# Lecture 20 <br> Logical Agents 

Marco Chiarandini

Department of Mathematics \& Computer Science
University of Southern Denmark

Slides by Stuart Russell and Peter Norvig

## Course Overview

$\checkmark$ Introduction
$\checkmark$ Artificial Intelligence
$\checkmark$ Intelligent Agents
$\checkmark$ Search
$\checkmark$ Uninformed Search
$\checkmark$ Heuristic Search
$\checkmark$ Uncertain knowledge and Reasoning
$\checkmark$ Probability and Bayesian approach
$\checkmark$ Bayesian Networks
$\checkmark$ Hidden Markov Chains
$\checkmark$ Kalman Filters
$\checkmark$ Learning
$\checkmark$ Supervised Decision Trees, Neural Networks Learning Bayesian Networks
$\checkmark$ Unsupervised
EM Algorithm
$\checkmark$ Reinforcement Learning
$\checkmark$ Games and Adversarial Search
$\checkmark$ Minimax search and
Alpha-beta pruning
$\checkmark$ Multiagent search

- Knowledge representation and Reasoning
- Propositional logic
- First order logic
- Inference
- Plannning


## Outline

# 1. Knowledge-based Agents <br> Wumpus Example 

2. Logic in General

## Knowledge bases

Knowledge base $=$ set of sentences in a formal language

| Inference engine | - domain-independent algorithms |
| :---: | :---: |
| Knowledge base | - domain-specific content |

Declarative approach to building an agent (or other system):
Tell it what it needs to know
Then it can Ask itself what to do-answers should follow from the KB
Agents can be viewed at the knowledge level
i.e., what they know, regardless of how implemented

Or at the implementation level
i.e., data structures in KB and algorithms that manipulate them

## A simple knowledge-based agent

function KB-Agent ( percept) returns an action
static: $K B$, a knowledge base
$t$, a counter, initially 0 , indicating time
Tell(KB, Make-Percept-Sentence ( percept, $t$ ))
action $\leftarrow \operatorname{Ask}(K B$, Make-Action-Query $(t))$
Tell(KB, Make-Action-Sentence(action, $t)$ )
$t \leftarrow t+1$
return action

The agent must be able to:
Represent states, actions, etc.
Incorporate new percepts
Update internal representations of the world
Deduce hidden properties of the world
Deduce appropriate actions

## Wumpus World PEAS description

## Performance measure <br> gold +1000 , death -1000 <br> -1 per step, -10 for using the arrow Environment

Squares adjacent to wumpus are smelly
Squares adjacent to pit are breezy
Glitter iff gold is in the same square Shooting kills wumpus if you are facing it Shooting uses up the only arrow
Grabbing picks up gold if in same square Releasing drops the gold in same square
Actuators LeftTurn, RightTurn,
Forward, Grab, Release, Shoot
Sensors Breeze, Glitter, Smell


## Wumpus world - Properties

Fully vs Partially observable??
No-only local perception
Deterministic vs Stochastic??
Deterministic—outcomes exactly specified Episodic vs Sequential??
sequential at the level of actions
Static vs Dynamic??
Static-Wumpus and Pits do not move
Discrete vs Continous??
Discrete
Single-agent vs Multi-Agent??
Single-Wumpus is essentially a natural feature

## Exploring a wumpus world



## Outline

# 1. Knowledge-based Agents <br> Wumpus Example 

2. Logic in General

## Logic in general

Logics are formal languages for representing information such that conclusions can be drawn

Syntax defines the sentences in the language
Semantics define the "meaning" of sentences;
i.e., define truth of a sentence in a world
E.g., the language of arithmetic
$x+2 \geq y$ is a sentence; $x 2+y>$ is not a sentence
$x+2 \geq y$ is true iff the number $x+2$ is no less than the number $y$
$x+2 \geq y$ is true in a world where $x=7, y=1$
$x+2 \geq y$ is false in a world where $x=0, y=6$

## Entailment

Entailment means that one thing follows from another:

$$
K B \models \alpha
$$

Knowledge base $K B$ entails sentence $\alpha$
if and only if
$\alpha$ is true in all worlds where $K B$ is true
E.g., the KB containing "OB Won" and "KBH won" entails "Either OB or KBH won"

Entailment is a relationship between sentences (i.e., syntax) that is based on semantics

## Models

Logicians typically think in terms of models, which are formally structured worlds with respect to which truth can be evaluated We say $m$ is a model of a sentence $\alpha$ if $\alpha$ is true in $m$
$M(\alpha)$ is the set of all models of $\alpha$
Then $K B \models \alpha$ if and only if $M(K B) \subseteq M(\alpha)$
E.g. $K B=\mathrm{OB}$ won and FCK won
$\alpha=\mathrm{OB}$ won


## Entailment in the wumpus world

Situation after detecting nothing in $[1,1]$, moving right, breeze in [2,1]

Consider possible models for ?s assuming only pits


3 Boolean choices $\Longrightarrow 8$ possible models

## Inference

$K B \vdash_{i} \alpha=$ sentence $\alpha$ can be derived from $K B$ by procedure $i$
Soundness: $i$ is sound if whenever $K B \vdash_{i} \alpha$, it is also true that $K B \models \alpha$

Completeness: $i$ is complete if whenever $K B \models \alpha$, it is also true that $K B \vdash_{i} \alpha$

Preview: we will define a logic (first-order logic) which is expressive enough to say almost anything of interest, and for which there exists a sound and complete inference procedure.

