Lecture 7
Inference in Bayesian Networks

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Slides by Stuart Russell and Peter Norvig

Course Overview

v/ Introduction
v Atrtificial Intelligence
v Intelligent Agents
v/ Search

v/ Uninformed Search
v/ Heuristic Search

@ Uncertain knowledge and
Reasoning
v/ Probability and Bayesian
approach
o Bayesian Networks
e Hidden Markov Chains
o Kalman Filters

Learning

o Supervised
Learning Bayesian Networks,
Neural Networks

o Unsupervised
EM Algorithm

Reinforcement Learning

Games and Adversarial Search
e Minimax search and
Alpha-beta pruning
o Multiagent search
Knowledge representation and
Reasoning
Propositional logic
First order logic
Inference
Plannning

Inference in BN

Bayesian networks, Resume

Encode local conditional independences
Pr(X; | X=;) = Pr(X; | Parents(X;))

Thus the global semantics simplifies to (joint probability factorization):

H Pr(Xi | X1, Xi—1) (chain rule)
i=1

o
—
—
=
X
~
I

= H Pr(X; | Parents(X;)) (by construction)
i=1

Outline Inference in BN

1. Inference in BN

Inference in BN

Inference tasks

Simple queries: compute posterior marginal Pr(X; | E=e)
e.g., P(NoGas | Gauge = empty, Lights = on, Starts = false)

Conjunctive queries:
Pr(X;,X; | E=e) = Pr(X; | E=e)Pr(X; | X;,E=e)

Optimal decisions: decision networks include utility information;
probabilistic inference required for P(outcome | action, evidence)

o Value of information: which evidence to seek next?

@ Sensitivity analysis: which probability values are most critical?

Explanation: why do | need a new starter motor?

Inference in BN

Inference by enumeration

Sum out variables from the joint without actually constructing its explicit
representation

Simple query on the burglary network: @
Pr(B|j,m) =Pr(B,j,m)/P(j,m)

Rewrite full joint entries using product of CPT entries:

PrBLim) =a S, 5, PrBIP(PH(a | B.e)PG |)P(m |)
= aPr(B) -, P(e) X2, Pr(a| B.e)P(j| a)P(m | a)

Recursive depth-first enumeration: O(n) space, O(d") time

Inference in BN

Enumeration algorithm

function Enumeration-Ask(X, e, bn) returns a distribution over X
inputs: X, the query variable
e, observed values for variables E
bn, a Bayesian network with variables {X} U E U Y

Q(X) < a distribution over X, initially empty
for each value x; of X do

Q(x;) + Enumerate-All(bn.Vars,e U {X = x;})
return Normalize(Q(X))

function Enumerate-All(vars, €) returns a real number
if Empty?(vars) then return 1.0
Y < First(vars)
if Y has value yin e
then return P(y | parent(Y)) x Enumerate-All(Rest(vars), e)
elsereturn > P(y | parent(Y')) x Enumerate-All(Rest(vars),e U {Y = y})

Inference in BN

Evaluation tree

P(—albe)

P(alb,e) P(—alb,e)
.95 .06

.05

P(alb,—e)
.94

Enumeration is inefficient: repeated computation
e.g., computes P(j | a)P(m | a) for each value of e

Inference in BN

Inference by variable elimination

Variable elimination: carry out summations right-to-left,
storing intermediate results (factors) to avoid recomputation
Pr(B |j, m)

—aPr(B) Y P(e) Y Pr(a| B.e) P(j| a) P(m | a)

a2 S S
—aPr(B)Y_ P(e)Y , Pr(a| B,e)P(j | a)fu(a)
—aPr(B)Y P(e)Y , Pr(al B,e)fs(a)fu(a)
—aPr(B)Y_ P(e) Y fa(a,b,e)f)(a)fu(a)

— aPr(B) Y P(e)fam(b.e) (sum out A)
= aPr(B)fzz,(b) (sum out E)

Inference in BN

Variable elimination: Basic operations

Summing out a variable from a product of factors:

1. move any constant factors outside the summation:

Z fi x "‘ka:flx"'X'(izxfiﬂx“'ka:

<X i x fy
assumlng fi,...,f; do not depend on X

2. add up submatrices in pointwise product of remaining factors:

Eg: pointwise product of f; and f5:
A, e X Vs V) X (V1o Yk 21,5 20)
= f(Xla"'*Xj)/1~-~--,)/k521s---72/)
E.g., fi(a, b) x f2(b,c) = f(a, b, c)

10

Irrelevant variables

Consider the query P(JohnCalls | Burglary = true)

Inference in BN

P(J| b) = aP(b ZP ZPa\be Jla)) P(m]|

Sum over m is identically 1; M is irrelevant to the
query

Theorem
Y is irrelevant unless Y € Ancestors({X} UE)

m

O]

®
®
|

Here, X = JohnCalls, E={Burglary}, and
Ancestors({ X} UE) = {Alarm, Earthquake}
so MaryCalls is irrelevant

12

Irrelevant variables contd. inference in BN

Defn: moral graph of DAG Bayes net: marry all parents and drop arrows
Defn: A is m-separated from B by C iff separated by C in the moral graph

Theorem

Y is irrelevant if m-separated from X by E J

For P(JohnCalls | Alarm = true), both

Burglary and Earthquake are irrelevant @'@

13

Inference in BN

Complexity of exact inference

Singly connected networks (or polytrees):
— any two nodes are connected by at most one (undirected) path
— time and space cost (with variable elimination) are O(d"n)
— hence time and space cost are linear in n and k bounded by a constant

Multiply connected networks:
— can reduce 3SAT to exact inference — NP-hard
— equivalent to counting 3SAT models = #P-complete

Proof of this in one of the exercises for Thursday.

