Lecture 17 Games and Adversarial Search

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Slides by Stuart Russell and Peter Norvig

Course Overview

 $\begin{array}{l} \mbox{Introduction} \\ \mbox{Minimax} \\ \alpha \mbox{-}\beta \mbox{ Algorithm} \\ \mbox{Stochastic Games} \end{array}$

- Introduction
 - ✔ Artificial Intelligence
 - ✓ Intelligent Agents
- Search
 - ✔ Uninformed Search
 - ✔ Heuristic Search
- Uncertain knowledge and Reasoning
 - Probability and Bayesian approach
 - Bayesian Networks
 - ✔ Hidden Markov Chains
 - ✓ Kalman Filters

- Learning
 - Supervised Decision Trees, Neural Networks
 - Learning Bayesian Networks
 - Unsupervised
 EM Algorithm
- ✓ Reinforcement Learning
- Games and Adversarial Search
 - Minimax search and Alpha-beta pruning
 - Multiagent search
- Knowledge representation and Reasoning
 - Propositional logic
 - First order logic
 - Inference
 - Planning

Outline

Introduction Minimax $\alpha-\beta$ Algorithm Stochastic Games

- \land Games
- \diamond Perfect play
 - minimax decisions
 - α – β pruning
- \diamondsuit Resource limits and approximate evaluation
- ♦ Games of chance
- \diamondsuit Games with imperfect information

Outline

Introduction

 $\begin{array}{l} {\sf Minimax} \\ \alpha {-}\beta \ {\sf Algorithm} \\ {\sf Stochastic \ Games} \end{array}$

- 1. Introduction
- 2. Minimax
- 3. α – β Algorithm
- 4. Stochastic Games

Multiagent environments

Multiagent environments:

- cooperative
- ► competitive ➡ adversarial search in games

Al game theory (combinatorial game theory)

- deterministic/stochastic
- turn taking
- two players
- zero sum games = utility values equal and opposite
- perfect/imperfect information
- ▶ agents are restricted to a small number of actions described by rules

"Classical" (economic) game theory includes cooperation, chance, imperfect knowledge, simultaneous moves and tends to represent real-life decision making situations.

$\begin{array}{l} {\rm Introduction} \\ {\rm Minimax} \\ \alpha {-}\beta \ {\rm Algorithm} \\ {\rm Stochastic} \ {\rm Games} \end{array}$

Types of Games

$\begin{array}{l} {\rm Introduction} \\ {\rm Minimax} \\ \alpha {-}\beta \ {\rm Algorithm} \\ {\rm Stochastic \ Games} \end{array}$

	deterministic	chance
perfect information	chess, checkers, kalaha	backgammon,
perfect information	go, <mark>othello</mark>	monopoly
imperfect information	battleships,	bridge poker scrabble
imperieer information	blind tictactoe	bridge, poker, serabble

Games vs. search problems

Introduction Minimax $\alpha-\beta$ Algorithm Stochastic Games

"Unpredictable" opponent \Rightarrow solution is a strategy/policy specifying a move for every possible opponent reply \Rightarrow contingency strategy

Optimal strategy: the one that leads to outcomes at least as good as any other strategy when one is playing an infallibile opponent

Search problem \rightsquigarrow game tree

- initial state: root of game tree
- successor function: game rules/moves
- terminal test (is the game over?)
- ▶ utility function, gives a value for terminal nodes (eg, +1, -1, 0)

Terminology:

- Two players called MAX and MIN.
- MAX searches the game tree.
- ▶ Ply: one turn (every player moves once) from "reply". [A. Samuel 1959]

Game tree (2-player, deterministic, turns)

Introduction

Measures of Game Complexity

state-space complexity: number of legal game positions reachable from the initial position of the game.

an upper bound can often be computed by including illegal positions Eg, TicTacToe: $3^9 = 19.683$ 5.478 after removal of illegal 765 essentially different positions after eliminating symmetries

game tree size: total number of possible games that can be played: number of leaf nodes in the game tree rooted at the game's initial position.

