Lecture 14 Markov Decision Processes and Reinforcement Learning

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Slides by Stuart Russell and Peter Norvig

Course Overview

- Introduction
 - ✔ Artificial Intelligence
 - ✓ Intelligent Agents
- Search
 - ✔ Uninformed Search
 - ✔ Heuristic Search
- Uncertain knowledge and Reasoning
 - Probability and Bayesian approach
 - ✓ Bayesian Networks
 - ✔ Hidden Markov Chains
 - ✔ Kalman Filters

- Learning
 - Supervised
 Decision Trees, Neural
 Networks
 - Learning Bayesian Networks
 - Unsupervised EM Algorithm
- Reinforcement Learning
- Games and Adversarial Search
 - Minimax search and Alpha-beta pruning
 - Multiagent search
- Knowledge representation and Reasoning
 - Propositional logic
 - First order logic
 - Inference
 - Planning

Recap

Supervised	$(x_1, y_1)(x_2, y_2) \dots$	y = f(x)
Unsupervised	x_1, x_2, \ldots	$\Pr(X = x)$
Reinforcement	(s, a, s, a, s) + rewards at some states	$\pi(s)$

Reinforcement Learning

Consider chess:

- we wish to learn correct move for each state but no feedback available on this
- only feedback available is a reward or reinforcement at the end of a sequence of moves or at some intermediary states.
- agents then learn a transition model

Other examples, backgammon, helicopter, etc.

Recall:

Environments are categorized along several dimensions:

fully observable deterministic	partially observable stochastic
episodic	sequential
static	dynamic
discrete	continuous
single-agent	multi-agents

Markov Decision Processes

Sequential decision problems: the outcome depends on a sequence of decisions. Include search and plannig as special cases.

- search (problem solving in a state space (detrministic and fully observable)
- planning (interleaves planning and execution gathering feedback from environment because of stochasticity, partial observability, multi-agents. Belief state space)
- learning
- uncertainty

Environment:

	Deterministic	Stochastic
Fully observable	A*, DFS, BFS	MDP

- MDP: fully observable environment and agent knows reward functions
- Now: fully observable environment but no knoweldge of how it works (reward functions) and probabilistic actions

1. Markov Decision Processes

2. Reinforcement Learning

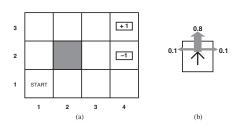
Terminology and Notation

Sequential decision probelm in a fully observable, stochastic environment with Markov transition model and additive rewards

$s \in S$	5
$a \in A(s)$	i
<i>s</i> ₀	9
p(s' s,a)	1
R(s) or $R(s, a, s')$	I
$U([s_0, s_1,, s_n])$ or $V()$	

states actions start state transition probability; world is stochastic; Markovian assumption reward utility function depends on sequence of states (sum of rewards)

Example:



- A fixed action sequence is not good becasue of probabilistic actions
- Policy π : specification of what to do in any state
- Optimal policy π*: policy with highest expected utility

Highest Expected Utility

$$U([s_0, s_1, \ldots, s_n]) = R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \ldots + \gamma^n R(s_n)$$

$$U^{\pi}(s) = E_{\pi}\left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t})\right] = R(s) + \gamma \sum_{s'} \Pr(s'|s, a \in \pi(s)) U^{\pi}(s')$$

looks onwards, dependency on future neighbors

Optimal policy:

 $U^{\pi^*}(s) = \max_{\pi} U^{\pi}(s)$ $\pi^*(s) = \operatorname{argmax}_{\pi} U^{\pi}(s)$

Choose actions by max expected utilities (Bellman equation):

$$U^{\pi^*}(s) = R(s) + \gamma \max_{a \in A(s)} \sum_{s'} \Pr(s'|s, a) U(s')$$
$$\pi^*(s) = \operatorname{argmax}_{a \in A(s)} \left[R(s) + \gamma \max_{a \in A(s)} \sum_{s'} \Pr(s'|s, a) U(s') \right]$$

Value Iteration

- 1. calculate the utility function of each state using the iterative procedure below
- 2. use state utilities to select an optimal action

