
Lecture 7
Inference in Bayesian Networks

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Slides by Stuart Russell and Peter Norvig

Inference in BNCourse Overview

4 Introduction
4 Artificial Intelligence
4 Intelligent Agents

4 Search
4 Uninformed Search
4 Heuristic Search

Uncertain knowledge and
Reasoning

4 Probability and Bayesian
approach
Bayesian Networks
Hidden Markov Chains
Kalman Filters

Learning
Supervised
Learning Bayesian Networks,
Neural Networks
Unsupervised
EM Algorithm

Reinforcement Learning
Games and Adversarial Search

Minimax search and
Alpha-beta pruning
Multiagent search

Knowledge representation and
Reasoning

Propositional logic
First order logic
Inference
Plannning

2

Inference in BNBayesian networks, Resume

Encode local conditional independences
Pr(Xi | X−i) = Pr(Xi | Parents(Xi))

Thus the global semantics simplifies to (joint probability factorization):

Pr(X1, . . . ,Xn) =
n∏

i = 1

Pr(Xi | X1, . . . , Xi−1) (chain rule)

=
n∏

i = 1

Pr(Xi | Parents(Xi)) (by construction)

3

Inference in BNOutline

1. Inference in BN

4

Inference in BNInference tasks

Simple queries: compute posterior marginal Pr(Xi | E = e)
e.g., P(NoGas | Gauge = empty , Lights = on, Starts = false)

Conjunctive queries:
Pr(Xi ,Xj | E = e) = Pr(Xi | E = e)Pr(Xj | Xi ,E = e)

Optimal decisions: decision networks include utility information;
probabilistic inference required for P(outcome | action, evidence)

Value of information: which evidence to seek next?

Sensitivity analysis: which probability values are most critical?

Explanation: why do I need a new starter motor?

5

Inference in BNInference by enumeration

Sum out variables from the joint without actually constructing its explicit
representation

Simple query on the burglary network:

Pr(B | j ,m) = Pr(B, j ,m)/P(j ,m)
= αPr(B, j ,m)
= α

∑
e
∑

a Pr(B, e, a, j ,m)

B E

J

A

M
Rewrite full joint entries using product of CPT entries:

Pr(B | j ,m) = α
∑

e
∑

a Pr(B)P(e)Pr(a | B, e)P(j | a)P(m | a)
= αPr(B)

∑
e P(e)

∑
a Pr(a | B, e)P(j | a)P(m | a)

Recursive depth-first enumeration: O(n) space, O(dn) time

6

Inference in BNEnumeration algorithm

function Enumeration-Ask(X, e,bn) returns a distribution over X
inputs: X, the query variable

e, observed values for variables E
bn, a Bayesian network with variables {X} ∪ E ∪ Y

Q(X)← a distribution over X, initially empty
for each value xi of X do

Q(xi)←Enumerate-All(bn.Vars, e ∪ {X = xi})
return Normalize(Q(X))

function Enumerate-All(vars, e) returns a real number
if Empty?(vars) then return 1.0
Y←First(vars)
if Y has value y in e

then return P(y | parent(Y)) × Enumerate-All(Rest(vars), e)
else return

∑
y P(y | parent(Y)) × Enumerate-All(Rest(vars), e ∪ {Y = y})

7

Inference in BNEvaluation tree

P(j|a)
.90

P(m|a)
.70 .01

P(m| a)

.05
P(j| a) P(j|a)

.90

P(m|a)
.70 .01

P(m| a)

.05
P(j| a)

P(b)
.001

P(e)
.002

P(e)
.998

P(a|b,e)
.95 .06

P(a|b, e)
.05
P(a|b,e)

.94
P(a|b, e)

Enumeration is inefficient: repeated computation
e.g., computes P(j | a)P(m | a) for each value of e

8

Inference in BNInference by variable elimination

Variable elimination: carry out summations right-to-left,
storing intermediate results (factors) to avoid recomputation
Pr(B | j ,m)

= αPr(B)︸ ︷︷ ︸
B

∑
e
P(e)︸︷︷︸

E

∑
a
Pr(a | B, e)︸ ︷︷ ︸

A

P(j | a)︸ ︷︷ ︸
J

P(m | a)︸ ︷︷ ︸
M

= αPr(B)

∑
e
P(e)

∑
a
Pr(a | B, e)P(j | a)fM(a)

= αPr(B)

∑
e
P(e)

∑
a
Pr(a | B, e)fJ(a)fM(a)

