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Course Overview

v/ Introduction
v Atrtificial Intelligence
v Intelligent Agents
v/ Search

v/ Uninformed Search
v/ Heuristic Search

@ Uncertain knowledge and
Reasoning
v/ Probability and Bayesian
approach
v/ Bayesian Networks
e Hidden Markov Chains
o Kalman Filters

Learning

o Supervised
Learning Bayesian Networks,
Neural Networks

o Unsupervised
EM Algorithm

Reinforcement Learning

Games and Adversarial Search
e Minimax search and
Alpha-beta pruning
o Multiagent search
Knowledge representation and
Reasoning
Propositional logic
First order logic
Inference
Plannning



O utl i n e Uncertainty over Time

1. Uncertainty over Time



I . Uncertainty over Time
Outline

Time and uncertainty

Inference: filtering, prediction, smoothing

Hidden Markov models

Kalman filters (a brief mention)

Dynamic Bayesian networks (an even briefer mention)
Particle filtering

SO



Uncertainty over Time

Time and uncertainty

@ The world changes; we need to track and predict it
o Diabetes management vs vehicle diagnosis

@ Basic idea: copy state and evidence variables for each time step
X, = set of unobservable state variables at time t
e.g., BloodSugar;, StomachContents;, etc.
E; = set of observable evidence variables at time ¢
e.g., MeasuredBloodSugar;, PulseRate;, FoodEaten;

@ This assumes discrete time; step size depends on problem

@ Notation: Xa:b = Xa«, Xa+1, - ,bel, Xb



Uncertainty over Time

Markov processes (Markov chains)

Construct a Bayes net from these variables:
- unbounded number of conditional probability table
- unbounded number of parents

Markov assumption: X; depends on bounded subset of Xg.; 1
First-order Markov process: Pr(X;|Xo.;—1) = Pr(X:|X:_1)
Second-order Markov process: Pr(X;:|[Xo.:—1) = Pr(X:| X2, X;-1)

First-order X t-1 @ @ @

. o
Second-order @ X t-1 t X t+1 X t+2

Sensor Markov assumption: Pr(E;|Xo.;, Eg.;—1) = Pr(E:|X;)
~Stationary process:

o transition model Pr(X;|X;_1) and
o sensor model Pr(E;|X;) fixed for all ¢



Uncertainty over Time
Example -
Ri_1| P(Ry)
t 0.7
- f 0.3 - -
Ralnt -1 Ra]nt Ra]nt +1

Ry | P(Uy)
t 0.9

\ f 0.2 y

@ Umbrellay Umbrellag .,

First-order Markov assumption not exactly true in real world!
Possible fixes:

1. Increase order of Markov process

2. Augment state, e.g., add Temp;, Pressure;
Example: robot motion.

Augment position and velocity with Battery;



Uncertainty over Time

Inference tasks

[y

. Filtering: Pr(X|e1.;)
belief state—input to the decision process of a rational agent

N

. Prediction: Pr(X;,|ei.+) for k >0
evaluation of possible action sequences;
like filtering without the evidence

w

. Smoothing: Pr(X|ei) for 0 < k <t
better estimate of past states, essential for learning

N

. Most likely explanation: arg maxy,, P(xi.¢/e1.+)
speech recognition, decoding with a noisy channel



Uncertainty over Time

Filtering
Aim: devise a recursive state estimation algorithm:

Pr(xt+1|elzt+1) = f(et+17 Pr(xt|e1:t))

Pr(xt+1|elzt+1) = Pr(XtJrl‘el:ta et+1)
= « P"(et+1|xt+1, el:t) Pr(XtJrl‘el:t)
= [0 Pr(et+1|xt+1) Pr(xt+1‘81:t)

l.e., prediction + estimation. Prediction by summing out X;:

Pr(xt+1|elzt+1) =« Pr(et+1|xt+1) Z Pr(xt+1‘xta el:t)'D(xt|e1:t)

Xt

= (YPr(et+1|Xt+1)Z Pr(Xt+1‘Xt)P(Xt|e1;t)