That is, the procedure will answer any question whose answer follows from what is known by the $K B$.

Part I

## Outline

3. Propositional Logic

Introduction
Equivalence and Validity
4. Inference in PL

Proof by Resolution
Proof by Model Checking

## Outline

3. Propositional Logic

Introduction
Equivalence and Validity
4. Inference in PL

Proof by Resolution
Proof by Model Checking

## Propositional logic: Syntax

Propositional logic is the simplest logic—illustrates basic ideas
The proposition symbols $P_{1}, P_{2}$ etc are sentences
If $S$ is a sentence, $\neg S$ is a sentence (negation)
If $S_{1}$ and $S_{2}$ are sentences, $S_{1} \wedge S_{2}$ is a sentence (conjunction)
If $S_{1}$ and $S_{2}$ are sentences, $S_{1} \vee S_{2}$ is a sentence (disjunction)
If $S_{1}$ and $S_{2}$ are sentences, $S_{1} \Longrightarrow S_{2}$ is a sentence (implication)
If $S_{1}$ and $S_{2}$ are sentences, $S_{1} \Leftrightarrow S_{2}$ is a sentence (biconditional)

## Propositional logic: Semantics

Each model specifies true/false for each proposition symbol

$$
\begin{array}{llll}
\text { E.g. } & P_{1,2} & P_{2,2} & P_{3,1} \\
& \text { true } & \text { true } & \text { false }
\end{array}
$$

(With these symbols, 8 possible models, can be enumerated automatically.)
Rules for evaluating truth with respect to a model $m$ :

$$
\neg S \text { is true iff } \quad S \quad \text { is false }
$$

| $S_{1} \wedge S_{2}$ | is true iff | $S_{1}$ | is true and | $S_{2}$ | is true |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $S_{1} \vee S_{2}$ | is true iff | $S_{1}$ | is true or | $S_{2}$ | is true |
| $\Longrightarrow S_{2}$ | is true iff | $S_{1}$ | is false or | $S_{2}$ | is true |
| i.e., | is false iff | $S_{1}$ | is true and | $S_{2}$ | is false |

$S_{1} \Leftrightarrow S_{2}$ is true iff $S_{1} \Longrightarrow S_{2}$ is true and $S_{2} \Longrightarrow S_{1}$ is true
Simple recursive process evaluates an arbitrary sentence, e.g.,
$\neg P_{1,2} \wedge\left(P_{2,2} \vee P_{3,1}\right)=$ true $\wedge($ false $\vee$ true $)=$ true $\wedge$ true $=$ true

## Truth tables for connectives

| $P$ | $Q$ | $\neg P$ | $P \wedge Q$ | $P \vee Q$ | $P \Rightarrow Q$ | $P \Leftrightarrow Q$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| false | false | true | false | false | true | true |
| false | true | true | false | true | true | false |
| true | false | false | false | true | false | false |
| true | true | false | true | true | true | true |

## Wumpus world sentences

Let $P_{i, j}$ be true if there is a pit in $[i, j]$.
Let $B_{i, j}$ be true if there is a breeze in $[i, j]$.

$$
\begin{aligned}
& R_{1}: \neg P_{1,1} \\
& R_{2}: \neg B_{1,1} \\
& R_{3}: \quad B_{2,1}
\end{aligned}
$$

"Pits cause breezes in adjacent squares"
"A square is breezy if and only if there is an adjacent pit"

$$
\begin{aligned}
& R_{4}: B_{1,1} \quad \Leftrightarrow \quad\left(P_{1,2} \vee P_{2,1}\right) \\
& R_{5}: B_{2,1} \quad \Leftrightarrow \quad\left(P_{1,1} \vee P_{2,2} \vee P_{3,1}\right)
\end{aligned}
$$

## Truth tables for inference

$K B \vdash \alpha$

| $B_{1,1}$ | $B_{2,1}$ | $P_{1,1}$ | $P_{1,2}$ | $P_{2,1}$ | $P_{2,2}$ | $P_{3,1}$ | $R_{1}$ | $R_{2}$ | $R_{3}$ | $R_{4}$ | $R_{5}$ | KB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| false | true | true | true | true | false | false |
| false | false | false | false | false | false | true | true | true | false | true | false | false |
| $\vdots$ |
| false | true | false | false | false | false | false | true | true | false | true | true | false |
| false | true | false | false | allse | false | true |
| false | true | false | false | false | true | false | true | true | true | true | true | true |
| false | true | false | false | false | true |
| false | true | false | false | true | false | false | true | false | false | true | true | false |
| $\vdots$ |
| true | false | true | true | false | true | false |

Enumerate rows (different assignments to symbols), if $K B$ is true in row, check that $\alpha$ is too

## Inference by enumeration

Depth-first enumeration of all models is sound and complete
$O\left(2^{n}\right)$ for $n$ symbols; problem is co-NP-complete
A problem $\Pi$ is a member of co-NP if and only if its complement $\bar{\Pi}$ is in the complexity class NP.
Class of problems for which efficiently verifiable proofs of no instances, sometimes called counterexamples, exist.