= αPr(B)

∑
e
P(e)

∑
a
fA(a, b, e)fJ(a)fM(a)

= αPr(B)

∑
e
P(e)fĀJM(b, e) (sum out A)

= αPr(B)fĒ ĀJM(b) (sum out E)
= αfB(b)× fĒ ĀJM(b)

9

Inference in BNVariable elimination: Basic operations

Summing out a variable from a product of factors:

1. move any constant factors outside the summation:∑
x
f1× · · · × fk = f1× · · · × fi

∑
x

fi+1× · · · × fk =

f1× · · · × fi × fX̄
assuming f1, . . . , fi do not depend on X

2. add up submatrices in pointwise product of remaining factors:

Eg: pointwise product of f1 and f2:
f1(x1, . . . , xj , y1, . . . , yk)× f2(y1, . . . , yk , z1, . . . , zl)

= f (x1, . . . , xj , y1, . . . , yk , z1, . . . , zl)
E.g., f1(a, b)× f2(b, c) = f (a, b, c)

10

Inference in BNIrrelevant variables

Consider the query P(JohnCalls | Burglary = true)

P(J | b) = αP(b)
∑

e

P(e)
∑

a

P(a | b, e)P(J | a)
∑
m

P(m | a)

Sum over m is identically 1; M is irrelevant to the
query

B E

J

A

M

Theorem

Y is irrelevant unless Y ∈Ancestors({X}∪E)

Here, X = JohnCalls, E = {Burglary}, and
Ancestors({X}∪E) = {Alarm,Earthquake}
so MaryCalls is irrelevant

12

Inference in BNIrrelevant variables contd.

Defn: moral graph of DAG Bayes net: marry all parents and drop arrows
Defn: A is m-separated from B by C iff separated by C in the moral graph

Theorem
Y is irrelevant if m-separated from X by E

For P(JohnCalls | Alarm = true), both
Burglary and Earthquake are irrelevant B E

J

A

M

13

Inference in BNComplexity of exact inference

Singly connected networks (or polytrees):
– any two nodes are connected by at most one (undirected) path
– time and space cost (with variable elimination) are O(dkn)
– hence time and space cost are linear in n and k bounded by a constant

Multiply connected networks:
– can reduce 3SAT to exact inference =⇒ NP-hard
– equivalent to counting 3SAT models =⇒ #P-complete

Proof of this in one of the exercises for Thursday.

14

Inference in BNInference by stochastic simulation

Basic idea:

Draw N samples from a sampling distribution S
Compute an approximate posterior probability P̂
Show this converges to the true probability P

Coin

0.5

Outline:
– Sampling from an empty network
– Rejection sampling: reject samples disagreeing with evidence
– Likelihood weighting: use evidence to weight samples
– Markov chain Monte Carlo (MCMC): sample from a stochastic process

whose stationary distribution is the true posterior

15

Inference in BNSampling from an empty network

function Prior-Sample(bn) returns an event sampled from bn
inputs: bn, a belief network specifying joint distribution Pr(X1, . . . ,Xn)

x← an event with n elements
for i = 1 to n do

xi← a random sample from Pr(Xi | parents(Xi))
given the values of Parents(Xi) in x

return x

Ancestor sampling

16

Inference in BNExample

Cloudy

RainSprinkler

 Wet
Grass

C

T
F

.80

.20

P(R|C)C

T
F

.10

.50

P(S|C)

S R

T T
T F
F T
F F

.90

.90

.99

P(W|S,R)

P(C)
.50

.01

17

Inference in BNSampling from an empty network contd.

Probability that PriorSample generates a particular event

SPS(x1 . . . xn) = P(x1 . . . xn)

i.e., the true prior probability

E.g., SPS(t, f , t, t) = 0.5× 0.9× 0.8× 0.9 = 0.324 = P(t, f , t, t)

Proof: Let NPS(x1 . . . xn) be the number of samples generated for event
x1, . . . , xn. Then we have

lim
N→∞

P̂(x1, . . . , xn) = lim
N→∞

NPS(x1, . . . , xn)/N

= SPS(x1, . . . , xn)

=
n∏

i = 1

P(xi |parents(Xi)) = P(x1 . . . xn)

 That is, estimates derived from PriorSample are consistent
Shorthand: P̂(x1, . . . , xn) ≈ P(x1 . . . xn)

18

Inference in BNRejection sampling

P̂r(X |e) estimated from samples agreeing with e

function Rejection-Sampling(X, e,bn,N) returns an estimate of P(X |e)
local variables: N, a vector of counts over X, initially zero

for j = 1 to N do
x←Prior-Sample(bn)
if x is consistent with e then

N[x]←N[x]+1 where x is the value of X in x
return Normalize(N[X])

E.g., estimate Pr(Rain|Sprinkler = true) using 100 samples
27 samples have Sprinkler = true

Of these, 8 have Rain = true and 19 have Rain = false.

