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Uncertainty over TimeOutline

1. Uncertainty over Time
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Uncertainty over TimeOutline

♦ Time and uncertainty
♦ Inference: filtering, prediction, smoothing
♦ Hidden Markov models
♦ Kalman filters (a brief mention)
♦ Dynamic Bayesian networks (an even briefer mention)
♦ Particle filtering
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Uncertainty over TimeTime and uncertainty

The world changes; we need to track and predict it

Diabetes management vs vehicle diagnosis

Basic idea: copy state and evidence variables for each time step
Xt = set of unobservable state variables at time t

e.g., BloodSugart , StomachContentst , etc.
Et = set of observable evidence variables at time t

e.g., MeasuredBloodSugart , PulseRatet , FoodEatent

This assumes discrete time; step size depends on problem

Notation: Xa:b = Xa,Xa+1, . . . ,Xb−1,Xb
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Uncertainty over TimeMarkov processes (Markov chains)
Construct a Bayes net from these variables:
- unbounded number of conditional probability table
- unbounded number of parents

Markov assumption: Xt depends on bounded subset of X0:t−1
First-order Markov process: Pr(Xt |X0:t−1) = Pr(Xt |Xt−1)
Second-order Markov process: Pr(Xt |X0:t−1) = Pr(Xt |Xt−2,Xt−1)

X t −1 X tX t −2 X t +1 X t +2

X t −1 X tX t −2 X t +1 X t +2First−order

Second−order

Sensor Markov assumption: Pr(Et |X0:t ,E0:t−1) = Pr(Et |Xt)
 Stationary process:

transition model Pr(Xt |Xt−1) and
sensor model Pr(Et |Xt) fixed for all t
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Uncertainty over TimeExample

tRain

tUmbrella

Raint −1

Umbrella t −1

Raint +1

Umbrella t +1

Rt −1 tP(R  )

0.3f
0.7t

tR tP(U  )

0.9t
0.2f

First-order Markov assumption not exactly true in real world!
Possible fixes:

1. Increase order of Markov process
2. Augment state, e.g., add Tempt , Pressuret

Example: robot motion.
Augment position and velocity with Batteryt
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Uncertainty over TimeInference tasks

1. Filtering: Pr(Xt |e1:t)
belief state—input to the decision process of a rational agent

2. Prediction: Pr(Xt+k |e1:t) for k > 0
evaluation of possible action sequences;
like filtering without the evidence

3. Smoothing: Pr(Xk |e1:t) for 0 ≤ k < t
better estimate of past states, essential for learning

4. Most likely explanation: argmaxx1:t P(x1:t |e1:t)
speech recognition, decoding with a noisy channel
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Uncertainty over TimeFiltering

Aim: devise a recursive state estimation algorithm:

Pr(Xt+1|e1:t+1) = f (et+1,Pr(Xt |e1:t))

Pr(Xt+1|e1:t+1) = Pr(Xt+1|e1:t , et+1)

= αPr(et+1|Xt+1, e1:t)Pr(Xt+1|e1:t)

= αPr(et+1|Xt+1)Pr(Xt+1|e1:t)

I.e., prediction + estimation. Prediction by summing out Xt :

Pr(Xt+1|e1:t+1) = αPr(et+1|Xt+1)
∑
xt

Pr(Xt+1|xt , e1:t)P(xt |e1:t)

= αPr(et+1|Xt+1)
∑
xt

Pr(Xt+1|xt)P(xt |e1:t)

f1:t+1 = Forward(f1:t , et+1) where f1:t = Pr(Xt |e1:t)
Time and space constant (independent of t) by keeping track of f
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Uncertainty over TimeFiltering example

tRain

tUmbrella

Raint −1

Umbrella t −1

Raint +1

Umbrella t +1

Rt −1 tP(R  )

0.3f
0.7t

tR tP(U  )

0.9t
0.2f

Rain1

Umbrella1

Rain2

Umbrella2

Rain0

0.818
0.182

0.627
0.373

0.883
0.117

True
False

0.500
0.500

0.500
0.500
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Uncertainty over TimePrediction

Pr(Xt+k+1|e1:t) =
∑

xt+k
Pr(Xt+k+1|xt+k)P(xt+k |e1:t)

As k →∞, P(xt+k |e1:t) tends to the stationary distribution of the Markov
chain
Mixing time depends on how stochastic the chain is
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Uncertainty over TimeSmoothing
X 0 X 1

1E tE

tXX k

Ek

Divide evidence e1:t into e1:k , ek+1:t :

Pr(Xk |e1:t) = Pr(Xk |e1:k , ek+1:t)

= αPr(Xk |e1:k)Pr(ek+1:t |Xk , e1:k)

= αPr(Xk |e1:k)Pr(ek+1:t |Xk)

= αf1:kbk+1:t

Backward message computed by a backwards recursion:

Pr(ek+1:t |Xk) =
∑
xk+1

Pr(ek+1:t |Xk , xk+1)Pr(xk+1|Xk)

