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Inference in BNBayesian networks, Resume

Encode local conditional independences
Pr(Xi | X−i ) = Pr(Xi | Parents(Xi ))

Thus the global semantics simplifies to (joint probability factorization):

Pr(X1, . . . ,Xn) =
n∏

i = 1

Pr(Xi | X1, . . . , Xi−1) (chain rule)

=
n∏

i = 1

Pr(Xi | Parents(Xi )) (by construction)
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Inference in BNOutline

1. Inference in BN
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Inference in BNInference tasks

Simple queries: compute posterior marginal Pr(Xi | E = e)
e.g., P(NoGas | Gauge = empty , Lights = on, Starts = false)

Conjunctive queries:
Pr(Xi ,Xj | E = e) = Pr(Xi | E = e)Pr(Xj | Xi ,E = e)

Optimal decisions: decision networks include utility information;
probabilistic inference required for P(outcome | action, evidence)

Value of information: which evidence to seek next?

Sensitivity analysis: which probability values are most critical?

Explanation: why do I need a new starter motor?

5



Inference in BNInference by enumeration

Sum out variables from the joint without actually constructing its explicit
representation

Simple query on the burglary network:

Pr(B | j ,m) = Pr(B, j ,m)/P(j ,m)
= αPr(B, j ,m)
= α

∑
e
∑

a Pr(B, e, a, j ,m)

B E

J

A

M
Rewrite full joint entries using product of CPT entries:

Pr(B | j ,m) = α
∑

e
∑

a Pr(B)P(e)Pr(a | B, e)P(j | a)P(m | a)
= αPr(B)

∑
e P(e)

∑
a Pr(a | B, e)P(j | a)P(m | a)

Recursive depth-first enumeration: O(n) space, O(dn) time
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Inference in BNEnumeration algorithm

function Enumeration-Ask(X, e,bn) returns a distribution over X
inputs: X, the query variable

e, observed values for variables E
bn, a Bayesian network with variables {X} ∪ E ∪ Y

Q(X )← a distribution over X, initially empty
for each value xi of X do

Q(xi )←Enumerate-All(bn.Vars, e ∪ {X = xi})
return Normalize(Q(X ))

function Enumerate-All(vars, e) returns a real number
if Empty?(vars) then return 1.0
Y←First(vars)
if Y has value y in e

then return P(y | parent(Y )) × Enumerate-All(Rest(vars), e)
else return

∑
y P(y | parent(Y )) × Enumerate-All(Rest(vars), e ∪ {Y = y})
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Inference in BNEvaluation tree

P(j|a)
.90

P(m|a)
.70 .01

P(m|    a)

.05
P(j|    a) P(j|a)

.90

P(m|a)
.70 .01

P(m|    a)

.05
P(j|    a)

P(b)
.001

P(e)
.002

P(   e)
.998

P(a|b,e)
.95 .06

P(   a|b,   e)
.05
P(   a|b,e)

.94
P(a|b,   e)

Enumeration is inefficient: repeated computation
e.g., computes P(j | a)P(m | a) for each value of e
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Inference in BNInference by variable elimination

Variable elimination: carry out summations right-to-left,
storing intermediate results (factors) to avoid recomputation
Pr(B | j ,m)

= αPr(B)︸ ︷︷ ︸
B

∑
e
P(e)︸︷︷︸

E

∑
a
Pr(a | B, e)︸ ︷︷ ︸

A

P(j | a)︸ ︷︷ ︸
J

P(m | a)︸ ︷︷ ︸
M

= αPr(B)

∑
e
P(e)

∑
a
Pr(a | B, e)P(j | a)fM(a)

= αPr(B)

∑
e
P(e)

∑
a
Pr(a | B, e)fJ(a)fM(a)

= αPr(B)

∑
e
P(e)

∑
a
fA(a, b, e)fJ(a)fM(a)

= αPr(B)

∑
e
P(e)fĀJM(b, e) (sum out A)

= αPr(B)fĒ ĀJM(b) (sum out E )
= αfB(b)× fĒ ĀJM(b)
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Inference in BNVariable elimination: Basic operations

Summing out a variable from a product of factors:

1. move any constant factors outside the summation:∑
x
f1× · · · × fk = f1× · · · × fi

