Lecture 8 Graphical Models for Sequential Data

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Slides by Stuart Russell and Peter Norvig

Course Overview

- Introduction
 - ✔ Artificial Intelligence
 - ✓ Intelligent Agents
- Search
 - ✔ Uninformed Search
 - ✔ Heuristic Search
- Uncertain knowledge and Reasoning
 - Probability and Bayesian approach
 - Bayesian Networks
 - Hidden Markov Chains
 - Kalman Filters

- Learning
 - Supervised Learning Bayesian Networks, Neural Networks
 - Unsupervised EM Algorithm
- Reinforcement Learning
- Games and Adversarial Search
 - Minimax search and Alpha-beta pruning
 - Multiagent search
- Knowledge representation and Reasoning
 - Propositional logic
 - First order logic
 - Inference
 - Planning

Outline

1. Uncertainty over Time

Outline

- \diamond Time and uncertainty
- Inference: filtering, prediction, smoothing
- ♦ Hidden Markov models
- ♦ Kalman filters (a brief mention)
- Oynamic Bayesian networks (an even briefer mention)
- ♦ Particle filtering

Time and uncertainty

- The world changes; we need to track and predict it
- Diabetes management vs vehicle diagnosis
- Basic idea: copy state and evidence variables for each time step X_t = set of unobservable state variables at time t
 e.g., BloodSugar_t, StomachContents_t, etc.
 E_t = set of observable evidence variables at time t
 e.g., MeasuredBloodSugar_t, PulseRate_t, FoodEaten_t
- This assumes discrete time; step size depends on problem
- Notation: $\mathbf{X}_{a:b} = \mathbf{X}_{a}, \mathbf{X}_{a+1}, \dots, \mathbf{X}_{b-1}, \mathbf{X}_{b}$

Markov processes (Markov chains)

Construct a Bayes net from these variables:

- unbounded number of conditional probability table
- unbounded number of parents

Markov assumption: X_t depends on **bounded** subset of $X_{0:t-1}$ First-order Markov process: $Pr(X_t|X_{0:t-1}) = Pr(X_t|X_{t-1})$ Second-order Markov process: $Pr(X_t|X_{0:t-1}) = Pr(X_t|X_{t-2}, X_{t-1})$

Sensor Markov assumption: $Pr(\mathbf{E}_t | \mathbf{X}_{0:t}, \mathbf{E}_{0:t-1}) = Pr(\mathbf{E}_t | \mathbf{X}_t)$ \rightarrow Stationary process:

- transition model $Pr(X_t|X_{t-1})$ and
- sensor model $\Pr(\mathbf{E}_t | \mathbf{X}_t)$ fixed for all t

Example

First-order Markov assumption not exactly true in real world! Possible fixes:

- 1. Increase order of Markov process
- 2. Augment state, e.g., add $Temp_t$, $Pressure_t$

Example: robot motion.

Augment position and velocity with Battery_t

Inference tasks

1. Filtering: $Pr(\mathbf{X}_t | \mathbf{e}_{1:t})$

belief state-input to the decision process of a rational agent

2. Prediction: $Pr(\mathbf{X}_{t+k}|\mathbf{e}_{1:t})$ for k > 0

evaluation of possible action sequences; like filtering without the evidence

3. Smoothing: $Pr(\mathbf{X}_k | \mathbf{e}_{1:t})$ for $0 \le k < t$

better estimate of past states, essential for learning

 Most likely explanation: arg max_{x1:t} P(x_{1:t}|e_{1:t}) speech recognition, decoding with a noisy channel

Filtering

Aim: devise a **recursive** state estimation algorithm:

$$\Pr(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = f(\mathbf{e}_{t+1}, \Pr(\mathbf{X}_t|\mathbf{e}_{1:t}))$$

$$Pr(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = Pr(\mathbf{X}_{t+1}|\mathbf{e}_{1:t}, \mathbf{e}_{t+1})$$

