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♦ Games
♦ Perfect play

– minimax decisions
– α–β pruning

♦ Resource limits and approximate evaluation
♦ Games of chance
♦ Games with imperfect information
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Multiagent environments:

I cooperative
I competitive è adversarial search in games

AI game theory (combinatorial game theory)

I deterministic/stochastic
I turn taking
I two players
I zero sum games = utility values equal and opposite
I perfect/imperfect information
I agents are restricted to a small number of actions described by rules

“Classical” (economic) game theory includes cooperation, chance, imperfect
knowledge, simultaneous moves and tends to represent real-life decision
making situations.
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deterministic chance

perfect information chess, checkers, kalaha
go, othello

backgammon,
monopoly

imperfect information battleships,
blind tictactoe

bridge, poker, scrabble

6

http://kalaha.krus.dk/
http://www.mathsisfun.com/games/reversi.html
http://kalaha.krus.dk/
http://www.mathsisfun.com/games/reversi.html


Introduction
Minimax
α–β Algorithm
Stochastic GamesGames vs. search problems

“Unpredictable” opponent ⇒ solution is a strategy/policy
specifying a move for every possible opponent reply è contingency strategy

Optimal strategy: the one that leads to outcomes at least as good as any
other strategy when one is playing an infallibile opponent

Search problem  game tree
I initial state: root of game tree
I successor function: game rules/moves
I terminal test (is the game over?)
I utility function, gives a value for terminal nodes (eg, +1, -1, 0)

Terminology:

I Two players called MAX and MIN.
I MAX searches the game tree.
I Ply: one turn (every player moves once) from “reply”. [A. Samuel 1959]
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I state-space complexity: number of legal game positions reachable from
the initial position of the game.

an upper bound can often be computed by including illegal positions
Eg, TicTacToe:
39 = 19.683
5.478 after removal of illegal
765 essentially different positions after eliminating symmetries

I game tree size: total number of possible games that can be played:
number of leaf nodes in the game tree rooted at the game’s initial
position.

Eg: TicTacToe:
9! = 362.880 possible games
255.168 possible games halting when one side wins
26.830 after removal of rotations and reflections
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First three levels of the tic-tac-toe state space reduced by symmetry: 12× 7!
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Perfect play for deterministic, perfect-information games

Idea: choose move to position with highest minimax value ( utility for MAX)
= best achievable payoff against best play

E.g., 2-ply game:

MAX

3 12 8 642 14 5 2

MIN

3

A
1

A
3

A
2

A
13A

12
A

11
A

21 A
23

A
22

A
33A

32
A

31

3 2 2
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Recursive Depth First Search:
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Complete?? Yes, if tree is finite (chess has specific rules for this)
Time complexity?? O(bm)
Space complexity?? O(bm) (depth-first exploration)

But do we need to explore every path?

16



Introduction
Minimax
α–β Algorithm
Stochastic GamesMeasures of Game Complexity

I game-tree complexity: number of leaf nodes in the smallest full-width
decision tree that establishes the value of the initial position.
A full-width tree includes all nodes at each depth.
estimates the number of positions to evaluate in a minimax search to
determine the value of the initial position.

approximation: game’s average branching factor to the power of the
number of plies in an average game.
Eg.: chess For chess, b ≈ 35, m ≈ 100 for “reasonable” games

⇒ exact solution completely infeasible

I computational complexity applies to generalized games
(eg, n × n boards)
Eg: TicTacToe:
m × n board k in a row solved in DSPACE (mn) by searching the entire
game tree
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Time limits ⇒ unlikely to find goal, must approximate

Plan of attack:
I Computer considers possible lines of play (Babbage, 1846)
I Algorithm for perfect play - MINIMAX - (Zermelo, 1912; Von Neumann,

1944)
I Finite horizon, approximate evaluation (Zuse, 1945; Wiener, 1948;

Shannon, 1950)
I First chess program (Turing, 1951)
I Machine learning to improve evaluation accuracy (Samuel, 1952–57)
I Pruning to allow deeper search - α− β alg. - (McCarthy, 1956)
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Standard approaches:

I n-ply lookahead: depth-limited search

I heuristic descent

I heuristic cutoff

1. Use Cutoff-Test instead of Terminal-Test
e.g., depth limit (perhaps add quiescence search)

2. Use Eval instead of Utility
i.e., evaluation function that estimates desirability of position

Suppose we have 100 seconds, explore 104 nodes/second
⇒ 106 nodes per move ≈ 358/2
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Heuristic measuring conflict applied to states of tic-tac-toe
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Black to move 

White slightly better

White to move 

Black winning

For chess, typically linear weighted sum of features

Eval(s) = w1f1(s) + w2f2(s) + . . .+ wnfn(s)

e.g., w1 = 9 with
f1(s) = (number of white queens) – (number of black queens), etc.
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MIN

MAX

21

1

42

2

20

1

1 40020

20

Behaviour is preserved under any monotonic transformation of Eval
Only the order matters:

payoff in deterministic games acts as an ordinal utility function
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MAX

3 12 8

MIN

3

3

2

2

X X
14

14

5

5

2

2

3

Minimax(root) = max {3,min{2, x , y},min{...}}
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..

