
Lecture 2
Solving Problems by Searching

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Slides by Stuart Russell and Peter Norvig

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemLast Time

Agents are used to provide a consistent viewpoint on various topics in
the field AI

Essential concepts:

Agents intereact with environment by means of sensors and actuators.
A rational agent does “the right thing” ≡ maximizes a performance
measure
è PEAS

Environment types: observable, deterministic, episodic, static, discrete,
single agent

Agent types: table driven (rule based), simple reflex, model-based reflex,
goal-based, utility-based, learning agent

2

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemStructure of Agents

Agent = Architecture + Program

Architecture

operating platform of the agent

computer system, specific hardware, possibly OS

Program

function that implements the mapping from percepts to actions

This course is about the program,
not the architecture

3

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemOutline

1. Problem Solving Agents

2. Search

3. Uninformed search algorithms

4. Informed search algorithms

5. Constraint Satisfaction Problem

5

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemOutline

1. Problem Solving Agents

2. Search

3. Uninformed search algorithms

4. Informed search algorithms

5. Constraint Satisfaction Problem

6

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemOutline

♦ Problem-solving agents
♦ Problem types
♦ Problem formulation
♦ Example problems
♦ Basic search algorithms

7

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemProblem-solving agents

Restricted form of general agent:

function Simple-Problem-Solving-Agent(percept) returns an action
static: seq, an action sequence, initially empty

state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation

state←Update-State(state, percept)
if seq is empty then

goal←Formulate-Goal(state)
problem←Formulate-Problem(state, goal)
seq← Search(problem)

action←Recommendation(seq, state)
seq←Remainder(seq, state)
return action

Note: this is offline problem solving; solution executed “eyes closed.”
Online problem solving involves acting without complete knowledge.

8

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemExample: Romania

On holiday in Romania; currently in Arad.
Flight leaves tomorrow from Bucharest

Formulate goal:
be in Bucharest

Formulate problem:
states: various cities
actions: drive between cities

Find solution:
sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

9

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemExample: Romania

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

10

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemState space Problem formulation

A problem is defined by five items:

1. initial state e.g., “at Arad”

2. actions defining the other states, e.g., Go(Arad)

3. transition model res(x, a)
e.g., res(In(Arad), Go(Zerind)) = In(Zerind)
alternatively: set of action–state pairs:
{〈(In(Arad), Go(Zerind)), In(Zerind)〉, . . .}

4. goal test, can be
explicit, e.g., x = “at Bucharest”
implicit, e.g., NoDirt(x)

5. path cost (additive)
e.g., sum of distances, number of actions executed, etc.
c(x, a, y) is the step cost, assumed to be ≥ 0

A solution is a sequence of actions
leading from the initial state to a goal state

11

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemSelecting a state space

Real world is complex
⇒ state space must be abstracted for problem solving

(Abstract) state = set of real states

(Abstract) action = complex combination of real actions
e.g., “Arad → Zerind” represents a complex set

of possible routes, detours, rest stops, etc.
For guaranteed realizability, any real state “in Arad”

must get to some real state “in Zerind”

(Abstract) solution =
set of real paths that are solutions in the real world

Each abstract action should be “easier” than the original problem!

Atomic representation

12

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemVacuum world state space graph

Example

R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??: Left, Right, Suck, NoOp
transition model??: arcs in the digraph
goal test??: no dirt
path cost??: 1 per action (0 for NoOp)

13

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemExample: The 8-puzzle

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

states??: integer locations of tiles (ignore intermediate positions)
actions??: move blank left, right, up, down (ignore unjamming etc.)
transition model??: effect of the actions
goal test??: = goal state (given)
path cost??: 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]

14

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemExample: robotic assembly

R

RR
P

R R

states??: real-valued coordinates of robot joint angles
parts of the object to be assembled

actions??: continuous motions of robot joints
goal test??: complete assembly with no robot included!
path cost??: time to execute