P̂r(Rain|Sprinkler = true) = Normalize(〈8, 19〉) = 〈0.296, 0.704〉
Similar to a basic real-world empirical estimation procedure

19

Inference in BNAnalysis of rejection sampling

Rejection sampling returns consistent posterior estimates

Proof:
P̂r(X |e) = αNPS(X , e) (algorithm defn.)

= NPS(X , e)/NPS(e) (normalized by NPS(e))
≈ Pr(X , e)/P(e) (property of PriorSample)
= Pr(X |e) (defn. of conditional probability)

Problem: hopelessly expensive if P(e) is small
P(e) drops off exponentially with number of evidence variables!

20

Inference in BNLikelihood weighting

Idea: fix evidence variables, sample only nonevidence variables,
and weight each sample by the likelihood it accords the evidence

function Likelihood-Weighting(X, e,bn,N) returns an estimate of P(X |e)
local variables: W, a vector of weighted counts over X, initially zero

for j = 1 to N do
x,w←Weighted-Sample(bn)
W[x]←W[x] + w where x is the value of X in x

return Normalize(W[X])

function Weighted-Sample(bn, e) returns an event and a weight

x← an event with n elements; w← 1
for i = 1 to n do

if Xi has a value xi in e
then w←w × P(Xi = xi | parents(Xi))
else xi← a random sample from Pr(Xi | parents(Xi))

return x, w

21

Inference in BNLikelihood weighting example

P(Rain|Sprinkler = true,WetGrass = true)

Cloudy

RainSprinkler

 Wet
Grass

C

T
F

.80

.20

P(R|C)C

T
F

.10

.50

P(S|C)

S R

T T
T F
F T
F F

.90

.90

.99

P(W|S,R)

P(C)
.50

.01

w = 1.0 × 0.1 × 0.99 = 0.099

22

Inference in BNLikelihood weighting analysis

Likelihood weighting returns consistent estimates

Sampling probability for WeightedSample is

SWS(z, e) =
l∏

i = 1

P(zi |parents(Zi))

(pays attention to evidence in ancestors only)
 somewhere “in between” prior and posterior
distribution

Weight for a given sample z, e is

w(z, e) =
m∏

i = 1

P(ei |parents(Ei))

Cloudy

RainSprinkler

 Wet
Grass

but performance still degrades
with many evidence variables
because a few samples have
nearly all the total weight

Weighted sampling probability is

SWS(z, e)w(z, e) =
l∏

i = 1

P(zi |parents(Zi))
m∏

i = 1

P(ei |parents(Ei)) = P(z, e)
23

Inference in BNSummary

Approximate inference by LW:
– LW does poorly when there is lots of (late-in-the-order) evidence
– LW generally insensitive to topology
– Convergence can be very slow with probabilities close to 1 or 0
– Can handle arbitrary combinations of discrete and continuous variables

24

Inference in BNApproximate inference using MCMC

“State” of network = current assignment to all variables.
Generate next state by sampling one variable given Markov blanket
Sample each variable in turn, keeping evidence fixed

function MCMC-Ask(X, e,bn,N) returns an estimate of P(X |e)
local variables: N[X], a vector of counts over X, initially zero

Z, nonevidence variables in bn, hidden + query
x, current state of the network, initially copied from e

initialize x with random values for the variables in Z
for j = 1 to N do

N[x]←N[x] + 1 where x is the value of X in x
for each Zi in Z do

sample the value of Zi in x from Pr(Zi |mb(Zi))
given the values of MB(Zi) in x

return Normalize(N[X])

Can also choose a variable to sample at random each time

25

Inference in BNThe Markov chain
With Sprinkler = true,WetGrass = true, there are four states:

Cloudy

RainSprinkler

 Wet
Grass

Cloudy

RainSprinkler

 Wet
Grass

Cloudy

RainSprinkler

 Wet
Grass

Cloudy

RainSprinkler

 Wet
Grass

Wander about for a while, average what you see

Probabilistic finite state machine
26

Inference in BNMCMC example contd.