Is $\alpha$ true under KB? To give an answer "no" it is enough to provide a couterexample, which is easily verifiable.

## Logical equivalence

Two sentences are logically equivalent iff true in same models:
$\alpha \equiv \beta$ if and only if $\alpha \models \beta$ and $\beta \models \alpha$

$$
\begin{aligned}
(\alpha \wedge \beta) & \equiv(\beta \wedge \alpha) \quad \text { commutativity of } \wedge \\
(\alpha \vee \beta) & \equiv(\beta \vee \alpha) \quad \text { commutativity of } \vee \\
((\alpha \wedge \beta) \wedge \gamma) & \equiv(\alpha \wedge(\beta \wedge \gamma)) \quad \text { associativity of } \wedge \\
((\alpha \vee \beta) \vee \gamma) & \equiv(\alpha \vee(\beta \vee \gamma)) \text { associativity of } \vee \\
\neg(\neg \alpha) & \equiv \alpha \text { double-negation elimination } \\
(\alpha \Longrightarrow \beta) & \equiv(\neg \beta \Longrightarrow \neg \alpha) \text { contraposition } \\
(\alpha \Longrightarrow \beta) & \equiv(\neg \alpha \vee \beta) \text { implication elimination } \\
(\alpha \Leftrightarrow \beta) & \equiv((\alpha \Longrightarrow \beta) \wedge(\beta \Longrightarrow \alpha)) \quad \text { bicond. elimination } \\
\neg(\alpha \wedge \beta) & \equiv(\neg \alpha \vee \neg \beta) \text { De Morgan } \\
\neg(\alpha \vee \beta) & \equiv(\neg \alpha \wedge \neg \beta) \text { De Morgan } \\
(\alpha \wedge(\beta \vee \gamma)) & \equiv((\alpha \wedge \beta) \vee(\alpha \wedge \gamma)) \text { distributivity of } \wedge \text { over } \vee \\
(\alpha \vee(\beta \wedge \gamma)) & \equiv((\alpha \vee \beta) \wedge(\alpha \vee \gamma)) \text { distributivity of } \vee \text { over } \wedge
\end{aligned}
$$

## Validity and satisfiability

A sentence is valid if it is true in all models,

$$
\text { e.g., True, } \quad A \vee \neg A, \quad A \Longrightarrow A, \quad(A \wedge(A \Longrightarrow B)) \Longrightarrow B
$$

Validity is connected to inference via the Deduction Theorem:
$K B \models \alpha$ if and only if ( $K B \Longrightarrow \alpha$ ) is valid
A sentence is satisfiable if it is true in some model

$$
\text { e.g., } A \vee B, \quad C
$$

A sentence is unsatisfiable if it is true in no models

$$
\text { e.g., } A \wedge \neg A
$$

Satisfiability is connected to inference via the following: $K B \models \alpha$ if and only if ( $K B \wedge \neg \alpha$ ) is unsatisfiable
i.e., prove $\alpha$ by reductio ad absurdum

## Outline

3. Propositional Logic

Introduction
Equivalence and Validity
4. Inference in PL

Proof by Resolution
Proof by Model Checking

## Proof methods

Proof methods divide into (roughly) two kinds:
By resolution (application of inference rules)

- Legitimate (sound) generation of new sentences from old
- Proof $=$ a sequence of inference rule applications

Can use inference rules as operators in a standard search alg.

- Typically require translation of sentences into a normal form


## Model checking

truth table enumeration (always exponential in $n$ ) improved backtracking, e.g., Davis-Putnam-Logemann-Loveland heuristic search in model space (sound but incomplete)
e.g., min-conflicts-like hill-climbing algorithms

## Resolution

Conjunctive Normal Form (CNF—universal)
conjunction of $\underbrace{\text { disjunctions of literals }}$
clauses

$$
\text { E.g., }(A \vee \neg B) \wedge(B \vee \neg C \vee \neg D)
$$

Resolution inference rule (for CNF): complete for propositional logic

$$
\frac{\ell_{1} \vee \cdots \vee \ell_{k}, \quad m_{1} \vee \cdots \vee m_{n}}{\ell_{1} \vee \cdots \vee \ell_{i-1} \vee \ell_{i+1} \vee \cdots \vee \ell_{k} \vee m_{1} \vee \cdots \vee m_{j-1} \vee m_{j+1} \vee \cdots \vee m_{n}}
$$

where $\ell_{i}$ and $m_{j}$ are complementary literals. E.g.:


$$
\frac{P_{1,3} \vee P_{2,2}, \quad \neg P_{2,2}}{P_{1,3}}
$$

Resolution is sound and complete for propositional logic $\leadsto$ can decide whether $\alpha \models \beta$

