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Knowledge-based Agents
Logic in GeneralKnowledge bases

Knowledge base = set of sentences in a formal language

Inference engine

Knowledge base domain−specific content

domain−independent algorithms

Declarative approach to building an agent (or other system):
Tell it what it needs to know

Then it can Ask itself what to do—answers should follow from the KB

Agents can be viewed at the knowledge level
i.e., what they know, regardless of how implemented

Or at the implementation level
i.e., data structures in KB and algorithms that manipulate them
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Knowledge-based Agents
Logic in GeneralA simple knowledge-based agent

function KB-Agent( percept) returns an action
static: KB, a knowledge base

t, a counter, initially 0, indicating time

Tell(KB,Make-Percept-Sentence( percept, t))
action←Ask(KB,Make-Action-Query(t))
Tell(KB,Make-Action-Sentence(action, t))
t← t + 1
return action

The agent must be able to:
Represent states, actions, etc.
Incorporate new percepts
Update internal representations of the world
Deduce hidden properties of the world
Deduce appropriate actions
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Knowledge-based Agents
Logic in GeneralWumpus World PEAS description

Performance measure
gold +1000, death -1000
-1 per step, -10 for using the arrow
Environment
Squares adjacent to wumpus are smelly
Squares adjacent to pit are breezy
Glitter iff gold is in the same square
Shooting kills wumpus if you are facing it
Shooting uses up the only arrow
Grabbing picks up gold if in same square
Releasing drops the gold in same square
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Breeze

Breeze
Breeze

Stench

Stench

Breeze
PIT

PIT

PIT

1 2 3 4
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Actuators LeftTurn, RightTurn,
Forward , Grab, Release, Shoot

Sensors Breeze, Glitter , Smell
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Knowledge-based Agents
Logic in GeneralWumpus world – Properties

Fully vs Partially observable??
No—only local perception
Deterministic vs Stochastic??
Deterministic—outcomes exactly specified
Episodic vs Sequential??
sequential at the level of actions
Static vs Dynamic??
Static—Wumpus and Pits do not move
Discrete vs Continous??
Discrete
Single-agent vs Multi-Agent??
Single—Wumpus is essentially a natural
feature
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Breeze

Breeze
Breeze

Stench
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Knowledge-based Agents
Logic in GeneralExploring a wumpus world
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Knowledge-based Agents
Logic in GeneralOutline
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Knowledge-based Agents
Logic in GeneralLogic in general

Logics are formal languages for representing information
such that conclusions can be drawn

Syntax defines the sentences in the language

Semantics define the “meaning” of sentences;
i.e., define truth of a sentence in a world

E.g., the language of arithmetic
x + 2 ≥ y is a sentence; x2 + y > is not a sentence
x + 2 ≥ y is true iff the number x + 2 is no less than the number y
x + 2 ≥ y is true in a world where x = 7, y = 1
x + 2 ≥ y is false in a world where x = 0, y = 6
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Knowledge-based Agents
Logic in GeneralEntailment

Entailment means that one thing follows from another:

KB |= α

Knowledge base KB entails sentence α
if and only if

α is true in all worlds where KB is true

E.g., the KB containing “OB Won” and “KBH won”
entails “Either OB or KBH won”

Entailment is a relationship between sentences (i.e., syntax)
that is based on semantics
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Knowledge-based Agents
Logic in GeneralModels

Logicians typically think in terms of models, which are formally
structured worlds with respect to which truth can be evaluated

We say m is a model of a sentence α if α is true in m

M(α) is the set of all models of α

Then KB |= α if and only if M(KB) ⊆ M(α)

E.g. KB = OB won and FCK won
α = OB won
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Knowledge-based Agents
Logic in GeneralEntailment in the wumpus world

Situation after detecting nothing in [1,1],
moving right, breeze in [2,1]

Consider possible models for ?s
assuming only pits

AA

B

?
?

?

