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Agents are used to provide a consistent viewpoint on various topics in
the field AI

Essential concepts:

Agents intereact with environment by means of sensors and actuators.
A rational agent does “the right thing” ≡ maximizes a performance
measure
è PEAS

Environment types: observable, deterministic, episodic, static, discrete,
single agent

Agent types: table driven (rule based), simple reflex, model-based reflex,
goal-based, utility-based, learning agent
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Agent = Architecture + Program

Architecture

operating platform of the agent

computer system, specific hardware, possibly OS

Program

function that implements the mapping from percepts to actions

This course is about the program,
not the architecture
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1. Problem Solving Agents

2. Search

3. Uninformed search algorithms

4. Informed search algorithms

5. Constraint Satisfaction Problem
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1. Problem Solving Agents

2. Search

3. Uninformed search algorithms

4. Informed search algorithms

5. Constraint Satisfaction Problem
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♦ Problem-solving agents
♦ Problem types
♦ Problem formulation
♦ Example problems
♦ Basic search algorithms
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Restricted form of general agent:

function Simple-Problem-Solving-Agent( percept) returns an action
static: seq, an action sequence, initially empty

state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation

state←Update-State(state, percept)
if seq is empty then

goal←Formulate-Goal(state)
problem←Formulate-Problem(state, goal)
seq← Search( problem)

action←Recommendation(seq, state)
seq←Remainder(seq, state)
return action

Note: this is offline problem solving; solution executed “eyes closed.”
Online problem solving involves acting without complete knowledge.
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On holiday in Romania; currently in Arad.
Flight leaves tomorrow from Bucharest

Formulate goal:
be in Bucharest

Formulate problem:
states: various cities
actions: drive between cities

Find solution:
sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest
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A problem is defined by five items:

1. initial state e.g., “at Arad”

2. actions defining the other states, e.g., Go(Arad)

3. transition model res(x, a)
e.g., res(In(Arad), Go(Zerind)) = In(Zerind)
alternatively: set of action–state pairs:
{〈(In(Arad), Go(Zerind)), In(Zerind)〉, . . .}

4. goal test, can be
explicit, e.g., x = “at Bucharest”
implicit, e.g., NoDirt(x)

5. path cost (additive)
e.g., sum of distances, number of actions executed, etc.
c(x, a, y) is the step cost, assumed to be ≥ 0

A solution is a sequence of actions
leading from the initial state to a goal state
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Real world is complex
⇒ state space must be abstracted for problem solving

(Abstract) state = set of real states

(Abstract) action = complex combination of real actions
e.g., “Arad → Zerind” represents a complex set

of possible routes, detours, rest stops, etc.
For guaranteed realizability, any real state “in Arad”

must get to some real state “in Zerind”

(Abstract) solution =
set of real paths that are solutions in the real world

Each abstract action should be “easier” than the original problem!

Atomic representation
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Example
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states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??: Left, Right, Suck, NoOp
transition model??: arcs in the digraph
goal test??: no dirt
path cost??: 1 per action (0 for NoOp)
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states??: integer locations of tiles (ignore intermediate positions)
actions??: move blank left, right, up, down (ignore unjamming etc.)
transition model??: effect of the actions
goal test??: = goal state (given)
path cost??: 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]
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states??: real-valued coordinates of robot joint angles
parts of the object to be assembled

actions??: continuous motions of robot joints
goal test??: complete assembly with no robot included!
path cost??: time to execute
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Deterministic, fully observable, known, discrete =⇒ state space problem
Agent knows exactly which state it will be in; solution is a sequence

Non-observable =⇒ conformant problem
Agent may have no idea where it is; solution (if any) is a sequence

Nondeterministic and/or partially observable =⇒ contingency problem
percepts provide new information about current state
solution is a contingent plan or a policy
often interleave search, execution

Unknown state space =⇒ exploration problem (“online”)
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State space, start in #5. Solution??
[Right, Suck]

Non-observable, start in {1, 2, 3, 4, 5, 6, 7, 8}
e.g., Right goes to {2, 4, 6, 8}. Solution??
[Right, Suck, Left, Suck]

Contingency, start in #5
Murphy’s Law: Suck can dirty a clean carpet
Local sensing: dirt, location only.
Solution??