∑
x

fi+1× · · · × fk =

f1× · · · × fi × fX̄
assuming f1, . . . , fi do not depend on X

2. add up submatrices in pointwise product of remaining factors:

Eg: pointwise product of f1 and f2:
f1(x1, . . . , xj , y1, . . . , yk)× f2(y1, . . . , yk , z1, . . . , zl)

= f (x1, . . . , xj , y1, . . . , yk , z1, . . . , zl)
E.g., f1(a, b)× f2(b, c) = f (a, b, c)
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Inference in BNIrrelevant variables

Consider the query P(JohnCalls | Burglary = true)

P(J | b) = αP(b)
∑

e

P(e)
∑

a

P(a | b, e)P(J | a)
∑
m

P(m | a)

Sum over m is identically 1; M is irrelevant to the
query

B E

J

A

M

Theorem

Y is irrelevant unless Y ∈Ancestors({X}∪E)

Here, X = JohnCalls, E = {Burglary}, and
Ancestors({X}∪E) = {Alarm,Earthquake}
so MaryCalls is irrelevant
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Inference in BNIrrelevant variables contd.

Defn: moral graph of DAG Bayes net: marry all parents and drop arrows
Defn: A is m-separated from B by C iff separated by C in the moral graph

Theorem
Y is irrelevant if m-separated from X by E

For P(JohnCalls | Alarm = true), both
Burglary and Earthquake are irrelevant B E

J

A

M

13



Inference in BNComplexity of exact inference

Singly connected networks (or polytrees):
– any two nodes are connected by at most one (undirected) path
– time and space cost (with variable elimination) are O(dkn)
– hence time and space cost are linear in n and k bounded by a constant

Multiply connected networks:
– can reduce 3SAT to exact inference =⇒ NP-hard
– equivalent to counting 3SAT models =⇒ #P-complete

Proof of this in one of the exercises for Thursday.
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Inference in BNInference by stochastic simulation

Basic idea:

Draw N samples from a sampling distribution S
Compute an approximate posterior probability P̂
Show this converges to the true probability P

Coin

0.5

Outline:
– Sampling from an empty network
– Rejection sampling: reject samples disagreeing with evidence
– Likelihood weighting: use evidence to weight samples
– Markov chain Monte Carlo (MCMC): sample from a stochastic process

whose stationary distribution is the true posterior
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Inference in BNSampling from an empty network

function Prior-Sample(bn) returns an event sampled from bn
inputs: bn, a belief network specifying joint distribution Pr(X1, . . . ,Xn)

x← an event with n elements
for i = 1 to n do

xi← a random sample from Pr(Xi | parents(Xi ))
given the values of Parents(Xi ) in x

return x

Ancestor sampling

16



Inference in BNExample

Cloudy

RainSprinkler

 Wet
Grass

C

T
F
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T
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.10
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S R

T T
T F
F T
F F

.90

.90

.99

P(W|S,R)

P(C)
.50

.01
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Inference in BNSampling from an empty network contd.

Probability that PriorSample generates a particular event

SPS(x1 . . . xn) = P(x1 . . . xn)

i.e., the true prior probability

E.g., SPS(t, f , t, t) = 0.5× 0.9× 0.8× 0.9 = 0.324 = P(t, f , t, t)

Proof: Let NPS(x1 . . . xn) be the number of samples generated for event
x1, . . . , xn. Then we have

lim
N→∞

P̂(x1, . . . , xn) = lim
N→∞

NPS(x1, . . . , xn)/N

= SPS(x1, . . . , xn)

=
n∏

i = 1

P(xi |parents(Xi )) = P(x1 . . . xn)

 That is, estimates derived from PriorSample are consistent
Shorthand: P̂(x1, . . . , xn) ≈ P(x1 . . . xn)
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Inference in BNRejection sampling

P̂r(X |e) estimated from samples agreeing with e

function Rejection-Sampling(X, e,bn,N) returns an estimate of P(X |e)
local variables: N, a vector of counts over X, initially zero

for j = 1 to N do
x←Prior-Sample(bn)
if x is consistent with e then

N[x]←N[x]+1 where x is the value of X in x
return Normalize(N[X])

E.g., estimate Pr(Rain|Sprinkler = true) using 100 samples
27 samples have Sprinkler = true

Of these, 8 have Rain = true and 19 have Rain = false.