## Conversion to CNF

Resolution rule applies only to clauses (disjunction of literals) Every sentence in PL is logically equivalent to a conjunction of clauses:

$$
B_{1,1} \Leftrightarrow\left(P_{1,2} \vee P_{2,1}\right)
$$

1. Eliminate $\Leftrightarrow$, replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Longrightarrow \beta) \wedge(\beta \Longrightarrow \alpha)$.

$$
\left(B_{1,1} \Longrightarrow\left(P_{1,2} \vee P_{2,1}\right)\right) \wedge\left(\left(P_{1,2} \vee P_{2,1}\right) \Longrightarrow B_{1,1}\right)
$$

2. Eliminate $\Rightarrow$, replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \vee \beta$.

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg\left(P_{1,2} \vee P_{2,1}\right) \vee B_{1,1}\right)
$$

3. Move $\neg$ inwards using de Morgan's rules and double-negation:

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\left(\neg P_{1,2} \wedge \neg P_{2,1}\right) \vee B_{1,1}\right)
$$

4. Apply distributivity law ( $\vee$ over $\wedge$ ) and flatten:

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg P_{1,2} \vee B_{1,1}\right) \wedge\left(\neg P_{2,1} \vee B_{1,1}\right)
$$

## Resolution algorithm

$K B \models \alpha$ Proof by contradiction, i.e., show $K B \wedge \neg \alpha$ unsatisfiable
function PL-Resolution $(K B, \alpha)$ returns true or false
inputs: $K B$, the knowledge base, a sentence in propositional logic $\alpha$, the query, a sentence in propositional logic
clauses $\leftarrow$ the set of clauses in the CNF representation of $K B \wedge \neg \alpha$ new $\leftarrow\}$
loop do
for each $C_{i}, C_{j}$ in clauses do resolvents $\leftarrow \operatorname{PL}$-Resolve $\left(C_{i}, C_{j}\right)$
if resolvents contains the empty clause then return true new $\leftarrow$ new $\cup$ resolvents
if new $\subseteq$ clauses then return false
clauses $\leftarrow$ clauses $\cup$ new

## Resolution example

$$
\begin{aligned}
& K B=\left(B_{1,1} \Leftrightarrow\left(P_{1,2} \vee P_{2,1}\right)\right) \wedge \neg B_{1,1} \\
& \alpha=\neg P_{1,2}
\end{aligned}
$$



## Completeness of Resolution

Theorem
Ground Resolution Theorem
If a set of clauses is unsatisfiable, then the resolution closure of those clauses contains the empty clauses

Proof. by contraposition $R C(S)$ does not contain empty clause $\Longrightarrow S$ is satisfiable.
Construct a model for $S$ with sutiable trruth values for $P_{1}, \ldots, P_{k}$ as follows

- assign false to $P_{i}$ if there is a clause in $R C(S)$ containing literal $\neg P_{i}$ and all its other literals being false under the current assignment
- otherwise, assign $P_{i}$ true.


## Model Checking

$K B \models \alpha$
Forward and backward chaining
Horn Form (restricted)
$K B=$ conjunction of Horn clauses
Horn clause $=$
$\checkmark$ proposition symbol; or
$\diamond$ (conjunction of symbols) $\Longrightarrow$ symbol
E.g., $C \wedge(B \Longrightarrow A) \wedge(C \wedge D \Longrightarrow B)$

Modus Ponens (for Horn Form): complete for Horn KBs


Can be used with forward chaining or backward chaining. These algorithms are very natural and run in linear time

## Forward chaining

Idea: fire any rule whose premises are satisfied in the $K B$, add its conclusion to the $K B$, until query is found

$$
\begin{aligned}
& P \Longrightarrow Q \\
& L \wedge M \Longrightarrow P \\
& B \wedge L \Longrightarrow M \\
& A \wedge P \Longrightarrow L \\
& A \wedge B \Longrightarrow L \\
& A \\
& B
\end{aligned}
$$



## Forward chaining example



## Proof of completeness

FC derives every atomic sentence that is entailed by $K B$

- FC reaches a fixed point where no new atomic sentences are derived
- Consider the final state as a model $m$, assigning true/false to symbols
- Every clause in the original $K B$ is true in $m$

$$
\text { Proof: Suppose a clause } a_{1} \wedge \ldots \wedge a_{k} \Rightarrow b \text { is false in } m
$$

Then $a_{1} \wedge \ldots \wedge a_{k}$ is true in $m$ and $b$ is false in $m$
Therefore the algorithm has not reached a fixed point!