[Right, if dirt then Suck]

1 2

3 4

5 6

7 8
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Toy problems

vacuum cleaner agent
8-puzzle
8-queens
cryptarithmetic
missionaries and cannibals

Real-world problems

route finding
traveling salesperson
VLSI layout
robot navigation
assembly sequencing
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1. Problem Solving Agents

2. Search

3. Uninformed search algorithms

4. Informed search algorithms

5. Constraint Satisfaction Problem
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Formulate appropriate problems in optimization and planning (sequence
of actions to achive a goal) as search tasks:
initial state, operators, goal test, path cost

Know the fundamental search strategies and algorithms

uninformed search
breadth-first, depth-first, uniform-cost, iterative deepening, bi-

directional

informed search
best-first (greedy, A*), heuristics, memory-bounded

Evaluate the suitability of a search strategy for a problem

completeness, optimality, time & space complexity
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Traversal of some search space
from the initial state to a goal state
legal sequence of actions as defined by operators

The search can be performed on

On a search tree derived from
expanding the current state using the possible operators
Tree-Search algorithm

A graph representing
the state space
Graph-Search algorithm
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Lugoj AradArad OradeaRimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara
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A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree

includes state, parent, action, path cost g(x)
States do not have parents, children, depth, or path cost!

1

23

45

6

7

81

23

45

6

7

8

State Node depth = 6

g = 6

state

parent, action

The Expand function creates new nodes, filling in the various fields using the
Transition Model of the problem to create the corresponding states.
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function Tree-Search( problem, fringe) returns a solution, or failure
fringe← Insert(Make-Node(Initial-State[problem]), fringe)
loop do

if fringe is empty then return failure
node←Remove-Front(fringe)
if Goal-Test(problem, State(node)) then return node
fringe← InsertAll(Expand(node,problem), fringe)

function Expand( node, problem) returns a set of nodes
successors← the empty set
for each action, result in Successor-Fn(problem, State[node]) do

s← a new Node
Parent-Node[s]← node; Action[s]← action; State[s]← result
Path-Cost[s]←Path-Cost[node] + Step-Cost(State[node], action,

result)
Depth[s]←Depth[node] + 1
add s to successors

return successors
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A strategy is defined by picking the order of node expansion

function Tree-Search( problem, fringe) returns a solution, or failure
fringe← Insert(Make-Node(Initial-State[problem]), fringe)
loop do

if fringe is empty then return failure
node← Remove-Front(fringe)
if Goal-Test(problem, State(node)) then return node
fringe← InsertAll(Expand(node,problem), fringe)

Strategies are evaluated along the following dimensions:
completeness—does it always find a solution if one exists?
time complexity—number of nodes generated/expanded
space complexity—maximum number of nodes in memory
optimality—does it always find a least path cost solution?

Time and space complexity are measured in terms of
b—maximum branching factor of the search tree
d—depth of the least-cost solution
m—maximum depth of the state space (may be ∞)
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1. Problem Solving Agents

2. Search

3. Uninformed search algorithms

4. Informed search algorithms

5. Constraint Satisfaction Problem
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Uninformed strategies use only the information available
in the problem definition

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening search

Bidirectional Search
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Expand shallowest unexpanded node (shortest path in the frontier)
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D E F G

A
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D E F G

A

B C
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A

B C

D E F G

Implementation:
fringe is a FIFO queue, i.e., new successors go at end
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Complete?? Yes (if b is finite)
Optimal?? Yes (if cost = 1 per step); not optimal in general
Time?? 1 + b+ b2 + b3 + . . .+ bd + b(bd − 1) = O(bd+1), i.e., exp. in d
Space?? bd−1 + bd = O(bd) (explored + frontier)

Space is the big problem; can easily generate nodes at 100MB/sec
so 24hrs = 8640GB.
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Expand first least-cost path

(Equivalent to breadth-first if step costs all equal)