Xt

f]_;t+]_ = FOrWard(fl;t,et+1) where fl:t = Pr(xt‘el;t)
Time and space constant (independent of t) by keeping track of f



Uncertainty over Time

Filtering example

Ri-1| P(Ry)

0.500 0.627
0. 500 0.373
True 0.500 0. 18 0.2!83
False 0.500 0.182 0.117



Uncertainty over Time

Prediction

Pr(X¢skt1lert) = ZXM Pr(Xesnq1|Xesu) P(Xetkle1:t)
As k — 00, P(x¢ik|e1.+) tends to the stationary distribution of the Markov

chain
Mixing time depends on how stochastic the chain is



Smoothing

C =D~

Uncertainty over Time

Divide evidence e;.; into e1., €, 1.¢:

Pr(Xxle1.t)

Pr(Xk|e1;k, ek+1:t)
I Pr(Xk\eLk) Pr(ek+1:t‘xk7 el:k)
aPr(Xgleix) Pr(exs1¢|Xk)

akabk+lt

Backward message computed by a backwards recursion:

Pr(exs1:¢|X«k)

Z Pr(ek+1:t‘xk7 Xk+1) Pr(Xk+1 ‘Xk)

*k+1

Z P(exs1:e|Xks1) Pr(xus1]|Xk)

Xk+1

Z P(eks1|Xk+1) P(ekra:e[Xkr1) Pr(xes1|Xk)

*k+1

12



Uncertainty over Time

Smoothing example

0.500 0.627
0.500 0.373

True  0.500 0.2!18 0.8'83 orward

False  0.500 0.182 0.117 orwar
o.z!ss 0.8'83
0.117 0.117 smoothed
0.690 1.000 backward

——
0.410 1.000

@ (Rain,) Rain,
@ Umbrella,

If we want to smooth the whole sequence:
Forward—backward algorithm: cache forward messages along the way
Time linear in ¢ (polytree inference), space O(t|f])

13



Uncertainty over Time

Most likely explanation

Most likely sequence # sequence of most likely states (joint distr.)!
Most likely path to each x; 1
= most likely path to some x; plus one more step

max Pr(xq,...,%¢, Xey1]€1:641)

X1...X¢

= Pr(es1]|Xet1) max <Pr(Xt+1xt) max P(x1,...,X¢—1, xtel;t)>

X1 Xg—1

Identical to filtering, except fi.; replaced by

my; = max Pr(xy,..., Xt—1, Xt|e1:t)

X1...Xeg—1

l.e., my..(/) gives the probability of the most likely path to state /.

Update has sum replaced by max, giving the Viterbi algorithm:

Mi41 = Pr(et+1‘xt+1) rT](aX(Pr(XH»l‘xt)ml:t)

14



Viterbi example

state
space
paths

umbrella

most
likely
paths

Rain

1 Rain,

Raing

Rain, Raing

<

false

>

false

>

false false false
false
.8182 - .5155 - .0361 .0334

<

.1818

.0491

<
<4

1237

.0173

.0210
.0024

11

1.2

13

14

1.5

Uncertainty over Time

15



Hidden Markov models preenemey e

X; is a single, discrete variable (usually E; is too)
Domain of X; is {1....,S} — can be a macro variable representing several
state vars.

HMMs allow for an elegant matrix representation

Transition matrix T;; = P(X, =j|X,—1=1), e.g., ( 0.r 03 >

0.3 0.7
Sensor matrix O; (for convenience) for each time step, diagonal elements
P(et‘Xt = I)

09 0
e.g., for Uy = true, O = ( 0 02 >

Forward and backward messages as column vectors:
T
f1:r+1 = a0 T fi.
bei1e = TOkpibiio:

Forward-backward algorithm needs time O(S°t) and space O(St)

16



Rea I H M M exam ples Uncertainty over Time

@ Speech recognition HMMs:
Observations are acoustic signals (continuous valued) States are specific
positions in specific words (so, tens of thousands)