3 Boolean choices =⇒ 8 possible models
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Knowledge-based Agents
Logic in GeneralInference

KB `i α = sentence α can be derived from KB by procedure i

Soundness: i is sound if
whenever KB `i α, it is also true that KB |= α

Completeness: i is complete if
whenever KB |= α, it is also true that KB `i α

Preview: we will define a logic (first-order logic) which is expressive enough
to say almost anything of interest, and for which there exists a sound and
complete inference procedure.

That is, the procedure will answer any question whose answer follows from
what is known by the KB.
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Propositional Logic
Inference in PL

Part I
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Propositional Logic
Inference in PLOutline

3. Propositional Logic
Introduction
Equivalence and Validity

4. Inference in PL
Proof by Resolution
Proof by Model Checking
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Inference in PLOutline
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Propositional Logic
Inference in PLPropositional logic: Syntax

Propositional logic is the simplest logic—illustrates basic ideas

The proposition symbols P1, P2 etc are sentences

If S is a sentence, ¬S is a sentence (negation)
If S1 and S2 are sentences, S1 ∧ S2 is a sentence (conjunction)
If S1 and S2 are sentences, S1 ∨ S2 is a sentence (disjunction)
If S1 and S2 are sentences, S1 =⇒ S2 is a sentence (implication)
If S1 and S2 are sentences, S1 ⇔ S2 is a sentence (biconditional)
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Propositional Logic
Inference in PLPropositional logic: Semantics

Each model specifies true/false for each proposition symbol
E.g. P1,2 P2,2 P3,1

true true false
(With these symbols, 8 possible models, can be enumerated automatically.)

Rules for evaluating truth with respect to a model m:
¬S is true iff S is false

S1 ∧ S2 is true iff S1 is true and S2 is true
S1 ∨ S2 is true iff S1 is true or S2 is true

S1 =⇒ S2 is true iff S1 is false or S2 is true
i.e., is false iff S1 is true and S2 is false

S1 ⇔ S2 is true iff S1 =⇒ S2 is true and S2 =⇒ S1 is true

Simple recursive process evaluates an arbitrary sentence, e.g.,
¬P1,2 ∧ (P2,2 ∨ P3,1) = true ∧ (false ∨ true) = true ∧ true = true
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Propositional Logic
Inference in PLTruth tables for connectives

P Q ¬P P ∧ Q P ∨ Q P⇒Q P⇔Q
false false true false false true true
false true true false true true false
true false false false true false false
true true false true true true true
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Propositional Logic
Inference in PLWumpus world sentences

Let Pi,j be true if there is a pit in [i , j ].
Let Bi,j be true if there is a breeze in [i , j ].

R1 : ¬P1,1

R2 : ¬B1,1

R3 : B2,1

“Pits cause breezes in adjacent squares”
“A square is breezy if and only if there is an adjacent pit”

R4 : B1,1 ⇔ (P1,2 ∨ P2,1)

R5 : B2,1 ⇔ (P1,1 ∨ P2,2 ∨ P3,1)
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Propositional Logic
Inference in PLTruth tables for inference

KB ` α

B1,1 B2,1 P1,1 P1,2 P2,1 P2,2 P3,1 R1 R2 R3 R4 R5 KB
false false false false false false false true true true true false false
false false false false false false true true true false true false false
...

...
...

...
...

...
...

...
...

...
...

...
...

false true false false false false false true true false true true false
false true false false false false true true true true true true true
false true false false false true false true true true true true true
false true false false false true true true true true true true true
false true false false true false false true false false true true false
...

...
...

...
...

...
...

...
...

...
...

...
...

true true true true true true true false true true false true false

Enumerate rows (different assignments to symbols),
if KB is true in row, check that α is too
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Propositional Logic
Inference in PLInference by enumeration

Depth-first enumeration of all models is sound and complete

O(2n) for n symbols; problem is co-NP-complete

A problem Π is a member of co-NP if and only if its complement Π is in the
complexity class NP.
Class of problems for which efficiently verifiable proofs of no instances,
sometimes called counterexamples, exist.