=
∑
xk+1

P(ek+1:t |xk+1)Pr(xk+1|Xk)

=
∑
xk+1

P(ek+1|xk+1)P(ek+2:t |xk+1)Pr(xk+1|Xk)
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Uncertainty over TimeSmoothing example

Rain1

Umbrella1

Rain2

Umbrella2

Rain0

True
False

0.818
0.182

0.627
0.373

0.883
0.117

0.500
0.500

0.500
0.500

1.000
1.000

0.690
0.410

0.883
0.117

forward

backward

smoothed
0.883
0.117

If we want to smooth the whole sequence:
Forward–backward algorithm: cache forward messages along the way
Time linear in t (polytree inference), space O(t|f|)
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Uncertainty over TimeMost likely explanation

Most likely sequence 6= sequence of most likely states (joint distr.)!
Most likely path to each xt+1

= most likely path to some xt plus one more step

max
x1...xt

Pr(x1, . . . , xt ,Xt+1|e1:t+1)

= Pr(et+1|Xt+1)max
xt

(
Pr(Xt+1|xt) max

x1...xt−1
P(x1, . . . , xt−1, xt |e1:t)

)
Identical to filtering, except f1:t replaced by

m1:t = max
x1...xt−1

Pr(x1, . . . , xt−1,Xt |e1:t),

I.e., m1:t(i) gives the probability of the most likely path to state i .

Update has sum replaced by max, giving the Viterbi algorithm:

m1:t+1 = Pr(et+1|Xt+1)max
xt

(Pr(Xt+1|xt)m1:t)
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Uncertainty over TimeViterbi example

Rain1 Rain2 Rain3 Rain4 Rain5

true

false

true

false

true

false

true

false

true

false

.8182 .5155 .0361 .0334 .0210

.1818 .0491 .1237 .0173 .0024

m 1:1 m 1:5m 1:4m 1:3m 1:2

state
space
paths

most
likely
paths

umbrella true truetruefalsetrue
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Uncertainty over TimeHidden Markov models

Xt is a single, discrete variable (usually Et is too)
Domain of Xt is {1, . . . ,S} – can be a macro variable representing several
state vars.

HMMs allow for an elegant matrix representation

Transition matrix Tij = P(Xt = j |Xt−1 = i), e.g.,
(

0.7 0.3
0.3 0.7

)
Sensor matrix Ot (for convenience) for each time step, diagonal elements
P(et |Xt = i)

e.g., for U1 = true, O1 =

(
0.9 0
0 0.2

)
Forward and backward messages as column vectors:

f1:t+1 = αOt+1T>f1:t
bk+1:t = TOk+1bk+2:t

Forward-backward algorithm needs time O(S2t) and space O(St)
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Uncertainty over TimeReal HMM examples

Speech recognition HMMs:
Observations are acoustic signals (continuous valued) States are specific
positions in specific words (so, tens of thousands)

Machine translation HMMs:
Observations are words (tens of thousands) States are translation options

Robot tracking:
Observations are features of environment (discrete) or range readings
(continuous) States are cells (discrete) or positions on a map
(continuous)
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Uncertainty over TimeLocalization

(a) Possible locations of robot after E1 = NSW

(b) Possible locations of robot After E1 = NSW,E2 = NS
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Uncertainty over TimeLocalization

(a) Posterior distribution over robot location after E1 = NSW

(b) Posterior distribution over robot location after E1 = NSW,E2 = NS

Pr(X0 = i) = 1/n

Pr(Xt+1 = j | Xt = i) = Tij =

{
1/N(i) if i is adjacent to j
0 otherwise

Pr(Et = et | Xt = i) = Oti = (1− ε)4−dit εdit
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Uncertainty over TimeKalman filters

Modelling systems described by a set of continuous variables,
e.g., tracking a bird flying—Xt =X ,Y ,Z , Ẋ , Ẏ , Ż .
Airplanes, robots, ecosystems, economies, chemical plants, planets, . . .

tZ t+1Z

tX t+1X

tX t+1X

Gaussian prior, linear Gaussian transition model and sensor model
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Uncertainty over TimeUpdating Gaussian distributions

Prediction step: if Pr(Xt |e1:t) is Gaussian, then prediction

Pr(Xt+1|e1:t) =

∫
xt

Pr(Xt+1|xt)P(xt |e1:t) dxt

is Gaussian. If Pr(Xt+1|e1:t) is Gaussian, then the updated distribution

Pr(Xt+1|e1:t+1) = αPr(et+1|Xt+1)Pr(Xt+1|e1:t)

is Gaussian

Hence Pr(Xt |e1:t) is multivariate Gaussian N(µt ,Σt) for all t

General (nonlinear, non-Gaussian) process: description of posterior grows
unboundedly as t →∞
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Uncertainty over TimeGeneral Kalman update

Transition and sensor models:

P(xt+1|xt) = N(Fxt ,Σx)(xt+1)
P(zt |xt) = N(Hxt ,Σz)(zt)