15

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemProblem types

Deterministic, fully observable, known, discrete =⇒ state space problem
Agent knows exactly which state it will be in; solution is a sequence

Non-observable =⇒ conformant problem
Agent may have no idea where it is; solution (if any) is a sequence

Nondeterministic and/or partially observable =⇒ contingency problem
percepts provide new information about current state
solution is a contingent plan or a policy
often interleave search, execution

Unknown state space =⇒ exploration problem (“online”)

16

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemExample: vacuum world

State space, start in #5. Solution??
[Right, Suck]

Non-observable, start in {1, 2, 3, 4, 5, 6, 7, 8}
e.g., Right goes to {2, 4, 6, 8}. Solution??
[Right, Suck, Left, Suck]

Contingency, start in #5
Murphy’s Law: Suck can dirty a clean carpet
Local sensing: dirt, location only.
Solution??

[Right, if dirt then Suck]

1 2

3 4

5 6

7 8

17

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemExample Problems

Toy problems

vacuum cleaner agent
8-puzzle
8-queens
cryptarithmetic
missionaries and cannibals

Real-world problems

route finding
traveling salesperson
VLSI layout
robot navigation
assembly sequencing

18

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemOutline

1. Problem Solving Agents

2. Search

3. Uninformed search algorithms

4. Informed search algorithms

5. Constraint Satisfaction Problem

19

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemObjectives

Formulate appropriate problems in optimization and planning (sequence
of actions to achive a goal) as search tasks:
initial state, operators, goal test, path cost

Know the fundamental search strategies and algorithms

uninformed search
breadth-first, depth-first, uniform-cost, iterative deepening, bi-

directional

informed search
best-first (greedy, A*), heuristics, memory-bounded

Evaluate the suitability of a search strategy for a problem

completeness, optimality, time & space complexity

20

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemSearching for Solutions

Traversal of some search space
from the initial state to a goal state
legal sequence of actions as defined by operators

The search can be performed on

On a search tree derived from
expanding the current state using the possible operators
Tree-Search algorithm

A graph representing
the state space
Graph-Search algorithm

22

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemSearch: Terminology

23

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemExample: Route Finding

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

24

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemTree search example

Lugoj AradArad OradeaRimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

25

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemGeneral tree search

26

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemImplementation: states vs. nodes

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree

includes state, parent, action, path cost g(x)
States do not have parents, children, depth, or path cost!

1

23

45

6

7

81

23

45

6

7

8

State Node depth = 6

g = 6

state

parent, action

The Expand function creates new nodes, filling in the various fields using the
Transition Model of the problem to create the corresponding states.

27

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemImplementation: general tree search

function Tree-Search(problem, fringe) returns a solution, or failure
fringe← Insert(Make-Node(Initial-State[problem]), fringe)
loop do

if fringe is empty then return failure
node←Remove-Front(fringe)
if Goal-Test(problem, State(node)) then return node
fringe← InsertAll(Expand(node,problem), fringe)

function Expand(node, problem) returns a set of nodes
successors← the empty set
for each action, result in Successor-Fn(problem, State[node]) do

s← a new Node
Parent-Node[s]← node; Action[s]← action; State[s]← result
Path-Cost[s]←Path-Cost[node] + Step-Cost(State[node], action,

result)
Depth[s]←Depth[node] + 1
add s to successors

return successors

28

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemSearch strategies

A strategy is defined by picking the order of node expansion

function Tree-Search(problem, fringe) returns a solution, or failure
fringe← Insert(Make-Node(Initial-State[problem]), fringe)
loop do

if fringe is empty then return failure
node← Remove-Front(fringe)
if Goal-Test(problem, State(node)) then return node
fringe← InsertAll(Expand(node,problem), fringe)

Strategies are evaluated along the following dimensions:
completeness—does it always find a solution if one exists?
time complexity—number of nodes generated/expanded
space complexity—maximum number of nodes in memory
optimality—does it always find a least path cost solution?