= $\alpha Pr(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}, \mathbf{e}_{1:t}) Pr(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$
= $\alpha Pr(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) Pr(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$

I.e., prediction + estimation. Prediction by summing out X_t :

$$Pr(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = \alpha Pr(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \sum_{\mathbf{x}_t} Pr(\mathbf{X}_{t+1}|\mathbf{x}_t, \mathbf{e}_{1:t}) P(\mathbf{x}_t|\mathbf{e}_{1:t})$$
$$= \alpha Pr(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \sum_{\mathbf{x}_t} Pr(\mathbf{X}_{t+1}|\mathbf{x}_t) P(\mathbf{x}_t|\mathbf{e}_{1:t})$$

 $\begin{aligned} \mathbf{f}_{1:t+1} &= \mathsf{Forward}(\mathbf{f}_{1:t}, \mathbf{e}_{t+1}) \text{ where } \mathbf{f}_{1:t} &= \mathsf{Pr}(\mathbf{X}_t | \mathbf{e}_{1:t}) \\ \mathsf{Time and space } \mathbf{constant} \text{ (independent of } t) \text{ by keeping track of } \mathbf{f} \end{aligned}$

Filtering example

Prediction

 $\Pr(\mathbf{X}_{t+k+1}|\mathbf{e}_{1:t}) = \sum_{\mathbf{x}_{t+k}} \Pr(\mathbf{X}_{t+k+1}|\mathbf{x}_{t+k}) P(\mathbf{x}_{t+k}|\mathbf{e}_{1:t})$

As $k \to \infty$, $P(\mathbf{x}_{t+k}|\mathbf{e}_{1:t})$ tends to the stationary distribution of the Markov chain

Mixing time depends on how stochastic the chain is

Smoothing

Divide evidence $\mathbf{e}_{1:t}$ into $\mathbf{e}_{1:k}$, $\mathbf{e}_{k+1:t}$:

$$\Pr(\mathbf{X}_k|\mathbf{e}_{1:t}) = \Pr(\mathbf{X}_k|\mathbf{e}_{1:k},\mathbf{e}_{k+1:t})$$

- $= \alpha \operatorname{Pr}(\mathbf{X}_{k}|\mathbf{e}_{1:k}) \operatorname{Pr}(\mathbf{e}_{k+1:t}|\mathbf{X}_{k},\mathbf{e}_{1:k})$
- $= \alpha \Pr(\mathbf{X}_k | \mathbf{e}_{1:k}) \Pr(\mathbf{e}_{k+1:t} | \mathbf{X}_k)$

 $= \alpha \mathbf{f}_{1:k} \mathbf{b}_{k+1:t}$

Backward message computed by a backwards recursion:

$$Pr(\mathbf{e}_{k+1:t}|\mathbf{X}_{k}) = \sum_{\mathbf{x}_{k+1}} Pr(\mathbf{e}_{k+1:t}|\mathbf{X}_{k}, \mathbf{x}_{k+1}) Pr(\mathbf{x}_{k+1}|\mathbf{X}_{k})$$

$$= \sum_{\mathbf{x}_{k+1}} P(\mathbf{e}_{k+1:t}|\mathbf{x}_{k+1}) Pr(\mathbf{x}_{k+1}|\mathbf{X}_{k})$$

$$= \sum_{\mathbf{x}_{k+1}} P(\mathbf{e}_{k+1}|\mathbf{x}_{k+1}) P(\mathbf{e}_{k+2:t}|\mathbf{x}_{k+1}) Pr(\mathbf{x}_{k+1}|\mathbf{X}_{k})$$

Smoothing example

If we want to smooth the whole sequence: Forward–backward algorithm: cache forward messages along the way Time linear in t (polytree inference), space $O(t|\mathbf{f}|)$

Most likely explanation

Most likely sequence \neq sequence of most likely states (joint distr.)! Most likely path to each \textbf{x}_{t+1}