Implementation:

fringe = priority queue ordered by path cost, lowest first,

Complete?? Yes, if step cost ≥ ε
Optimal??Yes—nodes expanded in increasing order of g(n)
Time?? # of nodes with g ≤ cost of optimal solution, O(b1+dC

∗/εe)
where C∗ is the cost of the optimal solution

Space??# of nodes with g ≤ cost of optimal solution, O(b1+dC
∗/εe)
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Expand deepest unexpanded node

A

B C

D E F G

H I J K L M N O

Implementation:
fringe = LIFO queue, i.e., put successors at front
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Complete?? No: fails in infinite-depth spaces, or spaces with loops
Modify to avoid repeated states along path
⇒ complete in finite spaces

Optimal?? No
Time?? O(bm): terrible if m is much larger than d

but if solutions are dense, may be much faster than breadth-first
Space?? O(bm), i.e., linear space!

36



Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemDepth-limited search

= depth-first search with depth limit l,
i.e., nodes at depth l have no successors
Recursive implementation:

function Depth-Limited-Search( problem, limit) returns soln/fail/cutoff
Recursive-DLS(Make-Node(Initial-State[problem]),problem, limit)

function Recursive-DLS(node,problem, limit) returns soln/fail/cutoff
cutoff-occurred?← false
if Goal-Test(problem, State[node]) then return node
else if Depth[node] = limit then return cutoff
else for each successor in Expand(node,problem) do

result←Recursive-DLS(successor,problem, limit)
if result = cutoff then cutoff-occurred?← true
else if result 6= failure then return result

if cutoff-occurred? then return cutoff else return failure
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function Iterative-Deepening-Search( problem) returns a solution
inputs: problem, a problem

for depth← 0 to ∞ do
result←Depth-Limited-Search( problem, depth)
if result 6= cutoff then return result

end
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Limit = 3
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Complete?? Yes
Optimal?? Yes, if step cost = 1

Can be modified to explore uniform-cost tree
Time?? (d+ 1)b0 + db1 + (d− 1)b2 + . . .+ bd = O(bd)
Space?? O(bd)

Numerical comparison in time for b = 10 and d = 5, solution at far right leaf:

N IDS) = 50 + 400 + 3, 000 + 20, 000 + 100, 000 = 123, 450

N(BFS) = 10 + 100 + 1, 000 + 10, 000 + 100, 000 + 999, 990 = 1, 111, 100

IDS does better because other nodes at depth d are not expanded
BFS can be modified to apply goal test when a node is generated
Iterative lenghtening not as successul as IDS
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Search simultaneously (using breadth-first search)
from goal to start
from start to goal

Stop when the two search trees intersects
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If applicable, may lead to substantial savings

Predecessors of a (goal) state must be generated
Not always possible, eg. when we do not know the optimal state
explicitly

Search must be coordinated between the two search processes.

What if many goal states?

One search must keep all nodes in memory
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Criterion Breadth- Uniform- Depth- Depth- Iterative
First Cost First Limited Deepening

Complete? Yes∗ Yes∗ No Yes, if l ≥ d Yes
Time bd+1 bd1+C

∗/εe bm bl bd

Space bd+1 bd1+C
∗/εe bm bl bd

Optimal? Yes∗ Yes No No Yes∗
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Problem formulation usually requires abstracting away real-world details
to define a state space that can feasibly be explored

Variety of uninformed search strategies

Iterative deepening search uses only linear space
and not much more time than other uninformed algorithms

Graph search can be exponentially more efficient than tree search
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1. Problem Solving Agents

2. Search

3. Uninformed search algorithms

4. Informed search algorithms

5. Constraint Satisfaction Problem
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function Tree-Search( problem, fringe) returns a solution, or failure
fringe← Insert(Make-Node(Initial-State[problem]), fringe)
loop do

if fringe is empty then return failure
node←Remove-Front(fringe)
if Goal-Test[problem] applied to State(node) succeeds return node
fringe← InsertAll(Expand(node,problem), fringe)

A strategy is defined by picking the order of node expansion
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Informed strategies use agent’s background information about the problem
map, costs of actions, approximation of solutions, ...