..

..

MAX

MIN

MAX

MIN V

α is the best value (to MAX) found so far along the current path
If V is worse (<) than α, MAX will avoid it ⇒ prune that branch
Define β similarly for MIN
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α is the best value to MAX up to now for everything that comes above in the game
tree. Similar for β and MIN.
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I Pruning does not affect final result

I Good move ordering improves effectiveness of pruning

I With “perfect ordering,” time complexity = O(bm/2)
⇒ doubles solvable depth

I if b is relatively small, random orders leads to O(b3m/4)

I Unfortunately, 3550 is still impossible!
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I Checkers: Chinook ended 40-year-reign of human world champion
Marion Tinsley in 1994. Used an endgame database defining perfect play
for all positions involving 8 or fewer pieces on the board, a total of
443,748,401,247 positions.

I Kalaha (6,6) solved at IMADA in 2011
I Chess: Deep Blue defeated human world champion Gary Kasparov in a

six-game match in 1997. Deep Blue searches 200 million positions per
second, uses very sophisticated evaluation, and undisclosed methods for
extending some lines of search up to 40 ply.

I Othello: human champions refuse to compete against computers, who
are too good.

I Go: human champions refuse to compete against computers, who are
too bad. In go, b > 300, so most programs use pattern knowledge bases
to suggest plausible moves.
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Uncertainty in the result of an action.
Examples:

I In solitaire, next card is unknown
I In minesweeper, mine locations
I In pacman, the ghosts act

randomly
Can do expectimax search to
maximize average score

I Max nodes as in minimax search
I Chance nodes, like min nodes,

except the outcome is uncertain
I Calculate expected utilities I.e.

take weighted average
(expectation) of values of children

Note, they can be formalized as
Markov Decision Processes 32
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For expectimax, we need magnitudes to be meaningful
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I Ghosts are not anymore trying to minimize pacman’s score
I Instead, they are now a part of the environment
I Pacman has a belief (distribution) over how they will act
I World assumptions have impact

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble
Ghost used depth 2 search with an eval function that seeks Pacman
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1 2 3 4 5 6 7 8 9 10 11 12

24 23 22 21 20 19 18 17 16 15 14 13

0

25
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In nondeterministic games, chance introduced by dice, card-shuffling
Simplified example with coin-flipping:

MIN

MAX

2

CHANCE

4 7 4 6 0 5 −2

2 4 0 −2

0.5 0.5 0.5 0.5

3 −1
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Expectiminimax gives perfect play
Just like Minimax, except we must also handle chance nodes:
. . .
if state is a Max node then

return the highest ExpectiMinimax-Value of Successors(state)
if state is a Min node then

return the lowest ExpectiMinimax-Value of Successors(state)
if state is a chance node then

return average of ExpectiMinimax-Value of Successors(state)
. . .
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Dice rolls increase b: 21 possible rolls with 2 dice
Backgammon ≈ 20 legal moves

depth 4 = 20× (21× 20)3 ≈ 1.2× 109

I As depth increases, probability of reaching a given node shrinks
⇒ value of lookahead is diminished

I α–β pruning is much less effective

I Temporal Difference Learning Gammon uses depth-2 search + very good
Eval

≈ world-champion level
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DICE

MIN

MAX

2 2 3 3 1 1 4 4

2 3 1 4

.9 .1 .9 .1

2.1 1.3

20 20 30 30 1 1 400 400

20 30 1 400

.9 .1 .9 .1

21 40.9

Behaviour is preserved only by positive linear transformation of Eval
Hence Eval should be proportional to the expected payoff
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I E.g., card games, where opponent’s initial cards are unknown

I Typically we can calculate a probability for each possible deal

I Seems just like having one big dice roll at the beginning of the game∗

I Idea: compute the minimax value of each action in each deal,
then choose the action with highest expected value over all deals∗

I Special case: if an action is optimal for all deals, it’s optimal.∗

I GIB, current best bridge program, approximates this idea by
1) generating 100 deals consistent with bidding information
2) picking the action that wins most tricks on average
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