@ Machine translation HMMs:
Observations are words (tens of thousands) States are translation options

@ Robot tracking:
Observations are features of environment (discrete) or range readings
(continuous) States are cells (discrete) or positions on a map
(continuous)

17



Localization

(b) Possible locations of robot After E1= NSW,E>= NS

Uncertainty over Time

18



Uncertainty over Time

Localization

ofelol-[- O] Fe
HENENENE

(b) Posterior distribution over robot location after Ey= NSW,E>= NS

] PF(XO = [) = ]_/n
i . 1/N(i) if iis adjacent to j
’Pr(Xt+1:./|Xt:’):TU: / () J J
0 otherwise

] Pr(Et = €t ‘ Xt = /) = Oti — (1 - 6)4_d"'€d"'

19



Uncertainty over Time

Kalman filters

Modelling systems described by a set of continuous variables,
e.g., tracking a bird flying—X, =X, Y. Z, X, Y, Z.
Airplanes, robots, ecosystems, economies, chemical plants, planets, ...

\:? ‘

Gaussian prior, linear Gaussian transition model and sensor model

il

20



Uncertainty over Time

Updating Gaussian distributions

Prediction step: if Pr(X;|e;.;) is Gaussian, then prediction

Pr(xt+1|e1:t) - / Pr(xt+1‘xt)P(xt‘e1:t) dXt

J X¢

is Gaussian. If Pr(X,;1|e1.+) is Gaussian, then the updated distribution
Pr(xt+1|elzt+1) =« Pr(et+1|Xt+1) Pr(Xt+1\el:t)

is Gaussian

Hence Pr(X;|e1.;) is multivariate Gaussian N(,, ;) for all t

General (nonlinear, non-Gaussian) process: description of posterior grows
unboundedly as t — oo



Uncertainty over Time

General Kalman update

Transition and sensor models:

P(xeialxe) = N(Fxe, Zo)(xer1)
P(z:|x;) = N(Hx., X,)(z;)

F is the matrix for the transition; X, the transition noise covariance
H is the matrix for the sensors; 2., the sensor noise covariance
Filter computes the following update:

Hepr = Fpp+ Kepa(zepr — HFpy)
P e U Kt+1)(FZtFT +X)

where K1 = (FE,F' + Z)H (H(FE,F' + T )H" +x,)!

is the Kalman gain matrix
3 ; and K, are independent of observation sequence, so compute offline

22



2-D tracking example: filtering

12

11

10

Uncertainty over Time

2D filtering

—&—  true
observed
x filtered

10 12 14 16 18 20 22 24 26

23



Uncertainty over Time

2-D tracking example: smoothing

2D smoothing

12r
—e—  true
* observed
x smoothed
1+
10+
> 9t
sl
*
7k
6 L L L L L L L L I}
8 10 12 14 16 18 20 22 24 26

24



Where it brea ks Uncertainty over Time

Cannot be applied if the transition model is nonlinear
Extended Kalman Filter models transition as locally linear around x; = 1,
Fails if systems is locally unsmooth

¢ i e

25



Uncertainty over Time

Dynamic Bayesian networks

X:, E; contain arbitrarily many variables in a replicated Bayes net

Ry | P(Ry)

P(Ro)

26



D B N S VS . H M M S Uncertainty over Time

Every HMM is a single-variable DBN; every discrete DBN is an HMM

Sparse dependencies = exponentially fewer parameters;

e.g., 20 state variables, three parents each
DBN has 20 x 23 =160 parameters, HMM has 220 x 220 ~ 10?

LLTHITT

99
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DBNs vs Kalman filters

Every Kalman filter model is a DBN, but few DBNs are KFs;
real world requires non-Gaussian posteriors

Uncertainty over Time

28



Uncertainty over Time

Exact inference in DBNs

Naive method: unroll the network and run any exact algorithm

Problem: inference cost for each update grows with ¢

Rollup filtering: add slice ¢t + 1, “sum out” slice t using variable elimination
Largest factor is O(d""1), update cost O(d"?)