- Hence $m$ is a model of $K B$
- If $K B \models q, q$ is true in every model of $K B$, including $m$

General idea: construct any model of $K B$ by sound inference, check $\alpha$

## Backward chaining

Idea: work backwards from the query $q$ :
to prove $q$ by BC, check if $q$ is known already, or prove by $B C$ all premises of some rule concluding $q$

Avoid loops: check if new subgoal is already on the goal stack
Avoid repeated work: check if new subgoal

1) has already been proved true, or
2) has already failed

## Backward chaining example



## Forward vs. backward chaining

FC is data-driven, cf. automatic, unconscious processing, e.g., object recognition, routine decisions

May do lots of work that is irrelevant to the goal
BC is goal-driven, appropriate for problem-solving, e.g., Where are my keys? How do I get into a PhD program?

Complexity of $B C$ can be much less than linear in size of $K B$

## Model Checking

$K B \models \alpha$
General case:
$K B \models \alpha \equiv K B \wedge \neg \beta$ is unsatisfiable hence find a counter example to $K B \wedge \neg \beta$

## 

Davis Putnam Logeman and Loveland (1960-1962)
function DPLL-Satisfiable?(s) returns true or false inputs: $s$, a sentence in propositional logic
clauses $\leftarrow$ the set of clauses in the CNF representation of $s$ symbols $\leftarrow$ a list of the proposition symbols in $s$ return DPLL(clauses, symbols, [])
function DPLL(clauses, symbols, model) returns true or false
if every clause in clauses is true in model then return true if some clause in clauses is false in model then return true
$P$, value $\leftarrow$ Find-Pure-Symbol(symbols, clauses, model)
if $P$ is non-null then return DPLL(clauses, symbols $-P,[P=$ value $\mid$ mode $]$ )
$P$, value $\leftarrow$ Find-Unit-Clause(clauses, model)
if $P$ is non-null then return $\operatorname{DPLL}($ clauses, symbols $-P,[P=$ value $\mid$ mode $/])$
$P \leftarrow$ First(symbols); rest $\leftarrow \operatorname{Rest}($ symbols $)$
return $\operatorname{DPLL}($ clauses, rest, $[P=$ true $\mid$ model $])$ or $\operatorname{DPLL(clauses,~rest,~}$
[ $P=$ false $\mid$ model $]$ )

## Model Checking by Local Search

```
Walksat
    function WalkSAT(clauses, p, max-flips) returns a satisfying model or failure
        inputs: clauses, a set of clauses in propositional logic
            \(p\), the probability of choosing to do a "random walk" move, typically
around 0.5
                max-flips, number of flips allowed before giving up
    model \(\leftarrow\) a random assignment of true/false to the symbols in clauses
    for \(i=1\) to max-flips do
        if model satisfies clauses then return model
        clause \(\leftarrow\) a randomly selected clause from clauses that is false in model
        with probability \(p\) flip the value in model of a randomly selected symbol
from clause
    else flip whichever symbol in clause maximizes the number of satisfied
clauses
    return failure
```

Logical agents apply inference to a knowledge base to derive new information and make decisions
Basic concepts of logic:

- syntax: formal structure of sentences
- semantics: truth of sentences wrt models
- entailment: necessary truth of one sentence given another
- inference: deriving sentences from other sentences
- soundess: derivations produce only entailed sentences
- completeness: derivations can produce all entailed sentences

Wumpus world requires the ability to represent partial and negated information, reason by cases, etc.

Forward, backward chaining are linear-time, complete for Horn clauses Resolution is complete for propositional logic

Propositional logic lacks expressive power

## Part II

## Outline

5. First Order Logic
6. Situation calculus

## Outline

5. First Order Logic
6. Situation calculus

## Outline

5. First Order Logic
6. Situation calculus

## Outline

## Why FOL?

Syntax and semantics of FOL Fun with sentences
Wumpus world in FOL

## Pros and cons of propositional logic

(-) Propositional logic is declarative: pieces of syntax correspond to facts
© Propositional logic allows partial/disjunctive/negated information (unlike most data structures and databases)
© Propositional logic is compositional:
meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$
© Meaning in propositional logic is context-independent (unlike natural language, where meaning depends on context)
(2) Propositional logic has very limited expressive power (unlike natural language)
E.g., cannot say "pits cause breezes in adjacent squares"
except by writing one sentence for each square

## First-order logic

Whereas propositional logic assumes world contains facts, first-order logic (like natural language) assumes the world contains

- Objects: people, houses, numbers, theories, Ronald McDonald, colors, baseball games, wars, centuries ...
- Relations/Predicates: red, round, bogus, prime, multistoried ..., brother of, bigger than, inside, part of, has color, occurred after, owns, comes between, likes, friends, ...
- Functions: father of, best friend, successor, one more than, times, end of


## Logics in general

| Language | Ontological <br> Commitment | Epistemological <br> Commitment |
| :--- | :--- | :--- |
| Propositional logic | facts | true/false/unknown |
| First-order logic | facts, objects, relations | true/false/unknown |
| Temporal logic | facts, objects, relations, times | true/false/unknown |
| Probability theory | facts | degree of belief |
| Fuzzy logic | facts + degree of truth | known interval value |

## Syntax of FOL: Basic elements



Note: constants, variables, predicates are distinguished typically by the case of the letters. Every system/book has differnt conventions in this regard. PROLOG: costants in lower case and variables in upper case.