= most likely path to some x_t plus one more step

$$\max_{\mathbf{x}_1...\mathbf{x}_t} \Pr(\mathbf{x}_1, \dots, \mathbf{x}_t, \mathbf{X}_{t+1} | \mathbf{e}_{1:t+1})$$

=
$$\Pr(\mathbf{e}_{t+1} | \mathbf{X}_{t+1}) \max_{\mathbf{x}_t} \left(\Pr(\mathbf{X}_{t+1} | \mathbf{x}_t) \max_{\mathbf{x}_1...\mathbf{x}_{t-1}} P(\mathbf{x}_1, \dots, \mathbf{x}_{t-1}, \mathbf{x}_t | \mathbf{e}_{1:t}) \right)$$

Identical to filtering, except $f_{1:t}$ replaced by

$$\mathbf{m}_{1:t} = \max_{\mathbf{x}_1 \dots \mathbf{x}_{t-1}} \Pr(\mathbf{x}_1, \dots, \mathbf{x}_{t-1}, \mathbf{X}_t | \mathbf{e}_{1:t}),$$

I.e., $\mathbf{m}_{1:t}(i)$ gives the probability of the most likely path to state *i*. Update has sum replaced by max, giving the Viterbi algorithm:

$$\mathbf{m}_{1:t+1} = \Pr(\mathbf{e}_{t+1} | \mathbf{X}_{t+1}) \max_{\mathbf{x}_t} (\Pr(\mathbf{X}_{t+1} | \mathbf{x}_t) \mathbf{m}_{1:t})$$

Viterbi example

Hidden Markov models

 X_t is a single, discrete variable (usually E_t is too) Domain of X_t is $\{1, \ldots, S\}$ – can be a macro variable representing several state vars.

HMMs allow for an elegant matrix representation

Transition matrix $\mathbf{T}_{ij} = P(X_t = j | X_{t-1} = i)$, e.g., $\begin{pmatrix} 0.7 & 0.3 \\ 0.3 & 0.7 \end{pmatrix}$ Sensor matrix \mathbf{O}_t (for convenience) for each time step, diagonal elements $P(e_t | X_t = i)$ e.g., for $U_1 = true$, $\mathbf{O}_1 = \begin{pmatrix} 0.9 & 0 \\ 0 & 0.2 \end{pmatrix}$

Forward and backward messages as column vectors:

$$\mathbf{f}_{1:t+1} = \alpha \mathbf{O}_{t+1} \mathbf{T}^{\top} \mathbf{f}_{1:t}$$
$$\mathbf{b}_{k+1:t} = \mathbf{T} \mathbf{O}_{k+1} \mathbf{b}_{k+2:t}$$

Forward-backward algorithm needs time $O(S^2t)$ and space O(St)

Real HMM examples

• Speech recognition HMMs:

Observations are acoustic signals (continuous valued) States are specific positions in specific words (so, tens of thousands)

• Machine translation HMMs:

Observations are words (tens of thousands) States are translation options

• Robot tracking:

Observations are features of environment (discrete) or range readings (continuous) States are cells (discrete) or positions on a map (continuous)

Localization

\odot	0	0	0		0	0	0	0	0		\odot	0	0		0
		0	0		0			0		0		0			
	0	0	0		0			0	0	0	0	0			0
\odot	0		0	0	0		\odot	0	0	0		0	0	0	0

(a) Possible locations of robot after $E_1 = NSW$

•	\odot	0	0		0	0	0	0	0		0	0	0		0
		0	0		0			0		0		0			
	0	0	0		0			0	٥	0	0	0			0
0	0		0	0	0		0	0	٥	0		0	0	0	0

(b) Possible locations of robot After $E_1 = NSW$, $E_2 = NS$

Localization

0	•	0	0		0	0	•	0	0		0	0	0		0
		0	٥		0			0		0		0			
	0	o	0		0			0	0	0	0	0			0
0	0		0	0	0		0	0	0	0		0	0	0	0

