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Markov Decision Processes
Reinforcement LearningCourse Overview

4 Introduction
4 Artificial Intelligence
4 Intelligent Agents

4 Search
4 Uninformed Search
4 Heuristic Search

4 Uncertain knowledge and
Reasoning

4 Probability and Bayesian
approach

4 Bayesian Networks
4 Hidden Markov Chains
4 Kalman Filters

Learning
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Unsupervised
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Reinforcement Learning
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Minimax search and
Alpha-beta pruning
Multiagent search

Knowledge representation and
Reasoning

Propositional logic
First order logic
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Markov Decision Processes
Reinforcement LearningRecap

Supervised (x1, y1)(x2, y2) . . . y = f (x)
Unsupervised x1, x2, . . . Pr(X = x)
Reinforcement (s, a, s, a, s) + rewards at some states π(s)
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Markov Decision Processes
Reinforcement LearningReinforcement Learning

Consider chess:

we wish to learn correct move for each state but no feedback available
on this

only feedback available is a reward or reinforcement at the end of a
sequence of moves or at some intermediary states.

agents then learn a transition model
Other examples, backgammon, helicopter, etc.

Recall:
Environments are categorized along several dimensions:

fully observable partially observable
deterministic stochastic
episodic sequential
static dynamic
discrete continuous
single-agent multi-agents
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Markov Decision Processes
Reinforcement LearningMarkov Decision Processes

Sequential decision problems: the outcome depends on a sequence of
decisions. Include search and plannig as special cases.

search (problem solving in a state space (detrministic and fully
observable)

planning (interleaves planning and execution gathering feedback from
environment because of stochasticity, partial observability, multi-agents.
Belief state space)

learning

uncertainty

Environment:

Deterministic Stochastic
Fully observable A∗, DFS, BFS MDP
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Markov Decision Processes
Reinforcement LearningReinforcement Learning

MDP: fully observable environment and agent knows reward functions

Now: fully observable environment but no knoweldge of how it works
(reward functions) and probabilistic actions
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Markov Decision Processes
Reinforcement LearningOutline

1. Markov Decision Processes

2. Reinforcement Learning
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Markov Decision Processes
Reinforcement LearningTerminology and Notation

Sequential decision probelm in a fully observable, stochastic environment
with Markov transition model and additive rewards
s ∈ S states
a ∈ A(s) actions
s0 start state

p(s ′|s, a)
transition probability; world is stochastic;
Markovian assumption

R(s) or R(s, a, s ′) reward

U([s0, s1, . . . , sn]) or V ()
utility function depends on sequence of states
(sum of rewards)

Example:

1

2

3

1 2 3 4

START

0.8

0.10.1

(a) (b)

–1

+ 1

A fixed action sequence is not
good becasue of probabilistic
actions
Policy π: specification of what to
do in any state
Optimal policy π∗: policy with
highest expected utility
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Markov Decision Processes
Reinforcement LearningHighest Expected Utility

U([s0, s1, . . . , sn]) = R(s0) + γR(s1) + γ2R(s2) + . . .+ γnR(sn)

Uπ(s) = Eπ

[
∞∑
t=0

γtR(st)

]
= R(s) + γ

∑
s′

Pr(s ′|s, a ∈ π(s))Uπ(s ′)

looks onwards, dependency on future neighbors

Optimal policy:

Uπ∗(s) =max
π

Uπ(s)

π∗(s) = argmaxπ Uπ(s)

Choose actions by max expected utilities (Bellman equation):

Uπ∗(s) =R(s) + γ max
a∈A(s)

∑
s′

Pr(s ′|s, a)U(s ′)

π∗(s) = argmaxa∈A(s)

[
R(s) + γ max

a∈A(s)

∑
s′

Pr(s ′|s, a)U(s ′)

]
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Markov Decision Processes
Reinforcement LearningValue Iteration

1. calculate the utility function of each state using the iterative procedure
below

2. use state utilities to select an optimal action

For 1. use the following iterative algorithm:
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Markov Decision Processes
Reinforcement LearningQ-Values

For 2. once the optimal U∗ values have been calculated:

π∗(s) = argmaxa∈A(s)

[
R(s) + γ

∑
s′

Pr(s ′|s, a)U∗(s ′)

]

Hence we would need to compute the sum for each a.

