Lecture 15 Applications

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Some slides are by Dan Klein at Berkeley

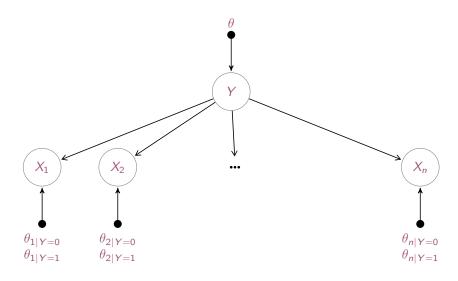
Course Overview

- ✓ Introduction
 - ✓ Artificial Intelligence
 - ✓ Intelligent Agents
- ✓ Search
 - ✓ Uninformed Search
 - ✓ Heuristic Search
- Uncertain knowledge and Reasoning
 - Probability and Bayesian approach
 - ✓ Bayesian Networks
 - ✓ Hidden Markov Chains
 - ✓ Kalman Filters

✓ Learning

- Supervised
 Decision Trees, Neural
 Networks
 Learning Bayesian Networks
- Unsupervised EM Algorithm
- ✓ Reinforcement Learning
- ► Games and Adversarial Search
 - Minimax search and Alpha-beta pruning
 - Multiagent search
- Knowledge representation and Reasoning
 - Propositional logic
 - ► First order logic
 - ► Inference
 - ► Plannning

Naive Bayes Network



1 + 2n parameters

$$Pr(Y, X_1, X_2, \dots, X_n) = Pr(X_1, X_2, \dots, X_n \mid Y) Pr(Y) \qquad (product rule)$$

$$\Pr(X_1, X_2, \dots, X_n \mid Y) = \prod_i \Pr(X_i \mid Y)$$
 (conditional indenpendence)

Estimation/learning: maximize joint likelihood

$$\max \mathcal{L} = \max \prod_{j} \Pr(Y_j) \prod_{i} \Pr(X_{ij} \mid Y_j)$$

Prediction:

$$\Pr(Y \mid X_1, X_2, \dots, X_n) = \frac{\Pr(Y, X_1, X_2, \dots, X_n)}{\Pr(X_1, X_2, \dots, X_n)} = \alpha \Pr(Y, X_1, X_2, \dots, X_n)$$

Maximum a posteriori probability prediction:

$$y = \operatorname{argmax}_{Y} \Pr(Y, X_1, X_2, \dots, X_n)$$

$$\theta = \frac{\sum_{j} I(Y_j = 1)}{N}$$

$$\theta_{i|Y=1} = \frac{\sum_{j} I(Y_j = 1 \land X_{ij} = 1)}{\sum_{j} I(Y_j = 1)}$$

$$\theta_{i|Y=0} = \frac{\sum_{j} I(Y_{j} = 1)}{\sum_{i} I(Y_{j} = 0)}$$

Naïve Bayes spam filter

Data:

- Collection of emails, labeled spam or ham
- Note: someone has to hand label all this data!
- Split into training, heldout, test sets

Classifiers

- · Learn on the training set
- (Tune it on a held-out set)
- Test it on new emails

Dear Sir.

First, I must solicit your confidence in this transaction, this is by virture of its nature as being utterly confidencial and top secret. ...

TO BE REMOVED FROM FUTURE MAILINGS, SIMPLY REPLY TO THIS MESSAGE AND PUT "REMOVE" IN THE SUBJECT.

99 MILLION EMAIL ADDRESSES FOR ONLY \$99

Ok, Iknow this is blatantly OT but I'm beginning to go insane. Had an old Dell Dimension XPS sitting in the corner and decided to put it to use, I know it was working pre being stuck in the corner, but when I plugged it in, hit the power nothing happened.

P(C)

ham: 0.66 spam: 0.33

P(W|spam)

the: 0.0156
to: 0.0153
and: 0.0115
of: 0.0095
you: 0.0093
a: 0.0086
with: 0.0080
from: 0.0075

P(W|ham)

the: 0.0210 to 0.0133 of 0.0119 2002: 0.0110 with: 0.0108 0.0107 from: and : 0.0105 0.0100 а

Where do these tables come from?

$$P(C, W_1, W_2 \dots, W_n) = P(C) \prod_i P(W_i | C)$$

$$P(C, W_1, W_2 \dots, W_n) = \log P(C) \sum_i \log P(W_i | C)$$

Word	P(w spam)	P(w ham)	Tot Spam	Tot Ham
(prior)	0.33333	0.66666	-1.1	-0.4
Gary	0.00002	0.00021	-11.8	-8.9
would	0.00069	0.00084	-19.1	-16.0
you	0.00881	0.00304	-23.8	-21.8
like	0.00086	0.00083	-30.9	-28.9
to	0.01517	0.01339	-35.1	-33.2
lose	0.00008	0.00002	-44.5	-44.0
weight	0.00016	0.00002	-53.3	-55.0
while	0.00027	0.00027	-61.5	-63.2
you	0.00881	0.00304	-66.2	-69.0
sleep	0.00006	0.00001	-76.0	-80.5
$D(\operatorname{cnom} \mid w) = 00.0$				

P(spam | w) = 98.9

Digit Recognition

- ► Input: images / pixel grids
- ► Output: a digit 0-9
- Setup:
 - Get a large collection of example images, each labeled with a digit
 - ▶ Note: someone has to hand label all this data!
 - Want to learn to predict labels of new, future digit images
- Features: The attributes used to make the digit decision
 - ▶ Pixels: (6,8)=ON
 - Shape Patterns: NumComponents, AspectRatio, NumLoops, ...

0

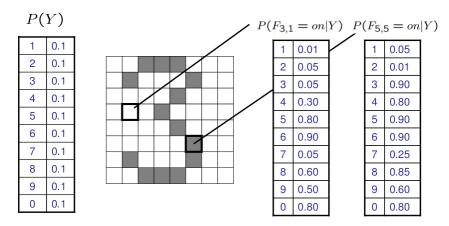
1

0

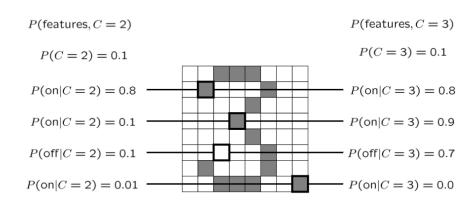
- :

??

CPT



Overfitting



Laplace Smoothing

Assume k samples for each value of the joint distribution

$$\theta = \frac{\sum_{j} I(Y_{j} = 1) + k}{N + k|Y|}$$

$$\theta_{i|Y=1} = \frac{\sum_{j} I(Y_{j} = 1 \land X_{ij} = 1) + k}{\sum_{j} I(Y_{j} = 1) + k|X_{i}|}$$

$$\theta_{i|Y=0} = \frac{\sum_{j} I(Y_{j} = 0 \land X_{ij} = 1) + k}{\sum_{j} I(Y_{j} = 1) + k|X_{i}|}$$

Tuning

- Now we've got two kinds of unknowns
 - ▶ Parameters: the probabilities P(X|Y), P(Y)
 - Hyperparameters, like the amount of smoothing to do: k
- ▶ Where to learn?
 - ► Learn parameters from training data
 - Tune hyperparameters on different data

For each value of the hyperparameters, train and test on the held-out data

Choose the best value and do a final test on the test data