(a) Posterior distribution over robot location after $E_1 = NSW$

•	0	0	0		0	0	0	0	0		0	0	0		0
		0	0		0			0		0		0			
	0	0	0		0			0	0	0	0	0			0
•	٥		0	0	0		0	0	0	0		0	0	0	0

(b) Posterior distribution over robot location after $E_1 = NSW$, $E_2 = NS$

•
$$\Pr(X_0 = i) = 1/n$$

• $\Pr(X_{t+1} = j \mid X_t = i) = \mathbf{T}_{ij} = \begin{cases} 1/N(i) & \text{if } i \text{ is adjacent to } j \\ 0 & \text{otherwise} \end{cases}$
• $\Pr(E_t = e_t \mid X_t = i) = \mathbf{O}_{ti} = (1 - \epsilon)^{4 - d_{it}} \epsilon^{d_{it}}$

Kalman filters

Modelling systems described by a set of continuous variables, e.g., tracking a bird flying— $X_t = X, Y, Z, \dot{X}, \dot{Y}, \dot{Z}$. Airplanes, robots, ecosystems, economies, chemical plants, planets, ...

Gaussian prior, linear Gaussian transition model and sensor model

Updating Gaussian distributions

Prediction step: if $Pr(\mathbf{X}_t | \mathbf{e}_{1:t})$ is Gaussian, then prediction

$$\Pr(\mathbf{X}_{t+1}|\mathbf{e}_{1:t}) = \int_{\mathbf{x}_t} \Pr(\mathbf{X}_{t+1}|\mathbf{x}_t) P(\mathbf{x}_t|\mathbf{e}_{1:t}) \, d\mathbf{x}_t$$

is Gaussian. If $Pr(X_{t+1}|e_{1:t})$ is Gaussian, then the updated distribution

$$\Pr(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = \alpha \Pr(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \Pr(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$$

is Gaussian

Hence $Pr(\mathbf{X}_t | \mathbf{e}_{1:t})$ is multivariate Gaussian $N(\boldsymbol{\mu}_t, \boldsymbol{\Sigma}_t)$ for all t

General (nonlinear, non-Gaussian) process: description of posterior grows **unboundedly** as $t \to \infty$

General Kalman update

Transition and sensor models:

$$\begin{array}{lll} P(\mathbf{x}_{t+1}|\mathbf{x}_t) &=& N(\mathsf{F}\mathbf{x}_t, \boldsymbol{\Sigma}_x)(\mathbf{x}_{t+1}) \\ P(\mathbf{z}_t|\mathbf{x}_t) &=& N(\mathsf{H}\mathbf{x}_t, \boldsymbol{\Sigma}_z)(\mathbf{z}_t) \end{array}$$

F is the matrix for the transition; Σ_x the transition noise covariance **H** is the matrix for the sensors; Σ_z the sensor noise covariance Filter computes the following update:

$$\begin{aligned} \boldsymbol{\mu}_{t+1} &= \mathbf{F}\boldsymbol{\mu}_t + \mathbf{K}_{t+1}(\mathbf{z}_{t+1} - \mathbf{H}\mathbf{F}\boldsymbol{\mu}_t) \\ \mathbf{\Sigma}_{t+1} &= (\mathbf{I} - \mathbf{K}_{t+1})(\mathbf{F}\mathbf{\Sigma}_t\mathbf{F}^\top + \mathbf{\Sigma}_x) \end{aligned}$$

where $K_{t+1} = (\mathbf{F} \boldsymbol{\Sigma}_t \mathbf{F}^\top + \boldsymbol{\Sigma}_x) \mathbf{H}^\top (\mathbf{H} (\mathbf{F} \boldsymbol{\Sigma}_t \mathbf{F}^\top + \boldsymbol{\Sigma}_x) \mathbf{H}^\top + \boldsymbol{\Sigma}_z)^{-1}$ is the Kalman gain matrix