Idea: save Q-values

Q∗(s, a) = R(s) + γ
∑
s′

Pr(s ′|s, a)U∗(s ′)

so actions are easier to select:

π∗(s) = argmaxa∈A(s) Q∗(s, a)
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Markov Decision Processes
Reinforcement LearningExample

python gridworld.py -a value -i 1 --discount 0.9 --noise 0.2 -r 0 -k 1 -t

VALUES AFTER 1 ITERATIONS
---------------------------------------------------
| | 0 | 1 | 2 | 3 |
---------------------------------------------------
| | ^ | ^ | | ------ |
| | | | | | | |
|2| 0.00 | 0.00 | 0.00 > | | 1.00 | |
| | | | | | | |
| | | | | ------ |
---------------------------------------------------
| | ^ | | | ------- |
| | | ##### | | | | |
|1| 0.00 | ##### | < 0.00 | | -1.00 | |
| | | ##### | | | | |
| | | | | ------- |
---------------------------------------------------
| | ^ | ^ | ^ | |
| | | | | |
|0| S: 0.00 | 0.00 | 0.00 | 0.00 |
| | | | | |
| | | | | v |
---------------------------------------------------

Q-VALUES AFTER 1 ITERATIONS
-----------------------------------------------------------------------
| | 0 | 1 | 2 | 3 |
-----------------------------------------------------------------------
| | /0.00\ | /0.00\ | 0.09 | |
| | | | | |
| | | | | [ 1.00 ] |
|2|<0.00 0.00>|<0.00 0.00>| 0.00 0.72> | |
| | | | | |
| | | | | |
| | \0.00/ | \0.00/ | 0.09 | |
-----------------------------------------------------------------------
| | /0.00\ | | -0.09 | |
| | | | | |
| | | ##### | | [ -1.00 ] |
|1|<0.00 0.00>| ##### |<0.00 -0.72 | |
| | | ##### | | |
| | | | | |
| | \0.00/ | | -0.09 | |
-----------------------------------------------------------------------
| | /0.00\ | /0.00\ | /0.00\ | -0.72 |
| | | | | |
| | | | | |
|0|<0.00 S 0.00>|<0.00 0.00>| <0.00 0.00> | -0.09 -0.09 |
| | | | | |
| | | | | |
| | \0.00/ | \0.00/ | \0.00/ | \0.00/ |
-----------------------------------------------------------------------
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Markov Decision Processes
Reinforcement LearningExample

python gridworld.py -a value -i 2 --discount 0.9 --noise 0.2 -r 0 -k 1 -t

VALUES AFTER 2 ITERATIONS
---------------------------------------------------
| | 0 | 1 | 2 | 3 |
---------------------------------------------------
| | ^ | | | ------ |
| | | | | | | |
|2| 0.00 | 0.00 > | 0.72 > | | 1.00 | |
| | | | | | | |
| | | | | ------ |
---------------------------------------------------
| | ^ | | ^ | ------- |
| | | ##### | | | | |
|1| 0.00 | ##### | 0.00 | | -1.00 | |
| | | ##### | | | | |
| | | | | ------- |
---------------------------------------------------
| | ^ | ^ | ^ | |
| | | | | |
|0| S: 0.00 | 0.00 | 0.00 | 0.00 |
| | | | | |
| | | | | v |
---------------------------------------------------

Q-VALUES AFTER 2 ITERATIONS
-----------------------------------------------------------------------
| | 0 | 1 | 2 | 3 |
-----------------------------------------------------------------------
| | /0.00\ | 0.06 | 0.61 | |
| | | | | |
| | | | | [ 1.00 ] |
|2|<0.00 0.00>| 0.00 0.52>| 0.06 0.78> | |
| | | | | |
| | | | | |
| | \0.00/ | 0.06 | 0.09 | |
-----------------------------------------------------------------------
| | /0.00\ | | /0.43\ | |
| | | | | |
| | | ##### | | [ -1.00 ] |
|1|<0.00 0.00>| ##### | 0.06 -0.66 | |
| | | ##### | | |
| | | | | |
| | \0.00/ | | -0.09 | |
-----------------------------------------------------------------------
| | /0.00\ | /0.00\ | /0.00\ | -0.72 |
| | | | | |
| | | | | |
|0|<0.00 S 0.00>|<0.00 0.00>| <0.00 0.00> | -0.09 -0.09 |
| | | | | |
| | | | | |
| | \0.00/ | \0.00/ | \0.00/ | \0.00/ |
-----------------------------------------------------------------------
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Markov Decision Processes
Reinforcement LearningExample