For 1. use the following iterative algorithm:

```
function VALUE-ITERATION(mdp, \epsilon) returns a utility function

inputs: mdp, an MDP with states S, actions A(s), transition model P(s' | s, a),

rewards R(s), discount \gamma

\epsilon, the maximum error allowed in the utility of any state

local variables: U, U', vectors of utilities for states in S, initially zero

\delta, the maximum change in the utility of any state in an iteration
```

repeat

 $\begin{array}{l} U \leftarrow U'; \delta \leftarrow 0 \\ \text{for each state } s \text{ in } S \text{ do} \\ U'[s] \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s' \mid s, a) \ U[s'] \\ \text{ if } |U'[s] - U[s]| > \delta \text{ then } \delta \leftarrow |U'[s] - U[s]| \\ \text{until } \delta < \epsilon(1 - \gamma)/\gamma \\ \text{return } U \end{array}$

Q-Values

• For 2. once the **optimal** U^* values have been calculated:

$$\pi^*(s) = \operatorname{argmax}_{a \in A(s)} \left[R(s) + \gamma \sum_{s'} \Pr(s'|s, a) U^*(s') \right]$$

Hence we would need to compute the sum for each a.

• Idea: save Q-values

$$Q^*(s, a) = R(s) + \gamma \sum_{s'} \Pr(s'|s, a) U^*(s')$$

so actions are easier to select:

$$\pi^*(s) = \operatorname{argmax}_{a \in A(s)} Q^*(s, a)$$

Example

python gridworld.py -a value -i 1 --discount 0.9 --noise 0.2 -r 0 -k 1 -t

VALUE	S AFTER	1 I'	TERATIONS			Q-VALU	JES AFTER 1	ITERA	TIONS		
11	0	1	1	2	3		0	I	1	1 2	3
1 1	^	1	^	 I		1 1	/0.00\		/0.00\	0.09	I I
1.1		1		I	1 1 1 1	1.1		1		I	I I
2	0.00	1	0.00	0.00 >	1.00	1.1		1		I	[1.00]
1.1		1		I	1 I I I	2 <0	.00 0.0	0> <0.	0.00>	0.00 0.72>	I I
11		1		I		1.1		1		I	I I
						1.1		1		I	I I
	^	1		I	I I	1.1	\0.00/	1	\0.00/	0.09	I I
		1	#####	I	11 11						
1	0.00	1	#####	< 0.00	-1.00		/0.00\	1		-0.09	I I
		1	#####	I	11 11			1		I	I I
11		1		I				1	#####	I	[-1.00]
						1 <0	.00 0.0	0>	#####	<0.00 -0.72	I I
	^	1	~	1 ^	1 1			1	#####	I	I I
		1		I	1 1					I	I I
01	S: 0.00	1	0.00	0.00	0.00		\0.00/	1		-0.09	
		1		I	1 1						
		I.		I	l v l		/0.00\		/0.00\	/0.00\	-0.72
								1			
										I 	
						10 <0.	.00 S 0.0	D>I <o.< td=""><td>00 0.00></td><td> <0.00 0.00></td><td> -0.09 -0.09 </td></o.<>	00 0.00>	<0.00 0.00>	-0.09 -0.09
										1	
								-		1	
							\0.00/	1	\0.00/	\0.00/	\0.00/

Example

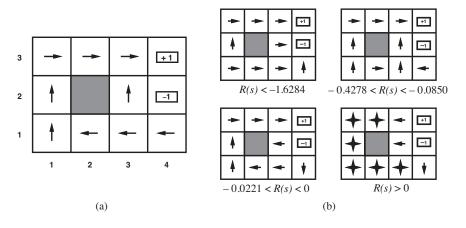
python gridworld.py -a value -i 2 --discount 0.9 --noise 0.2 -r 0 -k 1 -t