F is the matrix for the transition; Σx the transition noise covariance
H is the matrix for the sensors; Σz the sensor noise covariance
Filter computes the following update:

µt+1 = Fµt + Kt+1(zt+1 −HFµt)

Σt+1 = (I−Kt+1)(FΣtF> +Σx)

where Kt+1 =(FΣtF> +Σx)H>(H(FΣtF> +Σx)H> +Σz)
−1

is the Kalman gain matrix
Σt and Kt are independent of observation sequence, so compute offline
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Uncertainty over Time2-D tracking example: filtering

8 10 12 14 16 18 20 22 24 26
6

7

8

9

10

11

12

X

Y

2D filtering

true
observed
filtered
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Uncertainty over Time2-D tracking example: smoothing

8 10 12 14 16 18 20 22 24 26
6

7

8

9

10

11

12

X

Y

2D smoothing

true
observed
smoothed
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Uncertainty over TimeWhere it breaks

Cannot be applied if the transition model is nonlinear
Extended Kalman Filter models transition as locally linear around xt =µt
Fails if systems is locally unsmooth
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Uncertainty over TimeDynamic Bayesian networks

Xt , Et contain arbitrarily many variables in a replicated Bayes net

0.3f
0.7t

0.9t
0.2f

Rain0 Rain1

Umbrella1

P(U  )1R1

P(R  )1R0

0.7

P(R  )0

Z1

X1

X1tXX 0

X 0

1BatteryBattery 0

1BMeter
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Uncertainty over TimeDBNs vs. HMMs

Every HMM is a single-variable DBN; every discrete DBN is an HMM

X t Xt+1

tY t+1Y

tZ t+1Z

Sparse dependencies ⇒ exponentially fewer parameters;
e.g., 20 state variables, three parents each
DBN has 20× 23 = 160 parameters, HMM has 220× 220 ≈ 1012
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Uncertainty over TimeDBNs vs Kalman filters

Every Kalman filter model is a DBN, but few DBNs are KFs;
real world requires non-Gaussian posteriors
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Uncertainty over TimeExact inference in DBNs

Naive method: unroll the network and run any exact algorithm

0.3f
0.7t

0.9t
0.2f

Rain1

Umbrella1

P(U  )1R1

P(R  )1R0

Rain0

0.7

P(R  )0

0.3f
0.7t

0.9t
0.2f

Rain1

Umbrella1

P(U  )1R1

P(R  )1R0

0.3f
0.7t

0.9t
0.2f

P(U  )1R1

P(R  )1R0

0.3f
0.7t

0.9t
0.2f

P(U  )1R1

P(R  )1R0

0.3f
0.7t

0.9t
0.2f

P(U  )1R1

P(R  )1R0

0.3f
0.7t

0.9t
0.2f

P(U  )1R1

P(R  )1R0

0.9t
0.2f

P(U  )1R1

0.3f
0.7t

P(R  )1R0

0.9t
0.2f

P(U  )1R1

0.3f
0.7t

P(R  )1R0

Rain0

0.7

P(R  )0

Umbrella2

Rain3

Umbrella3

Rain4

Umbrella4

Rain5

Umbrella5

Rain6

Umbrella6

Rain7

Umbrella7

Rain2

Problem: inference cost for each update grows with t
Rollup filtering: add slice t + 1, “sum out” slice t using variable elimination
Largest factor is O(dn+1), update cost O(dn+2)
(cf. HMM update cost O(d2n))
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Uncertainty over TimeLikelihood weighting for DBNs

Set of weighted samples approximates the belief state

Rain1

Umbrella1

Rain0

Umbrella2

Rain3

Umbrella3

Rain4

Umbrella4

Rain5

Umbrella5

Rain2

LW samples pay no attention to the evidence!
⇒ fraction “agreeing” falls exponentially with t
⇒ number of samples required grows exponentially with t

30



Uncertainty over TimeParticle filtering
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Uncertainty over TimeParticle filtering
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Uncertainty over TimeParticle filtering
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Uncertainty over TimeParticle filtering
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Uncertainty over TimeParticle filtering
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Uncertainty over TimeParticle filtering

Basic idea: ensure that the population of samples (“particles”)
tracks the high-likelihood regions of the state-space
Replicate particles proportional to likelihood for et

true

false

(a) Propagate (b) Weight (c) Resample

Rain t Rain t +1Rain t +1Rain t +1

Widely used for tracking nonlinear systems, esp. in vision
Also used for simultaneous localization and mapping in mobile robots

105-dimensional state space
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Uncertainty over TimeSummary

Temporal models use state and sensor variables replicated over time

Markov assumptions and stationarity assumption, so we need
– transition model Pr(Xt |Xt−1)
– sensor model Pr(Et |Xt)

Tasks are filtering, prediction, smoothing, most likely sequence;
all done recursively with constant cost per time step

Hidden Markov models have a single discrete state variable; used
for speech recognition

Kalman filters allow n state variables, linear Gaussian, O(n3) update

Dynamic Bayes nets subsume HMMs, Kalman filters; exact update
intractable
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