## Atomic sentences

Atomic sentence $\left.=\begin{array}{l}\text { predicate }\left(\text { term }_{1}, \ldots, \text { term }_{n}\right) \\ \text { or term }\end{array}\right)$
Term $=$ term $_{2}$$\quad \begin{aligned} & \text { function }\left(\text { term } 1, \ldots, \text { term }_{n}\right) \\ & \text { or constant or variable }\end{aligned}$
E.g., Brother(KingJohn, RichardTheLionheart)

$$
>(\text { Length(LeftLegOf(Richard) }), \text { Length(LeftLegOf(KingJohn))) }
$$

But: E.g., Plus $(2,3)$ is a function, not an atomic sentence.

## Complex sentences

Complex sentences are made from atomic sentences using connectives

$$
\neg S, \quad S_{1} \wedge S_{2}, \quad S_{1} \vee S_{2}, \quad S_{1} \Longrightarrow S_{2}, \quad S_{1} \Leftrightarrow S_{2}
$$

E.g. Sibling(KingJohn, Richard) $\Longrightarrow$ Sibling(Richard, KingJohn) $>(1,2) \vee \leq(1,2)$ $>(1,2) \wedge \neg>(1,2)$
E.g., Equal(Plus(2, 3), Seven))

## Semantics in first-order logic

Sentences are true with respect to an interpretation over a domain $D$.

## DEFINITION

INTERPRETATION
Let the domain D be a nonempty set.
An interpretation over D is an assignment of the entities of D to each of the constant, variable, predicate, and function symbols of a predicate calculus expression, such that:

1. Each constant is assigned an element of $\mathbf{D}$.
2. Each variable is assigned to a nonempty subset of D ; these are the allowable substitutions for that variable.
3. Each function $f$ of arity $m$ is defined on $m$ arguments of $D$ and defines a mapping from $\mathrm{D}^{\mathrm{m}}$ into D .
4. Each predicate p of arity n is defined on n arguments from D and defines a mapping from $D^{n}$ into $\{T, F\}$.

## Truth Value Assignment

Symbols in FOL are assigned values from the domain $D$ as determined by the interpretation. Each precise assignment is a model
An atomic sentence predicate $\left(\right.$ term $_{1}, \ldots$, term $\left._{n}\right)$ is true
iff the objects referred to by $\operatorname{term}_{1}, \ldots$, term $_{n}$ are in the relation referred to by predicate in the interpretation Example:
Consider the interpretation in which
Richard $\rightarrow$ Richard the Lionheart
John $\rightarrow$ the evil King John
Brother $\rightarrow$ the brotherhood relation
Under this interpretation, Brother(Richard, John) is true just in case Richard the Lionheart and the evil King John are in the brotherhood relation in the model (the assignment of values of the world to objects according to the interpretation)

## Models for FOL: Lots!

Entailment in propositional logic can be computed by enumerating models We can enumerate the FOL models for a given KB vocabulary.

But:
Sentences with quantifiers:
Eg. $\forall X(p(X) \vee q(Y)) \Longrightarrow r(X))$
It requires checking truth by substituting all values that $X$ can take in the subset of $D$ assigned to $X$ in the interpretation

Since the set maybe infinite predicate calculus is said to be undecidable Existential quantifiers are not easier to check

## Universal quantification

$\forall\langle$ variables〉 〈sentence〉
Everyone at Berkeley is smart：
$\forall x$ At（ $x$ ，Berkeley）$\Longrightarrow \operatorname{Smart}(x)$
$\forall x P$ is true in a model iff $P$ is true with $x$ being each possible object in the model （Roughly speaking，equivalent to the conjunction of instantiations of $P$ ）

|  | $($ At $($ KingJohn，Berkeley $) \Longrightarrow$ Smart（KingJohn $))$ |
| :--- | :--- |
| $\wedge$ | $($ At $($ Richard, Berkeley $) \Longrightarrow \operatorname{Smart}($ Richard $))$ |
| $\wedge$ | $($ At $($ Berkeley，Berkeley $) \Longrightarrow \operatorname{Smart}($ Berkeley $))$ |

Note：quantifiers are only on objects and variables，not on predicates and functions．This is done in higher order logic．
Eg．：$\forall$（Likes）Likes（Geroge，Kate）

## A common mistake to avoid

Typically, $\Longrightarrow$ is the main connective with $\forall$
Common mistake: using $\wedge$ as the main connective with $\forall$ :

$$
\forall x \operatorname{At}(x, \text { Berkeley }) \wedge \operatorname{Smart}(x)
$$

means "Everyone is at Berkeley and everyone is smart"

## Existential quantification

$\exists\langle$ variables〉 〈sentence〉
Someone at Stanford is smart：
$\exists x \operatorname{At}(x$, Stanford $) \wedge \operatorname{Smart}(x)$
$\exists x P$ is true in a model iff $P$ is true with $x$ being some possible object in the model
（Roughly speaking，equivalent to the disjunction of instantiations of $P$ ）

$$
\begin{aligned}
& (\text { At }(\text { KingJohn, Stanford }) \wedge \text { Smart }(\text { KingJohn })) \\
& (\text { At }(\text { Richard }, \text { Stanford }) \wedge \text { Smart }(\text { Richard })) \\
& (\text { At }(\text { Stanford }, \text { Stanford }) \wedge \text { Smart }(\text { Stanford }))
\end{aligned}
$$

## Another common mistake to avoid

Typically, $\wedge$ is the main connective with $\exists$
Common mistake: using $\Longrightarrow$ as the main connective with $\exists$ :

$$
\exists x \text { At }(x, \text { Stanford }) \Longrightarrow \operatorname{Smart}(x)
$$

is true if there is anyone who is not at Stanford!