VALUE	S AFTER	2 I	TERATIONS			Q-VAL	UES AFTER 2	ITERATIONS		
	0	1	1	2	3		0	1	2	3
 	~	1		 	1 1	1 1	/0.00\	0.06	0.61	 I
11		1		I	1 I I I	1.1		1	1	I
2	0.00	1	0.00 >	0.72 >	1.00	1.1		1	1	[1.00]
		1		l	1.1	2 <0	.00 0.00	> 0.00 0.52>	0.06 0.78>	I
		1		l		1.1		1	1	I
						1.1		1	1	I
11	^	1		<u>م</u>		1.1	\0.00/	0.06	0.09	I
		1	#####	l	11 11					
1	0.00	1	#####	0.00	-1.00	1.1	/0.00\	1	/0.43\	I
		1	#####	l.	11 11	1.1		1	1	I
		1		l.		1.1		#####	1	[-1.00]
						1 <0	.00 0.00	> #####	0.06 -0.66	I
	^	1	^	<u>~</u> ا	1 I	1.1		#####	1	I
		1		I	1 I	1.1		1	1	I
01	S: 0.00	1	0.00	0.00	0.00	1.1	\0.00/	1	-0.09	I
1 I -		1		I	1 I					
		1		I	v I	1.1	/0.00\	/0.00\	/0.00	-0.72
						1.1		1	1	I
								1	1	I
						0 <0	.00 S 0.00	> <0.00 0.00>	<0.00 0.00>	-0.09 -0.09
								1	1	I
								1	1	I
							\0.00/	\0.00/	\0.00/	\0.00/

Example

python gridworld.py -a value -i 3 --discount 0.9 --noise 0.2 -r 0 -k 1 -t

VALUE	S AFTER 3	ITERATIONS			Q-VAL	UES AFTER 3 I	TERATIONS		
	0 1	1	2	3		0	1	2	3
1 1				I I	1 1	0.05	0.44	0.70	I I
1.1	1		l .	II II	1.1		I	1	I I
21	0.00 >	0.52 >	0.78 >	1.00	1.1		I	1	[1.00]
	1		l .	1.1	2 0	.00 0.37>	0.09 0.66>	0.48 0.83>	I
11	I		l				I	I	
							I	I	
1.1	~ I		<u>^</u>			0.05	0.44	0.45	
11	I	#####	l	11 11					
1	0.00	#####	0.43	-1.00		/0.00\	I	/0.51\	
1.1	I	#####	l	11 11			I	I	
11	I						#####	I	[-1.00]
					1 <0	.00 0.00>	#####	0.38 -0.65	
11	~ I	~	~	1 I			#####		
11	1			1 I			I		
101	S: 0.00	0.00	0.00	0.00		\0.00/	I	-0.05	
				1					
				v I		/0.00\	/0.00\	/0.31\	-0.72
							1		
					10 <0	.00 S 0.00>	<0.00 0.00>	0.04 0.04	-0.09 -0.09
							1		
							1		
						\0.00/	\0.00/	0.00	\0.00/



Balancing of risk and reward.

1. Markov Decision Processes

2. Reinforcement Learning

Terminology and Notation

$s \in S$	states
$a \in A(s)$	actions
<i>s</i> ₀	start state
p(s' s,a)	transition probability; world is stochastic;
R(s) or $R(s, a, s')$	reward

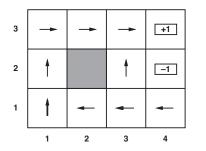
In reinforcement learning, we do not know p and R

Agent	knows	learns	uses
utility-based agent	р	$R \leftarrow U$	U
Q-learning		Q(s,a)	Q
reflex agent		$\pi(s)$	π

Passive RL: policy fixed Active RL: policy can be changed

Passive RL

Perform a set of trials and build up the utility function table



3	0.812	0.868	0.918	+1
2	0.762		0.660	_1
1	0.705	0.655	0.611	0.388
	1	2	3	4

Passive RL

- Direct utility estimator (Monte Carlo method that waits until the end of the episode to determine the increment to $U_t(s)$
- Temporal difference learning (wait only until the next time step)

Passive RL

Temporal difference learning

If a nonterminal state s_t is visited at time t, then update the estimate for U_t based on what happens after that visit and the old estimate.

• Exponential Moving average: Running interpolation update:

$$\bar{x}_n = (1 - \alpha)\bar{x}_{n-1} + \alpha x_n$$
$$\bar{x}_n = \frac{x_n + (1 - \alpha)x_{n-1} + (1 - \alpha)^2 x_{n-2} + \dots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \dots}$$

Makes recent samples more important, forgets about past (old samples were wrong anyway)

• α learning rate: if a function that decreases then the average converges. E.g. $\alpha = 1/N_s$, $\alpha = N_s/N$, $\alpha = 1000/(1000 + N)$,