best-first search

greedy search
A∗search

local search (not in this course)

Hill-climbing
Simulated annealing
Genetic algorithms
Local search in continuous spaces
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Idea: use an evaluation function for each node
– estimate of “desirability”

⇒ Expand most desirable unexpanded node

Implementation:
fringe is a queue sorted in decreasing order of desirability

Special cases:
greedy search
A∗ search
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Evaluation function h(n) (heuristic)
= estimate of cost from n to the closest goal

E.g., hSLD(n) = straight-line distance from n to Bucharest

Greedy search expands the node that appears to be closest to goal
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Arad

366

Zerind

Arad

Sibiu Timisoara

253 329 374

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

329 374

366 176 380 193

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Sibiu Bucharest

329 374

366 380 193

253 0
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Complete?? No–can get stuck in loops, e.g., from Iasi to Fargas
Iasi → Neamt → Iasi → Neamt →

Complete in finite space with repeated-state checking
Optimal?? No
Time?? O(bm), but a good heuristic can give dramatic improvement
Space?? O(bm)
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Idea: avoid expanding paths that are already expensive
Evaluation function f(n) = g(n) + h(n)

g(n) = cost so far to reach n
h(n) = estimated cost to goal from n
f(n) = estimated total cost of path through n to goal

A∗ search uses an admissible heuristic
i.e., h(n) ≤ h∗(n) where h∗(n) is the true cost from n.
(Also require h(n) ≥ 0, so h(G) = 0 for any goal G.)

E.g., hSLD(n) never overestimates the actual road distance

Theorem: A∗ search is optimal
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Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Rimnicu VilceaFagaras Oradea

Craiova Pitesti Sibiu

Bucharest Craiova Rimnicu Vilcea

418=418+0

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253

615=455+160 607=414+193

671=291+380
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Suppose some suboptimal goal G2 has been generated and is in the queue.
Let n be an unexpanded node on a shortest path to an optimal goal G1.

G

n

G2

Start

f(G2) = g(G2) since h(G2) = 0

> g(G1) since G2 is suboptimal

≥ f(n) since h is admissible

Since f(G2) > f(n), A∗ will never select G2 for expansion
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Lemma: A∗ expands nodes in order of increasing f value∗

Gradually adds “f -contours” of nodes (cf. breadth-first adds layers)
Contour i has all nodes with f = fi, where fi < fi+1

O

Z

A

T

L

M

D
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P
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B
U
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I
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400

420

S
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Complete?? Yes, unless there are infinitely many nodes with f ≤ f(G)
Optimal?? Yes—cannot expand fi+1 until fi is finished

A∗ expands all nodes with f(n) < C∗

A∗ expands some nodes with f(n) = C∗

A∗ expands no nodes with f(n) > C∗

Time?? Exponential in [relative error in h × length of sol.]
Space?? Keeps all nodes in memory
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A heuristic is consistent if

n

c(n,a,n’)

h(n’)

h(n)

G

n’

h(n) ≤ c(n, a, n′) + h(n′)

If h is consistent, we have

f(n′) = g(n′) + h(n′)

= g(n) + c(n, a, n′) + h(n′)

≥ g(n) + h(n)

= f(n)

I.e., f(n) is nondecreasing along any path.
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E.g., for the 8-puzzle:

h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

2

Start State Goal State
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7 8
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5

h1(S) =??
h2(S) =??
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E.g., for the 8-puzzle:

h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

h1(S) =?? 6
h2(S) =?? 4+0+3+3+1+0+2+1 = 14
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If h2(n) ≥ h1(n) for all n (both admissible)
then h2 dominates h1 and is better for search

Typical search costs:

d = 14 IDS = 3,473,941 nodes
A∗(h1) = 539 nodes
A∗(h2) = 113 nodes

d = 24 IDS ≈ 54,000,000,000 nodes
A∗(h1) = 39,135 nodes
A∗(h2) = 1,641 nodes

Given any admissible heuristics ha, hb,

h(n) = max(ha(n), hb(n))

is also admissible and dominates ha, hb
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Admissible heuristics can be derived from the exact
solution cost of a relaxed version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move
anywhere, then h1(n) gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square,
then h2(n) gives the shortest solution