python gridworld.py -a value -i 3 --discount 0.9 --noise 0.2 -r 0 -k 1 -t

VALUES AFTER 3 ITERATIONS
---------------------------------------------------
| | 0 | 1 | 2 | 3 |
---------------------------------------------------
| | | | | ------ |
| | | | | | | |
|2| 0.00 > | 0.52 > | 0.78 > | | 1.00 | |
| | | | | | | |
| | | | | ------ |
---------------------------------------------------
| | ^ | | ^ | ------- |
| | | ##### | | | | |
|1| 0.00 | ##### | 0.43 | | -1.00 | |
| | | ##### | | | | |
| | | | | ------- |
---------------------------------------------------
| | ^ | ^ | ^ | |
| | | | | |
|0| S: 0.00 | 0.00 | 0.00 | 0.00 |
| | | | | |
| | | | | v |
---------------------------------------------------

Q-VALUES AFTER 3 ITERATIONS
-----------------------------------------------------------------------
| | 0 | 1 | 2 | 3 |
-----------------------------------------------------------------------
| | 0.05 | 0.44 | 0.70 | |
| | | | | |
| | | | | [ 1.00 ] |
|2| 0.00 0.37>| 0.09 0.66>| 0.48 0.83> | |
| | | | | |
| | | | | |
| | 0.05 | 0.44 | 0.45 | |
-----------------------------------------------------------------------
| | /0.00\ | | /0.51\ | |
| | | | | |
| | | ##### | | [ -1.00 ] |
|1|<0.00 0.00>| ##### | 0.38 -0.65 | |
| | | ##### | | |
| | | | | |
| | \0.00/ | | -0.05 | |
-----------------------------------------------------------------------
| | /0.00\ | /0.00\ | /0.31\ | -0.72 |
| | | | | |
| | | | | |
|0|<0.00 S 0.00>|<0.00 0.00>| 0.04 0.04 | -0.09 -0.09 |
| | | | | |
| | | | | |
| | \0.00/ | \0.00/ | 0.00 | \0.00/ |
-----------------------------------------------------------------------
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Markov Decision Processes
Reinforcement Learning

1 2 3

1

2

3 + 1

–1

4

–1

+1

 R(s) < –1.6284

(a) (b)

– 0.0221 < R(s) < 0 

–1

+1

–1

+1

–1

+1

R(s) > 0 

– 0.4278 < R(s) < – 0.0850

Balancing of risk and reward.
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Markov Decision Processes
Reinforcement LearningOutline

1. Markov Decision Processes

2. Reinforcement Learning
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Markov Decision Processes
Reinforcement LearningTerminology and Notation

s ∈ S states
a ∈ A(s) actions
s0 start state
p(s ′|s, a) transition probability; world is stochastic;
R(s) or R(s, a, s ′) reward

In reinforcement learning, we do not know p and R

Agent knows learns uses
utility-based agent p R ← U U
Q-learning Q(s, a) Q
reflex agent π(s) π

Passive RL: policy fixed
Active RL: policy can be changed
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Markov Decision Processes
Reinforcement LearningPassive RL

Perform a set of trials and build up the utility function table

–1

+1

1

2

3

1 2 3 4 1 2 3

1

2

3

–1

+ 1

4

0.611

0.812

0.655

0.762

0.918

0.705

0.660

0.868

 0.388
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Markov Decision Processes
Reinforcement LearningPassive RL

Direct utility estimator (Monte Carlo method that waits until the end of
the episode to determine the increment to Ut(s)

Temporal difference learning (wait only until the next time step)
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Markov Decision Processes
Reinforcement LearningPassive RL

Temporal difference learning

If a nonterminal state st is visited at time t, then update the estimate for Ut
based on what happens after that visit and the old estimate.