P̂r(Rain|Sprinkler = true) = Normalize(〈8, 19〉) = 〈0.296, 0.704〉
Similar to a basic real-world empirical estimation procedure
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Inference in BNAnalysis of rejection sampling

Rejection sampling returns consistent posterior estimates

Proof:
P̂r(X |e) = αNPS(X , e) (algorithm defn.)

= NPS(X , e)/NPS(e) (normalized by NPS(e))
≈ Pr(X , e)/P(e) (property of PriorSample)
= Pr(X |e) (defn. of conditional probability)

Problem: hopelessly expensive if P(e) is small
P(e) drops off exponentially with number of evidence variables!
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Inference in BNLikelihood weighting

Idea: fix evidence variables, sample only nonevidence variables,
and weight each sample by the likelihood it accords the evidence

function Likelihood-Weighting(X, e,bn,N) returns an estimate of P(X |e)
local variables: W, a vector of weighted counts over X, initially zero

for j = 1 to N do
x,w←Weighted-Sample(bn)
W[x ]←W[x ] + w where x is the value of X in x

return Normalize(W[X ])

function Weighted-Sample(bn, e) returns an event and a weight

x← an event with n elements; w← 1
for i = 1 to n do

if Xi has a value xi in e
then w←w × P(Xi = xi | parents(Xi ))
else xi← a random sample from Pr(Xi | parents(Xi ))

return x, w
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Inference in BNLikelihood weighting example

P(Rain|Sprinkler = true,WetGrass = true)

Cloudy

RainSprinkler

 Wet
Grass

C

T
F

.80

.20

P(R|C)C

T
F

.10

.50

P(S|C)

S R

T T
T F
F T
F F

.90

.90

.99

P(W|S,R)

P(C)
.50

.01

w = 1.0 × 0.1 × 0.99 = 0.099
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Inference in BNLikelihood weighting analysis

Likelihood weighting returns consistent estimates

Sampling probability for WeightedSample is

SWS(z, e) =
l∏

i = 1

P(zi |parents(Zi ))

(pays attention to evidence in ancestors only)
 somewhere “in between” prior and posterior
distribution

Weight for a given sample z, e is

w(z, e) =
m∏

i = 1

P(ei |parents(Ei ))

Cloudy

RainSprinkler

 Wet
Grass

but performance still degrades
with many evidence variables
because a few samples have
nearly all the total weight

Weighted sampling probability is

SWS(z, e)w(z, e) =
l∏

i = 1

P(zi |parents(Zi ))
m∏

i = 1

P(ei |parents(Ei )) = P(z, e)
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Inference in BNSummary

Approximate inference by LW:
– LW does poorly when there is lots of (late-in-the-order) evidence
– LW generally insensitive to topology
– Convergence can be very slow with probabilities close to 1 or 0
– Can handle arbitrary combinations of discrete and continuous variables
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Inference in BNApproximate inference using MCMC

“State” of network = current assignment to all variables.
Generate next state by sampling one variable given Markov blanket
Sample each variable in turn, keeping evidence fixed

function MCMC-Ask(X, e,bn,N) returns an estimate of P(X |e)
local variables: N[X ], a vector of counts over X, initially zero

Z, nonevidence variables in bn, hidden + query
x, current state of the network, initially copied from e

initialize x with random values for the variables in Z
for j = 1 to N do

N[x ]←N[x ] + 1 where x is the value of X in x
for each Zi in Z do

sample the value of Zi in x from Pr(Zi |mb(Zi ))
given the values of MB(Zi ) in x

return Normalize(N[X ])

Can also choose a variable to sample at random each time

25



Inference in BNThe Markov chain
With Sprinkler = true,WetGrass = true, there are four states:

Cloudy

RainSprinkler

 Wet
Grass

Cloudy

RainSprinkler

 Wet
Grass

Cloudy

RainSprinkler

 Wet
Grass

Cloudy

RainSprinkler

 Wet
Grass

Wander about for a while, average what you see

Probabilistic finite state machine
26



Inference in BNMCMC example contd.

Estimate Pr(Rain|Sprinkler = true,WetGrass = true)

Sample Cloudy or Rain given its Markov blanket, repeat.
Count number of times Rain is true and false in the samples.