14

Inference in BN

Inference by stochastic simulation

Basic idea:

o Draw N samples from a sampling distribution S 0-5
o Compute an approximate posterior probability P
@ Show this converges to the true probability P

Outline:
— Sampling from an empty network
— Rejection sampling: reject samples disagreeing with evidence
— Likelihood weighting: use evidence to weight samples
— Markov chain Monte Carlo (MCMC): sample from a stochastic process
whose stationary distribution is the true posterior

Inference in BN

Sampling from an empty network

function Prior-Sample(bn) returns an event sampled from bn
inputs: bn, a belief network specifying joint distribution Pr(Xy, ..., X,)

X <—an event with n elements
fori = 1tondo
x; <—a random sample from Pr(X; | parents(X;))
given the values of Parents(X;) in x
return x

Ancestor sampling

16

Example

C [P(SIC)
T | .10
F| .50

P(C)
50

Inference in BN

C |P(RIC)
T| .80
F| .20

S RIPW|SR)
T 7| .9
T F| .9
FT| .9
FF|l .01

17

Inference in BN

Sampling from an empty network contd:.

Probability that PriorSample generates a particular event
Sps(x1...%n) = P(x1 ... xp)

i.e., the true prior probability

E.g., Sps(t,f,t,t) =0.5x0.9x0.8x0.9=0.324=P(t,f,t,t)

Proof: Let Nps(xi ...x,) be the number of samples generated for event
Xi,...,%X,. Then we have

lim P(xt,....xs) = lim Nps(x,...,x,)/N
N— oo N— oo

— H P(x;|parents(X;)) = P(x1 ... x»)
i=1

~That is, estimates derived from PriorSample are consistent
Shorthand: P(xi,....x,) = P(x1...x,)

18

Inference in BN

Rejection sampling

Pr(X|e) estimated from samples agreeing with e

function Rejection-Sampling(X, e, bn, N) returns an estimate of P(X|e)
local variables: N, a vector of counts over X, initially zero

for j=1to Ndo
x <— Prior-Sample(bn)
if x is consistent with e then
N[x] <~ N[x]+1 where x is the value of X in x
return Normalize(N[X])

E.g., estimate Pr(Rain|Sprinkler = true) using 100 samples
27 samples have Sprinkler = true
Of these, 8 have Rain= true and 19 have Rain= false.

Pr(Rain|Sprinkler = true) = Normalize((8, 19)) = (0.296, 0.704)
Similar to a basic real-world empirical estimation procedure

19

Inference in BN

Analysis of rejection sampling

Rejection sampling returns consistent posterior estimates

Proof:

Pr(X|e) = aNps(X,e) (algorithm defn.)
= Nps(X,e)/Nps(e) (normalized by Nps(e))
~ Pr(X,e)/P(e) (property of PriorSample)
= Pr(Xle) (defn. of conditional probability)

Problem: hopelessly expensive if P(e) is small
P(e) drops off exponentially with number of evidence variables!

20

Inference in BN

Likelihood weighting

Idea: fix evidence variables, sample only nonevidence variables,
and weight each sample by the likelihood it accords the evidence

function Likelihood-Weighting(X, e, bn, N) returns an estimate of P(X|e)
local variables: W, a vector of weighted counts over X, initially zero

for j=1to Ndo

x, w<— Weighted-Sample(bn)

W|x| < W[x] + w where x is the value of X in x
return Normalize(W[X])

function Weighted-Sample(bn, e) returns an event and a weight

X < an event with n elements; w1
fori=1to ndo
if X; has a value x; ine
then w« w x P(X;= x; | parents(X;))
else x; <—a random sample from Pr(X; | parents(Xi))
return x, w

21

Likelihood weighting example

P(Rain|Sprinkler = true, WetGrass = true)

C |P(SIC)
T]| .10
F| .50

()

.50

<

P(WISR)

mTTmHAl®»

mTa4TH|lD

.99
.90
.90
.01

P(RIC)

.80
.20

Inference in BN

22

Inference in BN

Likelihood weighting analysis

Likelihood weighting returns consistent estimates J

Sampling probability for WeightedSample is

I}
Sws(z.e) = [[P(zi|parents(Z;))

i=1
(pays attention to evidence in ancestors only) @ @

~~somewhere “in between" prior and posterior
distribution

Weight for a given sample z, e is
but performance still degrades

m
with many evidence variables
,e) = P(e; ts(E;
w(z,e) H (eilparents(E;)) because a few samples have