Is α true under KB? To give an answer “no” it is enough to provide a
couterexample, which is easily verifiable.
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Propositional Logic
Inference in PLLogical equivalence

Two sentences are logically equivalent iff true in same models:
α ≡ β if and only if α |= β and β |= α

(α ∧ β) ≡ (β ∧ α) commutativity of ∧
(α ∨ β) ≡ (β ∨ α) commutativity of ∨

((α ∧ β) ∧ γ) ≡ (α ∧ (β ∧ γ)) associativity of ∧
((α ∨ β) ∨ γ) ≡ (α ∨ (β ∨ γ)) associativity of ∨

¬(¬α) ≡ α double-negation elimination
(α =⇒ β) ≡ (¬β =⇒ ¬α) contraposition
(α =⇒ β) ≡ (¬α ∨ β) implication elimination

(α ⇔ β) ≡ ((α =⇒ β) ∧ (β =⇒ α)) bicond. elimination
¬(α ∧ β) ≡ (¬α ∨ ¬β) De Morgan
¬(α ∨ β) ≡ (¬α ∧ ¬β) De Morgan

(α ∧ (β ∨ γ)) ≡ ((α ∧ β) ∨ (α ∧ γ)) distributivity of ∧ over ∨
(α ∨ (β ∧ γ)) ≡ ((α ∨ β) ∧ (α ∨ γ)) distributivity of ∨ over ∧
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Propositional Logic
Inference in PLValidity and satisfiability

A sentence is valid if it is true in all models,
e.g., True, A ∨ ¬A, A =⇒ A, (A ∧ (A =⇒ B)) =⇒ B

Validity is connected to inference via the Deduction Theorem:
KB |= α if and only if (KB =⇒ α) is valid

A sentence is satisfiable if it is true in some model
e.g., A ∨ B, C

A sentence is unsatisfiable if it is true in no models
e.g., A ∧ ¬A

Satisfiability is connected to inference via the following:
KB |= α if and only if (KB ∧ ¬α) is unsatisfiable

i.e., prove α by reductio ad absurdum
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Propositional Logic
Inference in PLOutline

3. Propositional Logic
Introduction
Equivalence and Validity

4. Inference in PL
Proof by Resolution
Proof by Model Checking
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Propositional Logic
Inference in PLProof methods

Proof methods divide into (roughly) two kinds:

By resolution (application of inference rules)
– Legitimate (sound) generation of new sentences from old
– Proof = a sequence of inference rule applications

Can use inference rules as operators in a standard search alg.
– Typically require translation of sentences into a normal form

Model checking
truth table enumeration (always exponential in n)
improved backtracking, e.g., Davis–Putnam–Logemann–Loveland
heuristic search in model space (sound but incomplete)

e.g., min-conflicts-like hill-climbing algorithms
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Propositional Logic
Inference in PLResolution

Conjunctive Normal Form (CNF—universal)
conjunction of disjunctions of literals︸ ︷︷ ︸

clauses
E.g., (A ∨ ¬B) ∧ (B ∨ ¬C ∨ ¬D)

Resolution inference rule (for CNF): complete for propositional logic

`1 ∨ · · · ∨ `k , m1 ∨ · · · ∨mn

`1 ∨ · · · ∨ `i−1 ∨ `i+1 ∨ · · · ∨ `k ∨m1 ∨ · · · ∨mj−1 ∨mj+1 ∨ · · · ∨mn

where `i and mj are complementary literals. E.g.:

OK

OK OK

A

A

B

P?

P?

A

S

OK

P

W

A

P1,3 ∨ P2,2, ¬P2,2

P1,3

Resolution is sound and complete for propositional logic ; can decide
whether α |= β
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Propositional Logic
Inference in PLConversion to CNF

Resolution rule applies only to clauses (disjunction of literals)
Every sentence in PL is logically equivalent to a conjunction of clauses:

B1,1 ⇔ (P1,2 ∨ P2,1)

1. Eliminate ⇔, replacing α⇔ β with (α =⇒ β) ∧ (β =⇒ α).

(B1,1 =⇒ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1) =⇒ B1,1)

2. Eliminate ⇒, replacing α⇒ β with ¬α ∨ β.

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬(P1,2 ∨ P2,1) ∨ B1,1)