Time and space complexity are measured in terms of
b—maximum branching factor of the search tree
d—depth of the least-cost solution
m—maximum depth of the state space (may be ∞)

29

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemOutline

1. Problem Solving Agents

2. Search

3. Uninformed search algorithms

4. Informed search algorithms

5. Constraint Satisfaction Problem

30

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemUninformed search strategies

Uninformed strategies use only the information available
in the problem definition

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening search

Bidirectional Search

31

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemBreadth-first search

Expand shallowest unexpanded node (shortest path in the frontier)

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

32

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemProperties of breadth-first search

Complete?? Yes (if b is finite)
Optimal?? Yes (if cost = 1 per step); not optimal in general
Time?? 1 + b+ b2 + b3 + . . .+ bd + b(bd − 1) = O(bd+1), i.e., exp. in d
Space?? bd−1 + bd = O(bd) (explored + frontier)

Space is the big problem; can easily generate nodes at 100MB/sec
so 24hrs = 8640GB.

33

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemUniform-cost search

Expand first least-cost path

(Equivalent to breadth-first if step costs all equal)

Implementation:

fringe = priority queue ordered by path cost, lowest first,

Complete?? Yes, if step cost ≥ ε
Optimal??Yes—nodes expanded in increasing order of g(n)
Time?? # of nodes with g ≤ cost of optimal solution, O(b1+dC

∗/εe)
where C∗ is the cost of the optimal solution

Space??# of nodes with g ≤ cost of optimal solution, O(b1+dC
∗/εe)

34

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemDepth-first search

Expand deepest unexpanded node

A

B C

D E F G

H I J K L M N O

Implementation:
fringe = LIFO queue, i.e., put successors at front

35

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemProperties of depth-first search

Complete?? No: fails in infinite-depth spaces, or spaces with loops
Modify to avoid repeated states along path
⇒ complete in finite spaces

Optimal?? No
Time?? O(bm): terrible if m is much larger than d

but if solutions are dense, may be much faster than breadth-first
Space?? O(bm), i.e., linear space!

36

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemDepth-limited search

= depth-first search with depth limit l,
i.e., nodes at depth l have no successors
Recursive implementation:

function Depth-Limited-Search(problem, limit) returns soln/fail/cutoff
Recursive-DLS(Make-Node(Initial-State[problem]),problem, limit)

function Recursive-DLS(node,problem, limit) returns soln/fail/cutoff
cutoff-occurred?← false
if Goal-Test(problem, State[node]) then return node
else if Depth[node] = limit then return cutoff
else for each successor in Expand(node,problem) do

result←Recursive-DLS(successor,problem, limit)
if result = cutoff then cutoff-occurred?← true
else if result 6= failure then return result

if cutoff-occurred? then return cutoff else return failure

37

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemIterative deepening search

function Iterative-Deepening-Search(problem) returns a solution
inputs: problem, a problem

for depth← 0 to ∞ do
result←Depth-Limited-Search(problem, depth)
if result 6= cutoff then return result

end

38

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemIterative deepening search

Limit = 3

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H J K L M N OI

A

B C

D E F G

H I J K L M N O

39

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemProperties of iterative deepening search

Complete?? Yes
Optimal?? Yes, if step cost = 1

Can be modified to explore uniform-cost tree
Time?? (d+ 1)b0 + db1 + (d− 1)b2 + . . .+ bd = O(bd)
Space?? O(bd)

Numerical comparison in time for b = 10 and d = 5, solution at far right leaf:

N IDS) = 50 + 400 + 3, 000 + 20, 000 + 100, 000 = 123, 450

N(BFS) = 10 + 100 + 1, 000 + 10, 000 + 100, 000 + 999, 990 = 1, 111, 100

IDS does better because other nodes at depth d are not expanded
BFS can be modified to apply goal test when a node is generated
Iterative lenghtening not as successul as IDS

40

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemBidirectional Search

Search simultaneously (using breadth-first search)
from goal to start
from start to goal

Stop when the two search trees intersects

41

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemDifficulties in Bidirectional Search

If applicable, may lead to substantial savings

Predecessors of a (goal) state must be generated
Not always possible, eg. when we do not know the optimal state
explicitly

Search must be coordinated between the two search processes.