=t nearly all the total weight
Weighted sampling probability is

/
Sws(z,e)w(z, e H P(z;|parents(Z H P(ei|parents(E;)) = P(z,e)

23

Inference in BN

Summary

Approximate inference by LW:
— LW does poorly when there is lots of (late-in-the-order) evidence
— LW generally insensitive to topology
— Convergence can be very slow with probabilities close to 1 or 0
— Can handle arbitrary combinations of discrete and continuous variables

24

Inference in BN

Approximate inference using MCMC

“State” of network = current assignment to all variables.
Generate next state by sampling one variable given Markov blanket
Sample each variable in turn, keeping evidence fixed

function MCMC-Ask(X, e, bn, N) returns an estimate of P(X|e)
local variables: N[X], a vector of counts over X, initially zero
Z, nonevidence variables in bn, hidden + query
x, current state of the network, initially copied from e

initialize x with random values for the variables in Z
for j=1to Ndo
N[x] < N[x] + 1 where x is the value of X in x

for each Z; in Z do
sample the value of Z; in x from Pr(Zi|mb(Z;))

given the values of MB(Z;) in x
return Normalize(N[X])

Can also choose a variable to sample at random each time

25

The Markov chain

With Sprinkler = true, WetGrass = true, there are four states:

9
DG

Wander about for a while, average what you see

Probabilistic finite state machine

Inference in BN

26

MCMC example Contd_ Inference in BN

Estimate Pr(Rain|Sprinkler = true, WetGrass = true)

Sample Cloudy or Rain given its Markov blanket, repeat.
Count number of times Rain is true and false in the samples.

E.g., visit 100 states
31 have Rain = true, 69 have Rain = false

~

Pr(Rain|Sprinkler = true, WetGrass = true) = Normalize((31, 69)) = (0.31, 0.69)

Theorem

The Markov Chain approaches a stationary distribution:
long-run fraction of time spent in each state is exactly
proportional to its posterior probability

27

Inference in BN

Markov blanket sampling

Markov blanket of Cloudy is
Sprinkler and Rain @
Markov blanket of Rain is

Cloudy, Sprinkler, and WetGrass @

Main computational problems:
1) Difficult to tell if convergence has been achieved
2) Can be wasteful if Markov blanket is large:
P(X;|mb(X;)) won't change much (law of large numbers)

28

Inference in BN

Local semantics and Markov Blanket

Each node is conditionally
independent of all others given its
Markov blanket: parents + children +
children’s parents

Local semantics: each node is
conditionally independent
of its nondescendants given its parents

29

MCMC analysis: Outline Inference in BN

@ Transition probability g(x — x’)

(4]

Occupancy probability m.(x) at time ¢

(]

Equilibrium condition on 7; defines stationary distribution 7(x)
Note: stationary distribution depends on choice of g(x — x’)

o Pairwise detailed balance on states guarantees equilibrium

(4]

Gibbs sampling transition probability:
sample each variable given current values of all others
= detailed balance with the true posterior

o For Bayesian networks, Gibbs sampling reduces to
sampling conditioned on each variable's Markov blanket

30

Inference in BN

Stationary distribution

@ 7:(x) = probability in state x at time ¢
me1(x") = probability in state x” at time ¢ + 1

@ 7¢y1 in terms of 7; and g(x — x')

mer1(x') = Zxﬁt(x)q(x —x')

o Stationary distribution: 7; = 71,01 =7

m(x') = ZXF(X)C](X —x') forall X’

o If 7 exists, it is unique (specific to g(x — x'))

@ In equilibrium, expected “outflow” = expected “inflow”

Inference in BN

Detailed balance

o “Outflow” = “inflow” for each pair of states:

m(x)g(x = x') = 7(x)g(x" = x) forall x, x’

@ Detailed balance = stationarity:

Y o r¥ax—x) = > w(x)a(x - x)
= 7)Y (X = %)

m(x")

o MCMC algorithms typically constructed by designing a transition
probability g that is in detailed balance with desired 7

32

Inference in BN

Gibbs sampling
o Sample each variable in turn, given all other variables
e Sampling X;, let X; be all other nonevidence variables
o Current values are x; and x;; e is fixed

@ Transition probability is given by

q(x — x') = q(x;, x; — x/,%;) = P(X/|X;,)

o This gives detailed balance with true posterior P(x|e):
m(x)q(x = x) = P(xe)P(x/[%;,e) = P(x;, Xi|e)P(x]|;, e)
= P(x|%;,e)P(x;|le)P(x!|x;,e) (chain rule)

= P(x|%;,e)P(x,x;|e) (chain rule backwards)

= a(x' = x)7(x) = 7(x)q(x" = x)

33

Inference in BN

Summary

Exact inference by variable elimination:
— polytime on polytrees, NP-hard on general graphs
— space = time, very sensitive to topology
Approximate inference by LW, MCMC:

— PriorSampling and RejectionSampling unusable as evidence grow
— LW does poorly when there is lots of (late-in-the-order) evidence
— LW, MCMC generally insensitive to topology
— Convergence can be very slow with probabilities close to 1 or 0
— Can handle arbitrary combinations of discrete and continuous variables

35

	Inference in BN