3. Move ¬ inwards using de Morgan’s rules and double-negation:

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ ((¬P1,2 ∧ ¬P2,1) ∨ B1,1)

4. Apply distributivity law (∨ over ∧) and flatten:

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬P1,2 ∨ B1,1) ∧ (¬P2,1 ∨ B1,1)
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Propositional Logic
Inference in PLResolution algorithm

KB |= α Proof by contradiction, i.e., show KB ∧ ¬α unsatisfiable

function PL-Resolution(KB,α) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic

α, the query, a sentence in propositional logic

clauses← the set of clauses in the CNF representation of KB ∧ ¬α
new←{}
loop do

for each Ci , Cj in clauses do
resolvents←PL-Resolve(Ci ,Cj)
if resolvents contains the empty clause then return true
new← new ∪ resolvents

if new ⊆ clauses then return false
clauses← clauses ∪ new
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Propositional Logic
Inference in PLResolution example

KB = (B1,1 ⇔ (P1,2 ∨ P2,1)) ∧ ¬B1,1
α = ¬P1,2

P1,2

P1,2

P2,1

P1,2 B1,1

B1,1 P2,1 B1,1 P1,2 P2,1 P2,1
P1,2B1,1 B1,1

P1,2B1,1 P2,1B1,1P2,1 B1,1

P1,2 P2,1 P1,2
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Propositional Logic
Inference in PLCompleteness of Resolution

Theorem
Ground Resolution Theorem
If a set of clauses is unsatisfiable, then the resolution closure of those clauses
contains the empty clauses

Proof. by contraposition RC (S) does not contain empty clause =⇒ S is
satisfiable.
Construct a model for S with sutiable ttruth values for P1, . . . ,Pk as follows

I assign false to Pi if there is a clause in RC (S) containing literal ¬Pi and
all its other literals being false under the current assignment

I otherwise, assign Pi true.
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Propositional Logic
Inference in PLModel Checking

KB |= α

Forward and backward chaining

Horn Form (restricted)
KB = conjunction of Horn clauses

Horn clause =
♦ proposition symbol; or
♦ (conjunction of symbols) =⇒ symbol

E.g., C ∧ (B =⇒ A) ∧ (C ∧ D =⇒ B)

Modus Ponens (for Horn Form): complete for Horn KBs

α1, . . . , αn, α1 ∧ · · · ∧ αn =⇒ β

β

Can be used with forward chaining or backward chaining.
These algorithms are very natural and run in linear time
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Propositional Logic
Inference in PLForward chaining

Idea: fire any rule whose premises are satisfied in the KB,
add its conclusion to the KB, until query is found

P =⇒ Q

L ∧M =⇒ P

B ∧ L =⇒ M

A ∧ P =⇒ L

A ∧ B =⇒ L

A

B

Q

P

M

L

BA
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Propositional Logic
Inference in PLForward chaining example

A B

0

L
0

M

0

P

0

0

Q
P =⇒ Q

L ∧M =⇒ P

B ∧ L =⇒ M

A ∧ P =⇒ L

A ∧ B =⇒ L

A

B
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Propositional Logic
Inference in PLProof of completeness

FC derives every atomic sentence that is entailed by KB

I FC reaches a fixed point where no new atomic sentences are derived

I Consider the final state as a model m, assigning true/false to symbols

I Every clause in the original KB is true in m
Proof: Suppose a clause a1 ∧ . . . ∧ ak ⇒ b is false in m
Then a1 ∧ . . . ∧ ak is true in m and b is false in m
Therefore the algorithm has not reached a fixed point!

I Hence m is a model of KB

I If KB |= q, q is true in every model of KB, including m

General idea: construct any model of KB by sound inference, check α
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Propositional Logic
Inference in PLBackward chaining

Idea: work backwards from the query q:
to prove q by BC,

check if q is known already, or
prove by BC all premises of some rule concluding q

Avoid loops: check if new subgoal is already on the goal stack

Avoid repeated work: check if new subgoal
1) has already been proved true, or
2) has already failed
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Propositional Logic
Inference in PLBackward chaining example

A

Q

P

L

B

M
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Propositional Logic
Inference in PLForward vs. backward chaining

FC is data-driven, cf. automatic, unconscious processing,
e.g., object recognition, routine decisions

May do lots of work that is irrelevant to the goal

BC is goal-driven, appropriate for problem-solving,
e.g., Where are my keys? How do I get into a PhD program?