Eg: TicTacToe: 9! = 362.880 possible games 255.168 possible games halting when one side wins 26.830 after removal of rotations and reflections

Introduction Minimax $\alpha-\beta$ Algorithm Stochastic Games

 $\begin{array}{l} {\rm Introduction} \\ {\rm Minimax} \\ \alpha {-}\beta \ {\rm Algorithm} \\ {\rm Stochastic} \ {\rm Games} \end{array}$

First three levels of the tic-tac-toe state space reduced by symmetry: $12 \times 7!$

Outline

 $\begin{array}{l} \text{Introduction} \\ \textbf{Minimax} \\ \alpha - \beta \text{ Algorithm} \\ \textbf{Stochastic Games} \end{array}$

- 1. Introduction
- 2. Minimax
- 3. α – β Algorithm
- 4. Stochastic Games

Minimax

Perfect play for deterministic, perfect-information games

Idea: choose move to position with highest minimax value (~~utility for MAX) = best achievable payoff against best play

E.g., 2-ply game:

Minimax algorithm

Recursive Depth First Search:

function MINIMAX-DECISION(*state*) **returns** *an action* **return** $\arg \max_{a \in ACTIONS(s)}$ MIN-VALUE(RESULT(*state*, *a*))

function MAX-VALUE(state) returns a utility value if TERMINAL-TEST(state) then return UTILITY(state) $v \leftarrow -\infty$ for each a in ACTIONS(state) do $v \leftarrow MAX(v, MIN-VALUE(RESULT(s, a)))$ return v

```
function MIN-VALUE(state) returns a utility value

if TERMINAL-TEST(state) then return UTILITY(state)

v \leftarrow \infty

for each a in ACTIONS(state) do

v \leftarrow MIN(v, MAX-VALUE(RESULT(s, a)))

return v
```

Properties of minimax

Introduction Minimax $\alpha-\beta$ Algorithm Stochastic Games

Complete?? Yes, if tree is finite (chess has specific rules for this) Time complexity?? $O(b^m)$ Space complexity?? O(bm) (depth-first exploration)

But do we need to explore every path?

Measures of Game Complexity

game-tree complexity: number of leaf nodes in the smallest full-width decision tree that establishes the value of the initial position.
 A full-width tree includes all nodes at each depth.
 estimates the number of positions to evaluate in a minimax search to determine the value of the initial position.

approximation: game's average branching factor to the power of the number of plies in an average game.

Eg.: chess For chess, $b \approx 35$, $m \approx 100$ for "reasonable" games

 \Rightarrow exact solution completely infeasible

computational complexity applies to generalized games

(eg, $n \times n$ boards)

Eg: TicTacToe:

 $m \times n$ board k in a row solved in DSPACE(mn) by searching the entire game tree

Historical view

Time limits \Rightarrow unlikely to find goal, must approximate

Plan of attack:

- ► Computer considers possible lines of play (Babbage, 1846)
- Algorithm for perfect play MINIMAX (Zermelo, 1912; Von Neumann, 1944)
- ► Finite horizon, approximate evaluation (Zuse, 1945; Wiener, 1948; Shannon, 1950)
- ▶ First chess program (Turing, 1951)
- Machine learning to improve evaluation accuracy (Samuel, 1952–57)
- Pruning to allow deeper search $\alpha \beta$ alg. (McCarthy, 1956)

Introduction Minimax $\alpha - \beta$ Algorithm Stochastic Games

Resource limits

Standard approaches:

- n-ply lookahead: depth-limited search
- heuristic descent
- heuristic cutoff
 - 1. Use Cutoff-Test instead of Terminal-Test e.g., depth limit (perhaps add quiescence search)
 - 2. Use Eval instead of Utility

i.e., evaluation function that estimates desirability of position

Suppose we have 100 seconds, explore 10^4 nodes/second $\Rightarrow 10^6$ nodes per move $\approx 35^{8/2}$

