d in which X; = 1 and Pa,; = pa’.
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Learning Graphical Models

O u tI i n e Unsupervised Learning

1. Learning Graphical Models
Parameter Learning in Bayes Nets
Bayesian Parameter Learning

2. Unsupervised Learning
k-means
EM Algorithm
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K-means clustering

Init: select k cluster centers at
random

repeat
assign data to nearest center.

update cluster center to the
centroid of assigned data points
until no change ;

Learning Graphical Models

Unsupervised Learning
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Learning Graphical Models

Expectation-Maximization Algorithm  vreeerised Leaming
Generalization of k-means that uses soft assignments
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Mixture model: exploit an hidden variable z

p(x) =3 p(x.z) = 3 p(x | 2)p(2)

z z

Both p(x | z) and p(z) are unknown:
@ assume p(x | z) is multivariate Gaussian distribution N(;, o;)

@ assume p(z) is multinomial distribution with parameter 0;

~~ i, 0, 0; are unkown
28



Learning Graphical Models
Unsupervised Learning

E-step: Assume we know i;, 0}, 0;,
calculate for each sample j the probability of coming from /

pi = a0, (2m) 2|5 exp{—1/2(x — )T (x — )"}
M-step: update y;, 0;,0;:
-
J
i :Ej: %

2P — ki) — )T
Zj Pij

>
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Unsupervised Learning

o the ML method on Hj p(x;j | pi,oi,0;) does not lead to a closed form.
Hence we need to proceed by assuming values for some parameters and
deriving the others as a consequence of these choices.

@ The procedure finds local optima
@ It can be proven that the procedure converges

@ pj; are soft guesses as opposed to hard links in the k-means algorithm
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