Complexity of BC can be much less than linear in size of KB
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Propositional Logic
Inference in PLModel Checking

KB |= α

General case:

KB |= α ≡ KB ∧¬β is unsatisfiable hence find a counter example to KB ∧¬β
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Propositional Logic
Inference in PLModel Checking by Backtracking – DPLL

Davis Putnam Logeman and Loveland (1960-1962)

function DPLL-Satisfiable?(s) returns true or false
inputs: s, a sentence in propositional logic

clauses← the set of clauses in the CNF representation of s
symbols← a list of the proposition symbols in s
return DPLL(clauses, symbols, [ ])

function DPLL(clauses, symbols,model) returns true or false

if every clause in clauses is true in model then return true
if some clause in clauses is false in model then return true
P, value←Find-Pure-Symbol(symbols, clauses,model)
if P is non-null then return DPLL(clauses, symbols–P, [P = value|model ])
P, value←Find-Unit-Clause(clauses,model)
if P is non-null then return DPLL(clauses, symbols–P, [P = value|model ])
P←First(symbols); rest←Rest(symbols)

return DPLL(clauses, rest, [P = true|model ]) or DPLL(clauses, rest,
[P = false|model ])
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Propositional Logic
Inference in PLModel Checking by Local Search

Walksat

function WalkSAT(clauses,p,max-flips) returns a satisfying model or failure
inputs: clauses, a set of clauses in propositional logic

p, the probability of choosing to do a “random walk” move, typically
around 0.5

max-flips, number of flips allowed before giving up

model← a random assignment of true/false to the symbols in clauses
for i = 1 to max-flips do

if model satisfies clauses then return model
clause← a randomly selected clause from clauses that is false in model
with probability p flip the value in model of a randomly selected symbol

from clause
else flip whichever symbol in clause maximizes the number of satisfied

clauses
return failure
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Propositional Logic
Inference in PLSummary

Logical agents apply inference to a knowledge base
to derive new information and make decisions

Basic concepts of logic:
– syntax: formal structure of sentences
– semantics: truth of sentences wrt models
– entailment: necessary truth of one sentence given another
– inference: deriving sentences from other sentences
– soundess: derivations produce only entailed sentences
– completeness: derivations can produce all entailed sentences

Wumpus world requires the ability to represent partial and negated
information, reason by cases, etc.

Forward, backward chaining are linear-time, complete for Horn clauses
Resolution is complete for propositional logic

Propositional logic lacks expressive power
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First Order Logic
Situation calculus

Part II
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First Order Logic
Situation calculusOutline

5. First Order Logic

6. Situation calculus
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First Order Logic
Situation calculusOutline
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First Order Logic
Situation calculusOutline

5. First Order Logic

6. Situation calculus
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First Order Logic
Situation calculusOutline

♦ Why FOL?
♦ Syntax and semantics of FOL
♦ Fun with sentences
♦ Wumpus world in FOL
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First Order Logic
Situation calculusPros and cons of propositional logic

, Propositional logic is declarative: pieces of syntax correspond to facts

, Propositional logic allows partial/disjunctive/negated information
(unlike most data structures and databases)

, Propositional logic is compositional:
meaning of B1,1 ∧ P1,2 is derived from meaning of B1,1 and of P1,2

, Meaning in propositional logic is context-independent
(unlike natural language, where meaning depends on context)

Propositional logic has very limited expressive power
(unlike natural language)
E.g., cannot say “pits cause breezes in adjacent squares”

except by writing one sentence for each square
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First Order Logic
Situation calculusFirst-order logic

Whereas propositional logic assumes world contains facts,
first-order logic (like natural language) assumes the world contains

I Objects: people, houses, numbers, theories, Ronald McDonald, colors,
baseball games, wars, centuries . . .