(cf. HMM update cost O(d?"))

29



Likelihood weighting for DBNs Uncertainty over Tims

Set of weighted samples approximates the belief state

CD o 2 CD o D o D o G o ED,

LW samples pay no attention to the evidence!
= fraction “agreeing” falls exponentially with t
= number of samples required grows exponentially with ¢

30



Particle filtering

= Sometimes |X] is too big to use
exact inference
= |X| may be too big to even store B(X)
= E.g. Xis continuous
= |X|2 may be too big to do updates

= Solution: approximate inference
= Track samples of X, not all values
= Samples are called particles

= Time per step is linear in the number
of samples

= But: number needed may be large

= This is how robot localization
works in practice

Uncertainty over Time

00 [ 0.1 | 00
00 | 0.0 | 0.2
00 | 02 | 05
]
®_0
e ...

31



Particle filtering

= Qur representation of P(X) is now
a list of N particles (samples)
= Generally, N << |X]

= Storing map from X to counts
would defeat the point

= P(x) approximated by number of
particles with value x
* So, many x will have P(x)=0
= More particles, more accuracy

= |nitially, all particles have a
weight of 1

Uncertainty over Time

Particles:
(3.3)

32



Particle filtering

= Each particle is moved by sampling its
next position from the transition model

x))

z' = sample(P(X'

= This is like prior sampling — samples’
frequencies reflect the transition probs
= Here, most samples move clockwise, but

some move in another direction or stay in
place

» This captures the passage of time

= |f we have enough samples, close to the
exact values before and after (consistent)

Uncertainty over Time

e
;.
\
g
)

33



Particle filtering

= Slightly trickier:
= Don't do rejection sampling (why not?)
= We don't sample the observation, we fix it

= As in likelihood weighting, downweight
samples based on the evidence:

w(z) = P(e|x)
B(X) x P(e|X)B'(X)

= Note that, as before, the probabilities
don’t sum to one, since most have been
downweighted (in fact they sum to an
approximation of P(e))

Uncertainty over Time

)

34



Particle filtering

Rather than tracking
weighted samples,
we resample

N times, we choose
from our weighted
sample distribution
(i.e. draw with
replacement)

This is analogous to
renormalizing the
distribution

Now the update is
complete for this time
step, continue with
the next one

Old Particles:
(3,3) w=0.1
(2,1)w=0.9
(2,1)w=0.9
(3,1) w=0.4
(3,2) w=0.3
(2,2) w=0.4
(1,1) w=0.4
(3,1) w=0.4
(2,1)w=0.9
(3,2) w=0.3

New Particles:

2.1) w=1
(2,1) w=1
(2.1) w=1
(3,2) w=1
(2,2) w=1
2.1) w=1
(1,1) w=1
(3.1) w=1
(2,1) w=1
(1,1) w=1

Uncertainty over Time

35



Uncertainty over Time

Particle filtering

Basic idea: ensure that the population of samples (“particles”)
tracks the high-likelihood regions of the state-space
Replicate particles proportional to likelihood for e;

Rain, Raing,; Raing ,q Rain 1

true | Coee Jon o .
faj% ] oo o0 o000
] o0 o0 o000
(a) Propagate (b) Weight (c) Resample

Widely used for tracking nonlinear systems, esp. in vision
Also used for simultaneous localization and mapping in mobile robots
10°-dimensional state space

36



Uncertainty over Time

Summary

o Temporal models use state and sensor variables replicated over time
@ Markov assumptions and stationarity assumption, so we need
— transition model Pr(X;|X; 1)

— sensor model Pr(E;|X;)

@ Tasks are filtering, prediction, smoothing, most likely sequence;
all done recursively with constant cost per time step

o Hidden Markov models have a single discrete state variable; used
for speech recognition

@ Kalman filters allow n state variables, linear Gaussian, O(n®) update

@ Dynamic Bayes nets subsume HMMs, Kalman filters; exact update
intractable
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