Key point: the optimal solution cost of a relaxed problem
is no greater than the optimal solution cost of the real problem
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Try to reduce memory needs

Take advantage of heuristic to improve performance

Iterative-deepening A∗(IDA∗)

SMA∗
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Uniformed Iterative Deepening (repetition)

depth-first search where the max depth is iteratively increased

IDA∗

depth-first search, but only nodes with f -cost less than or equal to
smallest f -cost of nodes expanded at last iteration

was the "best" search algorithm for many practical problems
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Complete?? Yes
Time complexity?? Still exponential
Space complexity?? linear
Optimal?? Yes. Also optimal in the absence of monotonicity
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Use all available memory

Follow A∗algorithm and fill memory with new expanded nodes

If new node does not fit
remove stored node with worst f -value
propagate f -value of removed node to parent

SMA∗will regenerate a subtree only when it is needed
the path through subtree is unknown, but cost is known
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Complete?? yes, if there is enough memory for the shortest solution path
Time?? same as A∗if enough memory to store the tree
Space?? use available memory
Optimal?? yes, if enough memory to store the best solution path

In practice, often better than A∗and IDA∗trade-off between time and space
requirements
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Zerind

Arad

Sibiu

Arad Fagaras Oradea

Craiova Sibiu

Bucharest Craiova Rimnicu Vilcea

Zerind
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Sibiu

Arad

Sibiu Bucharest

Rimnicu VilceaOradea

Zerind
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Sibiu

Arad

Timisoara

Timisoara

Timisoara

Fagaras Oradea Rimnicu Vilcea
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(a) After expanding Arad, Sibiu, 

      and Rimnicu Vilcea

(c) After switching back to Rimnicu Vilcea
      and expanding Pitesti

(b) After unwinding back to Sibiu 
      and expanding Fagaras
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1. Problem Solving Agents

2. Search

3. Uninformed search algorithms

4. Informed search algorithms

5. Constraint Satisfaction Problem
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Standard search problem:
state is a “black box”—any old data structure

that supports goal test, eval, successor

CSP:
state is defined by variables Xi with values from domain Di

goal test is a set of constraints specifying
allowable combinations of values for subsets of variables

Simple example of a formal representation language

Allows useful general-purpose algorithms with more power
than standard search algorithms

76



Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemStandard search formulation

States are defined by the values assigned so far

♦ Initial state: the empty assignment, { }

♦ Successor function: assign a value to an unassigned variable
that does not conflict with current assignment.
=⇒ fail if no legal assignments (not fixable!)

♦ Goal test: the current assignment is complete

1) This is the same for all CSPs!
2) Every solution appears at depth n with n variables

=⇒ use depth-first search
3) Path is irrelevant, so can also use complete-state formulation
4) b=(n− `)d at depth `, hence n!dn leaves!!!!
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Variable assignments are commutative, i.e.,
[WA= red then NT = green] same as
[NT = green then WA= red]

Only need to consider assignments to a single variable at each node
=⇒ b= d and there are dn leaves

Depth-first search for CSPs with single-variable assignments
is called backtracking search
Backtracking search is the basic uninformed algorithm for CSPs
Can solve n-queens for n ≈ 25
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function Backtracking-Search(csp) returns solution/failure
return Recursive-Backtracking({ }, csp)

function Recursive-Backtracking(assignment, csp) returns soln/fail-
ure

if assignment is complete then return assignment
var← Select-Unassigned-Variable(Variables[csp], assignment, csp)
for each value in Order-Domain-Values(var, assignment, csp) do

if value is consistent with assignment given Constraints[csp]
then

add {var = value} to assignment
result←Recursive-Backtracking(assignment, csp)
if result 6= failure then return result
remove {var = value} from assignment

return failure
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Uninformed Search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening search

Bidirectional Search

Informed Search
best-first search

greedy search
A∗search
Iterative Deepening A∗

Memory bounded A∗

Recursive best first

Constraint Satisfaction and Backtracking
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