What if many goal states?

One search must keep all nodes in memory

42

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemSummary of algorithms

Criterion Breadth- Uniform- Depth- Depth- Iterative
First Cost First Limited Deepening

Complete? Yes∗ Yes∗ No Yes, if l ≥ d Yes
Time bd+1 bd1+C

∗/εe bm bl bd

Space bd+1 bd1+C
∗/εe bm bl bd

Optimal? Yes∗ Yes No No Yes∗

43

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemSummary

Problem formulation usually requires abstracting away real-world details
to define a state space that can feasibly be explored

Variety of uninformed search strategies

Iterative deepening search uses only linear space
and not much more time than other uninformed algorithms

Graph search can be exponentially more efficient than tree search

46

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemOutline

1. Problem Solving Agents

2. Search

3. Uninformed search algorithms

4. Informed search algorithms

5. Constraint Satisfaction Problem

47

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemReview: Tree search

function Tree-Search(problem, fringe) returns a solution, or failure
fringe← Insert(Make-Node(Initial-State[problem]), fringe)
loop do

if fringe is empty then return failure
node←Remove-Front(fringe)
if Goal-Test[problem] applied to State(node) succeeds return node
fringe← InsertAll(Expand(node,problem), fringe)

A strategy is defined by picking the order of node expansion

48

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemInformed search strategy

Informed strategies use agent’s background information about the problem
map, costs of actions, approximation of solutions, ...

best-first search

greedy search
A∗search

local search (not in this course)

Hill-climbing
Simulated annealing
Genetic algorithms
Local search in continuous spaces

49

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemBest-first search

Idea: use an evaluation function for each node
– estimate of “desirability”

⇒ Expand most desirable unexpanded node

Implementation:
fringe is a queue sorted in decreasing order of desirability

Special cases:
greedy search
A∗ search

50

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemRomania with step costs in km

Bucharest

Giurgiu

Urziceni

Hirsova

Eforie

Neamt
Oradea

Zerind

Arad

Timisoara

Lugoj
Mehadia

Dobreta
Craiova

Sibiu

Fagaras

Pitesti
Rimnicu Vilcea

Vaslui

Iasi

Straight−line distance
to Bucharest

 0
160
242
161

77
151

241

366

193

178

253
329
80

199

244

380

226

234

374

98

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75
120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

51

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemGreedy search

Evaluation function h(n) (heuristic)
= estimate of cost from n to the closest goal

E.g., hSLD(n) = straight-line distance from n to Bucharest

Greedy search expands the node that appears to be closest to goal

52

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemGreedy search example

Arad

366

Zerind

Arad

Sibiu Timisoara

253 329 374

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

329 374

366 176 380 193

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Sibiu Bucharest

329 374

366 380 193

253 0

53

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemProperties of greedy search

Complete?? No–can get stuck in loops, e.g., from Iasi to Fargas
Iasi → Neamt → Iasi → Neamt →

Complete in finite space with repeated-state checking
Optimal?? No
Time?? O(bm), but a good heuristic can give dramatic improvement
Space?? O(bm)

54

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemA∗ search

Idea: avoid expanding paths that are already expensive
Evaluation function f(n) = g(n) + h(n)

g(n) = cost so far to reach n
h(n) = estimated cost to goal from n
f(n) = estimated total cost of path through n to goal

A∗ search uses an admissible heuristic
i.e., h(n) ≤ h∗(n) where h∗(n) is the true cost from n.
(Also require h(n) ≥ 0, so h(G) = 0 for any goal G.)