I Relations/Predicates: red, round, bogus, prime, multistoried . . .,
brother of, bigger than, inside, part of, has color, occurred after, owns,
comes between, likes, friends, . . .

I Functions: father of, best friend, successor, one more than, times, end of
. . .
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First Order Logic
Situation calculusLogics in general

Language Ontological Epistemological
Commitment Commitment

Propositional logic facts true/false/unknown
First-order logic facts, objects, relations true/false/unknown
Temporal logic facts, objects, relations, times true/false/unknown
Probability theory facts degree of belief
Fuzzy logic facts + degree of truth known interval value
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First Order Logic
Situation calculusSyntax of FOL: Basic elements

Constants KingJohn, 2, UCB, . . .
Variables x , y , a, b, . . .
Functions Sqrt, Father . . .
Predicates BrotherOf , >, . . .
Connectives ∧ ∨ ¬ =⇒ ⇔
Equality =
Quantifiers ∀ ∃

Note: constants, variables, predicates are distinguished typically by the case
of the letters. Every system/book has differnt conventions in this regard.
PROLOG: costants in lower case and variables in upper case.
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First Order Logic
Situation calculusAtomic sentences

Atomic sentence = predicate(term1, . . . , termn)
or term1 = term2

Term = function(term1, . . . , termn)
or constant or variable

E.g., Brother(KingJohn,RichardTheLionheart)

> (Length(LeftLegOf (Richard)), Length(LeftLegOf (KingJohn)))

But: E.g., Plus(2, 3) is a function, not an atomic sentence.
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First Order Logic
Situation calculusComplex sentences

Complex sentences are made from atomic sentences using connectives

¬S , S1 ∧ S2, S1 ∨ S2, S1 =⇒ S2, S1 ⇔ S2

E.g. Sibling(KingJohn,Richard) =⇒ Sibling(Richard ,KingJohn)

>(1, 2) ∨ ≤(1, 2)

>(1, 2) ∧ ¬>(1, 2)

E.g., Equal(Plus(2, 3), Seven))
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First Order Logic
Situation calculusSemantics in first-order logic

Sentences are true with respect to an interpretation over a domain D.
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First Order Logic
Situation calculusTruth Value Assignment

Symbols in FOL are assigned values from the domain D as determined by the
interpretation. Each precise assignment is a model

An atomic sentence predicate(term1, . . . , termn) is true
iff the objects referred to by term1, . . . , termn
are in the relation referred to by predicate in the interpretation
Example:
Consider the interpretation in which

Richard → Richard the Lionheart
John → the evil King John
Brother → the brotherhood relation

Under this interpretation, Brother(Richard , John) is true
just in case Richard the Lionheart and the evil King John
are in the brotherhood relation in the model (the assignment of values of the
world to objects according to the interpretation)
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First Order Logic
Situation calculusModels for FOL: Lots!

Entailment in propositional logic can be computed by enumerating models
We can enumerate the FOL models for a given KB vocabulary.

But:

Sentences with quantifiers:
Eg. ∀X (p(X ) ∨ q(Y )) =⇒ r(X ))
It requires checking truth by substituting all values that X can take in the
subset of D assigned to X in the interpretation

Since the set maybe infinite predicate calculus is said to be undecidable

Existential quantifiers are not easier to check
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First Order Logic
Situation calculusUniversal quantification

∀ 〈variables〉 〈sentence〉

Everyone at Berkeley is smart:
∀ x At(x ,Berkeley) =⇒ Smart(x)

∀ x P is true in a model iff P is true with x being
each possible object in the model
(Roughly speaking, equivalent to the conjunction of instantiations of P)

(At(KingJohn,Berkeley) =⇒ Smart(KingJohn))
∧ (At(Richard ,Berkeley) =⇒ Smart(Richard))
∧ (At(Berkeley ,Berkeley) =⇒ Smart(Berkeley))
∧ . . .