## Properties of quantifiers

- $\forall x \forall y$ is the same as $\forall y \forall x$
- $\exists x \exists y$ is the same as $\exists y \exists x$
- $\exists x \forall y$ is not the same as $\forall y \exists x$
- $\exists x \forall y \operatorname{Loves}(x, y)$
"There is a person who loves everyone in the world" $\forall y \exists x \operatorname{Loves}(x, y)$
"Everyone in the world is loved by at least one person"
- Quantifier duality: each can be expressed using the other $\forall x$ Likes( $x$, IceCream) $\quad \neg \exists x \neg$ Likes( $x$, IceCream)
$\exists x$ Likes(x, Broccoli) $\quad \neg \forall x \neg \operatorname{Likes}(x$, Broccoli)


## Exercise

Translating natural language in FOL
Brothers are siblings
$\forall x, y$ Brother $(x, y) \Longrightarrow \operatorname{Sibling}(x, y)$.
"Sibling" is symmetric
$\forall x, y \operatorname{Sibling}(x, y) \Leftrightarrow \operatorname{Sibling}(y, x)$.
One's mother is one's female parent $\forall x, y \operatorname{Mother}(x, y) \Leftrightarrow($ Female $(x) \wedge \operatorname{Parent}(x, y))$.
A first cousin is a child of a parent's sibling
$\forall x, y$ FirstCousin $(x, y) \Leftrightarrow \exists p, p s \operatorname{Parent}(p, x) \wedge \operatorname{Sibling}(p s, p) \wedge$ Parent(ps,y)

Note: there is not an unique way of translating If it does not rain on Monday, Tom will go to the mountains $\neg$ weather (rain, mountain) $\Longrightarrow$ go(tom, mountains)

## Equality

term $_{1}=$ term $_{2}$ is true under a given interpretation if and only if term ${ }_{1}$ and term 2 refer to the same object

$$
\begin{array}{ll}
\text { E.g., } & 1=2 \text { and } \forall x \times(\operatorname{Sqrt}(x), \operatorname{Sqrt}(x))=x \text { are satisfiable } \\
& 2=2 \text { is valid }
\end{array}
$$

E.g., definition of (full) Sibling in terms of Parent:

$$
\begin{aligned}
& \forall x, y \operatorname{Sibling}(x, y) \Leftrightarrow[\neg(x=y) \wedge \exists m, f \neg(m=f) \wedge \\
& \quad \operatorname{Parent}(m, x) \wedge \operatorname{Parent}(f, x) \wedge \operatorname{Parent}(m, y) \wedge \operatorname{Parent}(f, y)]
\end{aligned}
$$

## Interacting with FOL KBs

Suppose a wumpus-world agent is using an FOL KB and perceives a smell and a breeze (but no glitter) at $t=5$ :
Tell(KB, Percept([Smell, Breeze, None], 5))
Ask(KB, ヨa Action(a,5))
I.e., does $K B$ entail any particular actions at $t=5$ ?

Answer: Yes, \{a/Shoot $\} \leftarrow$ substitution (binding list)

Given a sentence $S$ and a substitution $\sigma$,
$S \sigma$ denotes the result of plugging $\sigma$ into $S$; e.g.,
$S=\operatorname{Smarter}(x, y)$
$\sigma=\{x /$ Hillary,$y /$ Bill $\}$
S $\sigma=$ Smarter(Hillary, Bill)
Ask $(K B, S)$ returns some/all $\sigma$ such that $K B \models S \sigma$

## Deducing hidden properties

Properties of locations:
$\forall x, t \operatorname{At}($ Agent $, x, t) \wedge \operatorname{Smelt}(t) \Longrightarrow \operatorname{Smelly}(x)$
$\forall x, t \operatorname{At}(\operatorname{Agent}, x, t) \wedge \operatorname{Breeze}(t) \Longrightarrow \operatorname{Breezy}(x)$
Squares are breezy near a pit:
Diagnostic rule-infer cause from effect

$$
\forall y \operatorname{Breezy}(y) \Longrightarrow \exists x \operatorname{Pit}(x) \wedge \operatorname{Adjacent}(x, y)
$$

Causal rule-infer effect from cause

$$
\forall x, y \operatorname{Pit}(x) \wedge \operatorname{Adjacent}(x, y) \Longrightarrow \operatorname{Breezy}(y)
$$