E.g., visit 100 states
31 have Rain = true, 69 have Rain = false

P̂r(Rain|Sprinkler = true,WetGrass = true) = Normalize(〈31, 69〉) = 〈0.31, 0.69〉

Theorem
The Markov Chain approaches a stationary distribution:

long-run fraction of time spent in each state is exactly
proportional to its posterior probability
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Inference in BNMarkov blanket sampling

Markov blanket of Cloudy is
Sprinkler and Rain

Markov blanket of Rain is
Cloudy , Sprinkler , and WetGrass

Cloudy

RainSprinkler

 Wet
Grass

Probability given the Markov blanket is calculated as follows:

P(x ′i |mb(Xi )) = P(x ′i |parents(Xi ))
∏

Zj∈Children(Xi )

P(zj |parents(Zj))

Easily implemented in message-passing parallel systems

Main computational problems:
1) Difficult to tell if convergence has been achieved
2) Can be wasteful if Markov blanket is large:

P(Xi |mb(Xi )) won’t change much (law of large numbers)
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Inference in BNLocal semantics and Markov Blanket

Local semantics: each node is
conditionally independent
of its nondescendants given its parents

Each node is conditionally
independent of all others given its
Markov blanket: parents + children +
children’s parents

. . .

. . .U1

X

Um

Yn

Znj

Y1

Z1j

. . .

. . .U1

X

Um

Yn

Znj

Y1

Z1j
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Inference in BNMCMC analysis: Outline

Transition probability q(x→ x′)

Occupancy probability πt(x) at time t

Equilibrium condition on πt defines stationary distribution π(x)
Note: stationary distribution depends on choice of q(x→ x′)

Pairwise detailed balance on states guarantees equilibrium

Gibbs sampling transition probability:
sample each variable given current values of all others

=⇒ detailed balance with the true posterior

For Bayesian networks, Gibbs sampling reduces to
sampling conditioned on each variable’s Markov blanket
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Inference in BNStationary distribution

πt(x) = probability in state x at time t
πt+1(x′) = probability in state x′ at time t + 1

πt+1 in terms of πt and q(x→ x′)

πt+1(x′) =

∑
xπt(x)q(x→ x′)

Stationary distribution: πt = πt+1 = π

π(x′) =

∑
xπ(x)q(x→ x′) for all x′

If π exists, it is unique (specific to q(x→ x′))

In equilibrium, expected “outflow” = expected “inflow”
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Inference in BNDetailed balance

“Outflow” = “inflow” for each pair of states:

π(x)q(x→ x′) = π(x′)q(x′ → x) for all x, x′

Detailed balance =⇒ stationarity:∑
xπ(x)q(x→ x′) =

∑
xπ(x′)q(x′ → x)

= π(x′)
∑

xq(x′ → x)

= π(x′)

MCMC algorithms typically constructed by designing a transition
probability q that is in detailed balance with desired π
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Inference in BNGibbs sampling

Sample each variable in turn, given all other variables

Sampling Xi , let X̄i be all other nonevidence variables

Current values are xi and x̄i ; e is fixed

Transition probability is given by

q(x→ x′) = q(xi , x̄i → x ′i , x̄i ) = P(x ′i |x̄i , e)

This gives detailed balance with true posterior P(x|e):
π(x)q(x→ x′) = P(x|e)P(x ′i |x̄i , e) = P(xi , x̄i |e)P(x ′i |x̄i , e)

= P(xi |x̄i , e)P(x̄i |e)P(x ′i |x̄i , e) (chain rule)
= P(xi |x̄i , e)P(x ′i , x̄i |e) (chain rule backwards)
= q(x′ → x)π(x′) = π(x′)q(x′ → x)
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Inference in BNSummary

Exact inference by variable elimination:
– polytime on polytrees, NP-hard on general graphs
– space = time, very sensitive to topology

Approximate inference by LW, MCMC:

– PriorSampling and RejectionSampling unusable as evidence grow
– LW does poorly when there is lots of (late-in-the-order) evidence
– LW, MCMC generally insensitive to topology
– Convergence can be very slow with probabilities close to 1 or 0
– Can handle arbitrary combinations of discrete and continuous variables
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