Note: quantifiers are only on objects and variables, not on predicates and
functions. This is done in higher order logic.
Eg.: ∀(Likes)Likes(Geroge,Kate)
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First Order Logic
Situation calculusA common mistake to avoid

Typically, =⇒ is the main connective with ∀

Common mistake: using ∧ as the main connective with ∀:

∀ x At(x ,Berkeley) ∧ Smart(x)

means “Everyone is at Berkeley and everyone is smart”
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First Order Logic
Situation calculusExistential quantification

∃ 〈variables〉 〈sentence〉

Someone at Stanford is smart:
∃ x At(x , Stanford) ∧ Smart(x)

∃ x P is true in a model iff P is true with x being
some possible object in the model
(Roughly speaking, equivalent to the disjunction of instantiations of P)

(At(KingJohn, Stanford) ∧ Smart(KingJohn))
∨ (At(Richard , Stanford) ∧ Smart(Richard))
∨ (At(Stanford , Stanford) ∧ Smart(Stanford))
∨ . . .
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Typically, ∧ is the main connective with ∃

Common mistake: using =⇒ as the main connective with ∃:

∃ x At(x , Stanford) =⇒ Smart(x)

is true if there is anyone who is not at Stanford!
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I ∀ x ∀ y is the same as ∀ y ∀ x

I ∃ x ∃ y is the same as ∃ y ∃ x

I ∃ x ∀ y is not the same as ∀ y ∃ x

I ∃ x ∀ y Loves(x , y)
“There is a person who loves everyone in the world”
∀ y ∃ x Loves(x , y)
“Everyone in the world is loved by at least one person”

I Quantifier duality: each can be expressed using the other
∀ x Likes(x , IceCream) ¬∃ x ¬Likes(x , IceCream)
∃ x Likes(x ,Broccoli) ¬∀ x ¬Likes(x ,Broccoli)
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Translating natural language in FOL

Brothers are siblings
∀ x , y Brother(x , y) =⇒ Sibling(x , y).

“Sibling” is symmetric
∀ x , y Sibling(x , y) ⇔ Sibling(y , x).

One’s mother is one’s female parent
∀ x , y Mother(x , y) ⇔ (Female(x) ∧ Parent(x , y)).

A first cousin is a child of a parent’s sibling
∀ x , y FirstCousin(x , y) ⇔ ∃ p, ps Parent(p, x) ∧ Sibling(ps, p) ∧
Parent(ps, y)

Note: there is not an unique way of translating
If it does not rain on Monday, Tom will go to the mountains
¬weather(rain,mountain) =⇒ go(tom,mountains)
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term1 = term2 is true under a given interpretation
if and only if term1 and term2 refer to the same object

E.g., 1 = 2 and ∀ x ×(Sqrt(x), Sqrt(x)) = x are satisfiable
2 = 2 is valid

E.g., definition of (full) Sibling in terms of Parent:
∀ x , y Sibling(x , y) ⇔ [¬(x = y) ∧ ∃m, f ¬(m= f ) ∧

Parent(m, x) ∧ Parent(f , x) ∧ Parent(m, y) ∧ Parent(f , y)]

78



First Order Logic
Situation calculusInteracting with FOL KBs

Suppose a wumpus-world agent is using an FOL KB
and perceives a smell and a breeze (but no glitter) at t = 5:

Tell(KB,Percept([Smell ,Breeze,None], 5))
Ask(KB,∃ a Action(a, 5))

I.e., does KB entail any particular actions at t = 5?

Answer: Yes, {a/Shoot} ← substitution (binding list)

Given a sentence S and a substitution σ,
Sσ denotes the result of plugging σ into S ; e.g.,
S = Smarter(x , y)
σ = {x/Hillary , y/Bill}
Sσ = Smarter(Hillary ,Bill)
Ask(KB,S) returns some/all σ such that KB |= Sσ
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Properties of locations:
∀ x , t At(Agent, x , t) ∧ Smelt(t) =⇒ Smelly(x)
∀ x , t At(Agent, x , t) ∧ Breeze(t) =⇒ Breezy(x)

Squares are breezy near a pit:
Diagnostic rule—infer cause from effect

∀ y Breezy(y) =⇒ ∃ x Pit(x) ∧ Adjacent(x , y)
Causal rule—infer effect from cause