Exponential Moving average:
Running interpolation update:

x̄n =(1− α)x̄n−1 + αxn

x̄n =
xn + (1− α)xn−1 + (1− α)2xn−2 + . . .

1 + (1− α) + (1− α)2 + . . .

Makes recent samples more important, forgets about past (old samples
were wrong anyway)

α learning rate: if a function that decreases then the average converges.
E.g. α = 1/Ns , α = Ns/N, α = 1000/(1000 + N),

NewEstimate ←(1− α)OldEstimate + αAfterVist
U(s)←(1− α)U(s) + α[(r + γU(s ′)]

U(s)←U(s) + α(Ns)[r + γU(s ′)− U(s)]
20



Markov Decision Processes
Reinforcement Learning

Initialize U(s) arbitrarily, π to the policy to be evaluated;
repeat /* for each episode */

Initialize s;
repeat /* for step of an episode */

a← action given by π for s
Take action a, observe reward r and next state s ′

U(s)← U(s) + α(Ns)[r + γU(s ′)− U(s)]
s ← s ′

until s is terminal;
until convergence;
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Markov Decision Processes
Reinforcement Learning

Learning curves
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Markov Decision Processes
Reinforcement LearningActive Learning

Greedy agent, recompute a new π in TD algorithm

Problem:
actions not only provide rewards according to the learned model but also
influence the learning by affecting the percepts that are received.
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Adjust the TD with a Greedy in the Limit of Infinite Exploration
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Markov Decision Processes
Reinforcement LearningExploration/Exploitation

Simplest: random actions (ε-greedy)
every time step, draw a number in [0, 1]

if smaller than ε act randomly

if largerthan ε act according to greedy policy

ε can be lowered with time

Another solution: exploration function
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Markov Decision Processes
Reinforcement LearningActive RL

Q-learning

We can choose the action we like with the goal of learning optimal policy

π∗(s) = argmaxa

[
R(s) + γ

∑
s′

Pr(s ′|s, a)U∗(s ′)

]

same as in value iterations algorithm but not off-line

Q-values are more useful to be learned:

Q∗ =R(s) + γ
∑
s′

Pr(s ′|s, a)U∗(s ′)

π(s) = argmaxa Q∗(s, a)

Sarsa algorithm learns Q values same way as TD algorithm
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In value iteration algorithm

Ui+1(s)← R(s) + γ max
a∈A(s)

∑
s′

Pr(s ′|s, a)Ui (s ′)

Same with Q

Qi+1(s, a)← R(s) + γ max
a∈A(s)

∑
s′

Pr(s ′|s, a)Qi (s ′, a′)

Sample based Q∗ learning:

observe sample s, a, s ′, r

consider the old estimate Q(s, a)

derive the new sample estimate

Q∗(s, a)← R(s) + γmax
a′

∑
s′

Pr(s ′|s, a)Q∗(s ′, a′)

sample = R(s) + γmax
a′

Q∗(s ′, a′)

Incorporate the new estimate in running average:

Q(s, a)← (1− α)Q(s, a) + αsample



Markov Decision Processes
Reinforcement Learning

Initialize Q(s, a) arbitrarily;
repeat /* for each episode */

Initialize s;
Choose a from s using policy derived from Q (e.g., ε-greedy)
repeat /* for step of an episode */

Take action a, observe reward r and next state s ′

Choose a′ from s ′ using policy derived from Q (e.g., ε-greedy)
Q(s, a)← Q(s, a) + α[r + γQ(s ′, a′)− Q(s, a)]
s ← s ′; a← a′;

until s is terminal;
until convergence;

Note: update is not

Q(s, a)← Q(s, a) + α[r + γmax
a′

Q(s ′, a′)− Q(s, a)]

since by ε-greedy we allow not to choose the best
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Markov Decision Processes
Reinforcement LearningExample

python gridworld.py -a q -k 10 --discount 0.9 --noise 0.2 -r 0 -e 0.1 -t | less

(note: now episodes are used in training, and there are no iterations, rather
steps that end at terminal state)
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Markov Decision Processes
Reinforcement LearningProperties

Converges

if explore enough and

α is small enough

but α does not decrease too quickly
 Learns optimal policy without following it
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