Heuristic Descent

Heuristic measuring conflict applied to states of tic-tac-toe

 $\begin{array}{l} \mbox{Heuristic is } E(n) = M(n) - O(n) \\ \mbox{where } M(n) \mbox{ is the total of } My \mbox{possible winning lines} \\ O(n) \mbox{ is total of Opponent's possible winning lines} \\ E(n) \mbox{ is the total Evaluation for state } n \end{array}$

Evaluation functions

Introduction Minimax $\alpha-\beta$ Algorithm Stochastic Games

Black to move

White slightly better

White to move Black winning

For chess, typically linear weighted sum of features

 $Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$

e.g., $w_1 = 9$ with $f_1(s) =$ (number of white queens) – (number of black queens), etc.

Introduction Minimax $\alpha-\beta$ Algorithm Stochastic Games

Thrashing

- He knows his score will go up by eating the dot now (west, east)
- He knows his score will go up just as much by eating the dot later (east, west)
- There are no point-scoring opportunities after eating the dot (within the horizon, two here)
- Therefore, waiting seems just as good as eating: he may go east, then back west in the next round of replanning!

Behaviour is preserved under any monotonic transformation of Eval Only the order matters:

payoff in deterministic games acts as an ordinal utility function

Introduction

Outline

Introduction Minimax $\alpha-\beta$ Algorithm Stochastic Games

- 1. Introduction
- 2. Minimax
- 3. α – β Algorithm
- 4. Stochastic Games

Example

α – β pruning example

MAX

ð 3

 $Minimax(root) = \max\{3, \min\{2, x, y\}, \min\{...\}\}$

Introduction Minimax $\alpha - \beta$ Algorithm Stochastic Games

Why is it called $\alpha - \beta$?

Introduction Minimax $\alpha - \beta$ Algorithm Stochastic Games

 α is the best value (to MAX) found so far along the current path If V is worse (<) than α , MAX will avoid it \Rightarrow prune that branch Define β similarly for MIN

The $\alpha - \beta$ algorithm

 α is the best value to MAX up to now for everything that comes above in the game tree. Similar for β and MIN.

function ALPHA-BETA-SEARCH(*state*) returns an action $v \leftarrow MAX-VALUE(state, -\infty, +\infty)$ return the *action* in ACTIONS(*state*) with value v

```
function MAX-VALUE(state, \alpha, \beta) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
v \leftarrow -\infty
for each a in ACTIONS(state) do
v \leftarrow MAX(v, MIN-VALUE(RESULT(s, a), \alpha, \beta))
if v \ge \beta then return v
\alpha \leftarrow MAX(\alpha, v)
return v
```

```
function MIN-VALUE(state, \alpha, \beta) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
v \leftarrow +\infty
for each a in ACTIONS(state) do
v \leftarrow MIN(v, MAX-VALUE(RESULT(s, a), \alpha, \beta))
if v \leq \alpha then return v
\beta \leftarrow MIN(\beta, v)
return v
```

Properties of α - β

Introduction Minimax $\alpha-\beta$ Algorithm Stochastic Games

- Pruning does not affect final result
- Good move ordering improves effectiveness of pruning
- With "perfect ordering," time complexity = O(b^{m/2})
 ⇒ doubles solvable depth
- if b is relatively small, random orders leads to $O(b^{3m/4})$
- ▶ Unfortunately, 35⁵⁰ is still impossible!

Deterministic games in practice

- Checkers: Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994. Used an endgame database defining perfect play for all positions involving 8 or fewer pieces on the board, a total of 443,748,401,247 positions.
- ► Kalaha (6,6) solved at IMADA in 2011
- Chess: Deep Blue defeated human world champion Gary Kasparov in a six-game match in 1997. Deep Blue searches 200 million positions per second, uses very sophisticated evaluation, and undisclosed methods for extending some lines of search up to 40 ply.
- Othello: human champions refuse to compete against computers, who are too good.
- Go: human champions refuse to compete against computers, who are too bad. In go, b > 300, so most programs use pattern knowledge bases to suggest plausible moves.