Estimate Pr(Rain|Sprinkler = true,WetGrass = true)

Sample Cloudy or Rain given its Markov blanket, repeat.
Count number of times Rain is true and false in the samples.

E.g., visit 100 states
31 have Rain = true, 69 have Rain = false

P̂r(Rain|Sprinkler = true,WetGrass = true) = Normalize(〈31, 69〉) = 〈0.31, 0.69〉

Theorem
The Markov Chain approaches a stationary distribution:

long-run fraction of time spent in each state is exactly
proportional to its posterior probability

27

Inference in BNMarkov blanket sampling

Markov blanket of Cloudy is
Sprinkler and Rain

Markov blanket of Rain is
Cloudy , Sprinkler , and WetGrass

Cloudy

RainSprinkler

 Wet
Grass

Probability given the Markov blanket is calculated as follows:

P(x ′i |mb(Xi)) = P(x ′i |parents(Xi))
∏

Zj∈Children(Xi)

P(zj |parents(Zj))

Easily implemented in message-passing parallel systems

Main computational problems:
1) Difficult to tell if convergence has been achieved
2) Can be wasteful if Markov blanket is large:

P(Xi |mb(Xi)) won’t change much (law of large numbers)

28

Inference in BNLocal semantics and Markov Blanket

Local semantics: each node is
conditionally independent
of its nondescendants given its parents

Each node is conditionally
independent of all others given its
Markov blanket: parents + children +
children’s parents

. . .

. . .U1

X

Um

Yn

Znj

Y1

Z1j

. . .

. . .U1

X

Um

Yn

Znj

Y1

Z1j

29

Inference in BNMCMC analysis: Outline

Transition probability q(x→ x′)

Occupancy probability πt(x) at time t

Equilibrium condition on πt defines stationary distribution π(x)
Note: stationary distribution depends on choice of q(x→ x′)

Pairwise detailed balance on states guarantees equilibrium

Gibbs sampling transition probability:
sample each variable given current values of all others

=⇒ detailed balance with the true posterior

For Bayesian networks, Gibbs sampling reduces to
sampling conditioned on each variable’s Markov blanket

30

Inference in BNStationary distribution

πt(x) = probability in state x at time t
πt+1(x′) = probability in state x′ at time t + 1

πt+1 in terms of πt and q(x→ x′)

πt+1(x′) =

∑
xπt(x)q(x→ x′)

Stationary distribution: πt = πt+1 = π

π(x′) =

∑
xπ(x)q(x→ x′) for all x′

If π exists, it is unique (specific to q(x→ x′))

In equilibrium, expected “outflow” = expected “inflow”
31

Inference in BNDetailed balance

“Outflow” = “inflow” for each pair of states:

π(x)q(x→ x′) = π(x′)q(x′ → x) for all x, x′

Detailed balance =⇒ stationarity:∑
xπ(x)q(x→ x′) =

∑
xπ(x′)q(x′ → x)

= π(x′)
∑

xq(x′ → x)

= π(x′)

MCMC algorithms typically constructed by designing a transition
probability q that is in detailed balance with desired π

32

Inference in BNGibbs sampling

Sample each variable in turn, given all other variables

Sampling Xi , let X̄i be all other nonevidence variables

Current values are xi and x̄i ; e is fixed

Transition probability is given by

q(x→ x′) = q(xi , x̄i → x ′i , x̄i) = P(x ′i |x̄i , e)

This gives detailed balance with true posterior P(x|e):
π(x)q(x→ x′) = P(x|e)P(x ′i |x̄i , e) = P(xi , x̄i |e)P(x ′i |x̄i , e)

= P(xi |x̄i , e)P(x̄i |e)P(x ′i |x̄i , e) (chain rule)
= P(xi |x̄i , e)P(x ′i , x̄i |e) (chain rule backwards)
= q(x′ → x)π(x′) = π(x′)q(x′ → x)

33

Inference in BNSummary

Exact inference by variable elimination:
– polytime on polytrees, NP-hard on general graphs
– space = time, very sensitive to topology

Approximate inference by LW, MCMC:

– PriorSampling and RejectionSampling unusable as evidence grow
– LW does poorly when there is lots of (late-in-the-order) evidence
– LW, MCMC generally insensitive to topology
– Convergence can be very slow with probabilities close to 1 or 0
– Can handle arbitrary combinations of discrete and continuous variables

35

	Inference in BN