NewEstimate
$$\leftarrow (1 - \alpha) OldEstimate + \alpha AfterVist$$

 $U(s) \leftarrow (1 - \alpha) U(s) + \alpha [(r + \gamma U(s')]$
 $U(s) \leftarrow U(s) + \alpha (N_s) [r + \gamma U(s') - U(s)]$

*

*

```
Initialize U(s) arbitrarily, \pi to the policy to be evaluated;

repeat /* for each episode

Initialize s;

repeat /* for step of an episode

a \leftarrow action given by \pi for s

Take action a, observe reward r and next state s'

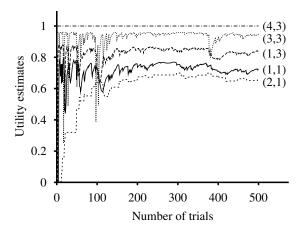
U(s) \leftarrow U(s) + \alpha(N_s)[r + \gamma U(s') - U(s)]

s \leftarrow s'

until s is terminal;

until convergence;
```

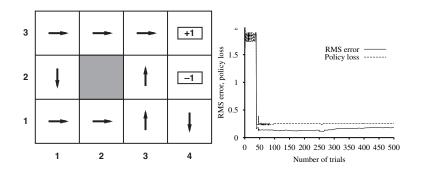
Learning curves



Active Learning

- $\bullet\,$ Greedy agent, recompute a new π in TD algorithm
- Problem:

actions not only provide rewards according to the learned model but also influence the learning by affecting the percepts that are received.



Adjust the TD with a Greedy in the Limit of Infinite Exploration

Exploration/Exploitation

- Simplest: random actions (*e*-greedy)
 - $\bullet\,$ every time step, draw a number in [0,1]
 - $\bullet~$ if smaller than $\epsilon~$ act randomly
 - $\bullet\,$ if larger than ϵ act according to greedy policy
 - ϵ can be lowered with time
- Another solution: exploration function

Active RL Q-learning

• We can choose the action we like with the goal of learning optimal policy

$$\pi^*(s) = \operatorname{argmax}_{a} \left[R(s) + \gamma \sum_{s'} \Pr(s'|s, a) U^*(s') \right]$$

- same as in value iterations algorithm but not off-line
- Q-values are more useful to be learned:

$$Q^* = R(s) + \gamma \sum_{s'} \Pr(s'|s, a) U^*(s')$$
$$\pi(s) = \operatorname{argmax}_a Q^*(s, a)$$

 $\bullet\,$ Sarsa algorithm learns ${\it Q}$ values same way as TD algorithm

In value iteration algorithm

$$U_{i+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} \Pr(s'|s, a) U_i(s')$$

Same with Q

$$Q_{i+1}(s,a) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} \Pr(s'|s,a) Q_i(s',a')$$

Sample based Q^* learning:

- observe sample *s*, *a*, *s*['], *r*
- consider the old estimate Q(s, a)
- derive the new sample estimate

$$Q^*(s, a) \leftarrow R(s) + \gamma \max_{a'} \sum_{s'} \Pr(s'|s, a) Q^*(s', a')$$

$$sample = R(s) + \gamma \max_{a'} Q^*(s', a')$$

• Incorporate the new estimate in running average: $Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + \alpha sample$

*

* /

```
Initialize Q(s, a) arbitrarily;

repeat /* for each episode

Initialize s;

Choose a from s using policy derived from Q (e.g., \epsilon-greedy)

repeat /* for step of an episode

Take action a, observe reward r and next state s'

Choose a' from s' using policy derived from Q (e.g., \epsilon-greedy)

Q(s, a) \leftarrow Q(s, a) + \alpha[r + \gamma Q(s', a') - Q(s, a)]

s \leftarrow s'; a \leftarrow a';

until s is terminal;

until convergence;
```

Note: update is not

$$Q(s, a) \leftarrow Q(s, a) + \alpha[r + \gamma \max_{a'} Q(s', a') - Q(s, a)]$$

since by ϵ -greedy we allow not to choose the best

python gridworld.py -a q -k 10 --discount 0.9 --noise 0.2 -r 0 -e 0.1 -t | less

(note: now episodes are used in training, and there are no iterations, rather steps that end at terminal state)

Properties

Converges

- if explore enough and
- $\bullet \ \alpha$ is small enough
- $\bullet\,$ but α does not decrease too quickly
- \rightsquigarrow Learns optimal policy without following it