Outline

Introduction Minimax $\alpha-\beta$ Algorithm Stochastic Games

- 1. Introduction
- 2. Minimax
- 3. α – β Algorithm
- 4. Stochastic Games

Introduction Minimax $\alpha-\beta$ Algorithm Stochastic Games

Stochastic Games

Uncertainty in the result of an action. Examples:

- In solitaire, next card is unknown
- In minesweeper, mine locations
- In pacman, the ghosts act randomly

Can do expectimax search to maximize average score

- Max nodes as in minimax search
- Chance nodes, like min nodes, except the outcome is uncertain
- Calculate expected utilities I.e. take weighted average (expectation) of values of children

Note, they can be formalized as Markov Decision Processes

Expectimax Pseudocode

Introduction Minimax $\alpha-\beta$ Algorithm Stochastic Games

def value(s)
 if s is a max node return maxValue(s)
 if s is an exp node return expValue(s)
 if s is a terminal node return evaluation(s)

```
def maxValue(s)
  values = [value(s') for s' in successors(s)]
  return max(values)
```

```
def expValue(s)
  values = [value(s') for s' in successors(s)]
  weights = [probability(s, s') for s' in successors(s)]
  return expectation(values, weights)
```


Introduction Minimax $\alpha-\beta$ Algorithm Stochastic Games

Depth-Limited Expectimax

Digression: magnitudes matter

Introduction Minimax $\alpha-\beta$ Algorithm Stochastic Games

For expectimax, we need magnitudes to be meaningful

Expectimax-pruning

Introduction Minimax $\alpha-\beta$ Algorithm Stochastic Games

Expectimax for Pacman

- Ghosts are not anymore trying to minimize pacman's score
- Instead, they are now a part of the environment
- Pacman has a belief (distribution) over how they will act
- World assumptions have impact

Results from playing 5 games

	Minimizing Ghost	Random Ghost
Minimax Pacman	Won 5/5	Won 5/5
	Avg. Score: 483	Avg. Score: 493
Expectimax Pacman	Won 1/5	Won 5/5
	Avg. Score: -303	Avg. Score: 503

Pacman used depth 4 search with an eval function that avoids trouble Ghost used depth 2 search with an eval function that seeks Pacman

Nondeterministic games in general

Introduction Minimax $\alpha-\beta$ Algorithm Stochastic Games

In nondeterministic games, chance introduced by dice, card-shuffling Simplified example with coin-flipping:

Expectiminimax gives perfect play Just like Minimax, except we must also handle chance nodes:

if state is a Max node then
 return the highest ExpectiMinimax-Value of Successors(state)
if state is a Min node then
 return the lowest ExpectiMinimax-Value of Successors(state)
if state is a chance node then

return average of ExpectiMinimax-Value of Successors(state)

Nondeterministic games in practice

Dice rolls increase b: 21 possible rolls with 2 dice Backgammon \approx 20 legal moves

 ${\rm depth}~4=20\times(21\times20)^3\approx1.2\times10^9$

- ► As depth increases, probability of reaching a given node shrinks ⇒ value of lookahead is diminished
- $\alpha \beta$ pruning is much less effective
- Temporal Difference Learning Gammon uses depth-2 search + very good Eval

pprox world-champion level

Digression: Exact values DO matter

Behaviour is preserved only by positive linear transformation of Eval Hence Eval should be proportional to the expected payoff

Games of imperfect information

- E.g., card games, where opponent's initial cards are unknown
- ► Typically we can calculate a probability for each possible deal
- Seems just like having one big dice roll at the beginning of the game*
- Idea: compute the minimax value of each action in each deal, then choose the action with highest expected value over all deals*
- Special case: if an action is optimal for all deals, it's optimal.*
- GIB, current best bridge program, approximates this idea by
 1) generating 100 deals consistent with bidding information
 2) picking the action that wins most tricks on average