E.g., hSLD(n) never overestimates the actual road distance

Theorem: A∗ search is optimal

55

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemA∗ search example

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Rimnicu VilceaFagaras Oradea

Craiova Pitesti Sibiu

Bucharest Craiova Rimnicu Vilcea

418=418+0

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253

615=455+160 607=414+193

671=291+380

56

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemOptimality of A∗ (standard proof)

Suppose some suboptimal goal G2 has been generated and is in the queue.
Let n be an unexpanded node on a shortest path to an optimal goal G1.

G

n

G2

Start

f(G2) = g(G2) since h(G2) = 0

> g(G1) since G2 is suboptimal

≥ f(n) since h is admissible

Since f(G2) > f(n), A∗ will never select G2 for expansion
57

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemOptimality of A∗ (more useful)

Lemma: A∗ expands nodes in order of increasing f value∗

Gradually adds “f -contours” of nodes (cf. breadth-first adds layers)
Contour i has all nodes with f = fi, where fi < fi+1

O

Z

A

T

L

M

D
C

R

F

P

G

B
U

H

E

V

I

N

380

400

420

S

58

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemAstar vs. Depth search

59

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemProperties of A∗

Complete?? Yes, unless there are infinitely many nodes with f ≤ f(G)
Optimal?? Yes—cannot expand fi+1 until fi is finished

A∗ expands all nodes with f(n) < C∗

A∗ expands some nodes with f(n) = C∗

A∗ expands no nodes with f(n) > C∗

Time?? Exponential in [relative error in h × length of sol.]
Space?? Keeps all nodes in memory

60

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemProof of lemma: Consistency

A heuristic is consistent if

n

c(n,a,n’)

h(n’)

h(n)

G

n’

h(n) ≤ c(n, a, n′) + h(n′)

If h is consistent, we have

f(n′) = g(n′) + h(n′)

= g(n) + c(n, a, n′) + h(n′)

≥ g(n) + h(n)

= f(n)

I.e., f(n) is nondecreasing along any path.

61

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemAdmissible heuristics

E.g., for the 8-puzzle:

h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

h1(S) =??
h2(S) =??

62

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemAdmissible heuristics

E.g., for the 8-puzzle:

h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

h1(S) =?? 6
h2(S) =?? 4+0+3+3+1+0+2+1 = 14

63

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemDominance

If h2(n) ≥ h1(n) for all n (both admissible)
then h2 dominates h1 and is better for search

Typical search costs:

d = 14 IDS = 3,473,941 nodes
A∗(h1) = 539 nodes
A∗(h2) = 113 nodes

d = 24 IDS ≈ 54,000,000,000 nodes
A∗(h1) = 39,135 nodes
A∗(h2) = 1,641 nodes

Given any admissible heuristics ha, hb,

h(n) = max(ha(n), hb(n))

is also admissible and dominates ha, hb

64

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemRelaxed problems

Admissible heuristics can be derived from the exact
solution cost of a relaxed version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move
anywhere, then h1(n) gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square,
then h2(n) gives the shortest solution

Key point: the optimal solution cost of a relaxed problem
is no greater than the optimal solution cost of the real problem

65

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemMemory-Bounded Heuristic Search

Try to reduce memory needs

Take advantage of heuristic to improve performance

Iterative-deepening A∗(IDA∗)

SMA∗

67

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemIterative Deepening A∗

Uniformed Iterative Deepening (repetition)

depth-first search where the max depth is iteratively increased

IDA∗

depth-first search, but only nodes with f -cost less than or equal to
smallest f -cost of nodes expanded at last iteration

was the "best" search algorithm for many practical problems

68

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemProperties of IDA∗

Complete?? Yes
Time complexity?? Still exponential
Space complexity?? linear
Optimal?? Yes. Also optimal in the absence of monotonicity

69

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemSimple Memory-Bounded A∗

Use all available memory

Follow A∗algorithm and fill memory with new expanded nodes

If new node does not fit
remove stored node with worst f -value
propagate f -value of removed node to parent