∀ x , y Pit(x) ∧ Adjacent(x , y) =⇒ Breezy(y)
Neither of these is complete—e.g., the causal rule doesn’t say whether
squares far away from pits can be breezy

Definition for the Breezy predicate:
∀ y Breezy(y) ⇔ [∃ x Pit(x) ∧ Adjacent(x , y)]
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5. First Order Logic

6. Situation calculus
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“Perception”
∀ b, g , t Percept([Smell , b, g ], t) =⇒ Smelt(t)
∀ s, b, t Percept([s, b,Glitter ], t) =⇒ AtGold(t)

Reflex: ∀ t AtGold(t) =⇒ Action(Grab, t)

Reflex with internal state: do we have the gold already?
∀ t AtGold(t) ∧ ¬Holding(Gold , t) =⇒ Action(Grab, t)

Holding(Gold , t) cannot be observed
⇒ keeping track of change is essential
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Facts hold in situations, rather than eternally
E.g., Holding(Gold ,Now) rather than just Holding(Gold)

Situation calculus is one way to represent change in FOL:
Adds a situation argument to each non-eternal predicate
E.g., Now in Holding(Gold ,Now) denotes a situation

Situations are connected by the Result function
Result(a, s) is the situation that results from doing a in s

PIT

PIT

PIT

Gold

PIT

PIT

PIT

Gold

S0

Forward

S1
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I “Effect” axiom—describe changes due to action
∀ s AtGold(s) =⇒ Holding(Gold ,Result(Grab, s))

I “Frame” axiom—describe non-changes due to action
∀ s HaveArrow(s) =⇒ HaveArrow(Result(Grab, s))

Frame problem: find an elegant way to handle non-change
(a) representation—avoid frame axioms
(b) inference—avoid repeated “copy-overs” to keep track of state

Qualification problem: true descriptions of real actions require endless
caveats—what if gold is slippery or nailed down or . . .

Ramification problem: real actions have many secondary consequences—what
about the dust on the gold, wear and tear on gloves, . . .
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Successor-state axioms solve the representational frame problem
Each axiom is “about” a predicate (not an action per se):

P true afterwards ⇔ [an action made P true
∨ P true already and no action made P false]

For holding the gold:
∀ a, s Holding(Gold ,Result(a, s)) ⇔

[(a=Grab ∧ AtGold(s))
∨ (Holding(Gold , s) ∧ a 6= Release)]
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Initial condition in KB:
At(Agent, [1, 1],S0)
At(Gold , [1, 2], S0)

Query: Ask(KB,∃ s Holding(Gold , s))
i.e., in what situation will I be holding the gold?

Answer: {s/Result(Grab,Result(Forward ,S0))}
i.e., go forward and then grab the gold

This assumes that the agent is interested in plans starting at S0 and that S0
is the only situation described in the KB
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Represent plans as action sequences p = [a1, a2, . . . , an]

PlanResult(p, s) is the result of executing p in s

Then the query Ask(KB,∃ p Holding(Gold ,PlanResult(p, S0)))
has the solution {p/[Forward ,Grab]}

Definition of PlanResult in terms of Result:
∀ s PlanResult([ ], s) = s
∀ a, p, s PlanResult([a|p], s) = PlanResult(p,Result(a, s))

Planning systems are special-purpose reasoners designed to do this type of
inference more efficiently than a general-purpose reasoner
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The one just saw is called knowledge engineer process.
It is the production of special-purpose knowledge systems, aka expert systems
(eg, in medical diagnosis)

I Identify the task

I Assemble the relevant knowledge

I Decide on a vocabulary of predicates, functions, and constants

I Encode general knowledge about the domain

I Encode a description of the specific problem instance (input data)
decide what is a constant, a predicate, a function
leads to definition of the ontology of the domain (what kind of things
exist)

I Pose queries to the inference procedure and get answers

I Debug the knowledge base
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First-order logic:
– objects and relations are semantic primitives
– syntax: constants, functions, predicates, equality, quantifiers

Increased expressive power: sufficient to define wumpus world

Situation calculus:
– conventions for describing actions and change in FOL
– can formulate planning as inference on a situation calculus KB
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