Neither of these is complete-e.g., the causal rule doesn't say whether squares far away from pits can be breezy

Definition for the Breezy predicate:

$$
\forall y \operatorname{Breezy}(y) \Leftrightarrow[\exists x \operatorname{Pit}(x) \wedge \operatorname{Adjacent}(x, y)]
$$

## Outline

5. First Order Logic
6. Situation calculus

## Knowledge base for the wumpus world

"Perception"
$\forall b, g, t \operatorname{Percept}([$ Smell $, b, g], t) \Longrightarrow \operatorname{Smelt}(t)$
$\forall s, b, t \operatorname{Percept}([s, b$, Glitter $], t) \Longrightarrow \operatorname{AtGold}(t)$
Reflex: $\forall t \operatorname{AtGold}(t) \Longrightarrow \operatorname{Action(Grab,t)}$
Reflex with internal state: do we have the gold already?
$\forall t$ AtGold $(t) \wedge \neg$ Holding (Gold, $t) \Longrightarrow$ Action (Grab, $t$ )
Holding (Gold, $t$ ) cannot be observed
$\Rightarrow$ keeping track of change is essential

## Keeping track of change

Facts hold in situations, rather than eternally
E.g., Holding(Gold, Now) rather than just Holding (Gold)

Situation calculus is one way to represent change in FOL:
Adds a situation argument to each non-eternal predicate E.g., Now in Holding(Gold, Now) denotes a situation

Situations are connected by the Result function $\operatorname{Result}(a, s)$ is the situation that results from doing $a$ in $s$


## Describing actions I

- "Effect" axiom-describe changes due to action $\forall s$ AtGold(s) $\Longrightarrow$ Holding(Gold, Result(Grab, s))
- "Frame" axiom-describe non-changes due to action $\forall s \operatorname{HaveArrow}(s) \Longrightarrow \operatorname{HaveArrow}(\operatorname{Result}(G r a b, s))$

Frame problem: find an elegant way to handle non-change
(a) representation-avoid frame axioms
(b) inference-avoid repeated "copy-overs" to keep track of state

Qualification problem: true descriptions of real actions require endless caveats-what if gold is slippery or nailed down or ...

Ramification problem: real actions have many secondary consequences-what about the dust on the gold, wear and tear on gloves, ...

## Describing actions II

Successor-state axioms solve the representational frame problem Each axiom is "about" a predicate (not an action per se):

```
P}\mathrm{ true afterwards }\Leftrightarrow\quad[\mathrm{ an action made P true
    V Prue already and no action made P false]
```

For holding the gold:
$\forall a, s$ Holding(Gold, Result(a, s)) $\Leftrightarrow$

$$
\begin{aligned}
& {[(a=\operatorname{Grab} \wedge \text { AtGold }(s))} \\
& \vee(\text { Holding }(\text { Gold }, s) \wedge a \neq \text { Release })]
\end{aligned}
$$

## Making plans

Initial condition in KB:
At (Agent, [1, 1], $S_{0}$ )
At (Gold, [1, 2], $S_{0}$ )
Query: Ask(KB, ヨs Holding(Gold,s))
i.e., in what situation will I be holding the gold?

Answer: $\left\{s / \operatorname{Result}\left(\right.\right.$ Grab, Result(Forward, $\left.\left.\left.S_{0}\right)\right)\right\}$
i.e., go forward and then grab the gold

This assumes that the agent is interested in plans starting at $S_{0}$ and that $S_{0}$ is the only situation described in the KB

## Making plans: A better way

Represent plans as action sequences $p=\left[a_{1}, a_{2}, \ldots, a_{n}\right]$
PlanResult $(p, s)$ is the result of executing $p$ in $s$
Then the query $\operatorname{Ask}\left(K B, \exists p\right.$ Holding (Gold, PlanResult( $\left.\left.p, S_{0}\right)\right)$ ) has the solution $\{p /[$ Forward, Grab] $\}$

Definition of PlanResult in terms of Result:

```
    \foralls PlanResult([],s)=s
    \foralla,p,s PlanResult([a|p],s) = PlanResult(p,Result(a,s))
```

Planning systems are special-purpose reasoners designed to do this type of inference more efficiently than a general-purpose reasoner

## Knowledge Engineer

The one just saw is called knowledge engineer process.
It is the production of special-purpose knowledge systems, aka expert systems (eg, in medical diagnosis)

- Identify the task
- Assemble the relevant knowledge
- Decide on a vocabulary of predicates, functions, and constants
- Encode general knowledge about the domain
- Encode a description of the specific problem instance (input data) decide what is a constant, a predicate, a function leads to definition of the ontology of the domain (what kind of things exist)
- Pose queries to the inference procedure and get answers
- Debug the knowledge base


## Summary

First-order logic:

- objects and relations are semantic primitives
- syntax: constants, functions, predicates, equality, quantifiers

Increased expressive power: sufficient to define wumpus world
Situation calculus:

- conventions for describing actions and change in FOL
- can formulate planning as inference on a situation calculus KB