SMA∗will regenerate a subtree only when it is needed
the path through subtree is unknown, but cost is known

70

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemPropeties of SMA∗

Complete?? yes, if there is enough memory for the shortest solution path
Time?? same as A∗if enough memory to store the tree
Space?? use available memory
Optimal?? yes, if enough memory to store the best solution path

In practice, often better than A∗and IDA∗trade-off between time and space
requirements

71

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemRecursive Best First Search

72

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemRecursive Best First Search

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Craiova Sibiu

Bucharest Craiova Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad

Sibiu Bucharest

Rimnicu VilceaOradea

Zerind

Arad

Sibiu

Arad

Timisoara

Timisoara

Timisoara

Fagaras Oradea Rimnicu Vilcea

Craiova Pitesti Sibiu

646 415 671

526 553

646 671

450591

646 671

526 553

418 615 607

447 449

447

447 449

449

366

393

366

393

413

413 417415

366

393

415 450
417

Rimnicu Vilcea

Fagaras

447

415

447

447

417

(a) After expanding Arad, Sibiu,

 and Rimnicu Vilcea

(c) After switching back to Rimnicu Vilcea
 and expanding Pitesti

(b) After unwinding back to Sibiu
 and expanding Fagaras

447

447

∞

∞

∞

417

417

Pitesti

73

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemOutline

1. Problem Solving Agents

2. Search

3. Uninformed search algorithms

4. Informed search algorithms

5. Constraint Satisfaction Problem

75

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemConstraint Satisfaction Problem (CSP)

Standard search problem:
state is a “black box”—any old data structure

that supports goal test, eval, successor

CSP:
state is defined by variables Xi with values from domain Di

goal test is a set of constraints specifying
allowable combinations of values for subsets of variables

Simple example of a formal representation language

Allows useful general-purpose algorithms with more power
than standard search algorithms

76

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemStandard search formulation

States are defined by the values assigned so far

♦ Initial state: the empty assignment, { }

♦ Successor function: assign a value to an unassigned variable
that does not conflict with current assignment.
=⇒ fail if no legal assignments (not fixable!)

♦ Goal test: the current assignment is complete

1) This is the same for all CSPs!
2) Every solution appears at depth n with n variables

=⇒ use depth-first search
3) Path is irrelevant, so can also use complete-state formulation
4) b=(n− `)d at depth `, hence n!dn leaves!!!!

77

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemBacktracking search

Variable assignments are commutative, i.e.,
[WA= red then NT = green] same as
[NT = green then WA= red]

Only need to consider assignments to a single variable at each node
=⇒ b= d and there are dn leaves

Depth-first search for CSPs with single-variable assignments
is called backtracking search
Backtracking search is the basic uninformed algorithm for CSPs
Can solve n-queens for n ≈ 25

78

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemBacktracking search

function Backtracking-Search(csp) returns solution/failure
return Recursive-Backtracking({ }, csp)

function Recursive-Backtracking(assignment, csp) returns soln/fail-
ure

if assignment is complete then return assignment
var← Select-Unassigned-Variable(Variables[csp], assignment, csp)
for each value in Order-Domain-Values(var, assignment, csp) do

if value is consistent with assignment given Constraints[csp]
then

add {var = value} to assignment
result←Recursive-Backtracking(assignment, csp)
if result 6= failure then return result
remove {var = value} from assignment

return failure

79

Problem Solving Agents
Search
Uninformed search algorithms
Informed search algorithms
Constraint Satisfaction ProblemSummary

Uninformed Search

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening search

Bidirectional Search

Informed Search
best-first search

greedy search
A∗search
Iterative Deepening A∗

Memory bounded A∗

Recursive best first

Constraint Satisfaction and Backtracking

80

	Problem Solving Agents
	Search
	Uninformed search algorithms
	Informed search algorithms
	Constraint Satisfaction Problem