 Σ_t and K_t are independent of observation sequence, so compute offline

2-D tracking example: filtering

2-D tracking example: smoothing

Where it breaks

Cannot be applied if the transition model is nonlinear Extended Kalman Filter models transition as locally linear around $x_t = \mu_t$ Fails if systems is locally unsmooth

Dynamic Bayesian networks

 X_t , E_t contain arbitrarily many variables in a replicated Bayes net

DBNs vs. HMMs

Every HMM is a single-variable DBN; every discrete DBN is an HMM

Sparse dependencies \Rightarrow exponentially fewer parameters; e.g., 20 state variables, three parents each DBN has $20 \times 2^3 = 160$ parameters, HMM has $2^{20} \times 2^{20} \approx 10^{12}$

DBNs vs Kalman filters

Every Kalman filter model is a DBN, but few DBNs are KFs; real world requires non-Gaussian posteriors

Exact inference in DBNs

Naive method: unroll the network and run any exact algorithm

Problem: inference cost for each update grows with tRollup filtering: add slice t + 1, "sum out" slice t using variable elimination Largest factor is $O(d^{n+1})$, update cost $O(d^{n+2})$ (cf. HMM update cost $O(d^{2n})$)

Likelihood weighting for DBNs

Set of weighted samples approximates the belief state

LW samples pay no attention to the evidence!

- \Rightarrow fraction "agreeing" falls exponentially with t
- \Rightarrow number of samples required grows exponentially with *t*

Sometimes |X| is too big to use exact inference

- |X| may be too big to even store B(X)
- E.g. X is continuous
- |X|² may be too big to do updates

Solution: approximate inference

- Track samples of X, not all values
- Samples are called particles
- Time per step is linear in the number of samples
- But: number needed may be large
- This is how robot localization works in practice

0.0	0.1	0.0
0.0	0.0	0.2
0.0	0.2	0.5

- Our representation of P(X) is now a list of N particles (samples)
 - Generally, N << |X|
 - Storing map from X to counts would defeat the point
- P(x) approximated by number of particles with value x
 - So, many x will have P(x) = 0
 - More particles, more accuracy
- Initially, all particles have a weight of 1

Particles:
(3,3)
(2,3)
(3,3)
(3,2)
(3,3)
(3,2)
(2,1)
(3,3)
(3,3)
(2,1)

 Each particle is moved by sampling its next position from the transition model

 $x' = \operatorname{sample}(P(X'|x))$

- This is like prior sampling samples' frequencies reflect the transition probs
- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
 - If we have enough samples, close to the exact values before and after (consistent)

Slightly trickier:

- Don't do rejection sampling (why not?)
- · We don't sample the observation, we fix it
- As in likelihood weighting, downweight samples based on the evidence:

w(x) = P(e|x)

 $B(X) \propto P(e|X)B'(X)$

 Note that, as before, the probabilities don't sum to one, since most have been downweighted (in fact they sum to an approximation of P(e))

- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (i.e. draw with replacement)
- This is analogous to renormalizing the distribution
- Now the update is complete for this time step, continue with the next one

- $\begin{array}{l} \mbox{Old Particles:} \\ (3,3) w=0.1 \\ (2,1) w=0.9 \\ (2,1) w=0.9 \\ (3,1) w=0.4 \\ (3,2) w=0.3 \\ (2,2) w=0.4 \\ (1,1) w=0.4 \\ (3,1) w=0.4 \\ (2,1) w=0.9 \end{array}$
 - (3,2) w=0.3

New Particles:

- (2,1) w=1 (2,1) w=1
- (2,1) w=1
- (3,2) w=1
- (2,2) w=1
- (2,1) w=1
- (1,1) w=1 (3,1) w=1
- (3,1) w=1 (2,1) w=1
- (2,1) W=1
- (1,1) w=1

Basic idea: ensure that the population of samples ("particles") tracks the high-likelihood regions of the state-space Replicate particles proportional to likelihood for e_t

Widely used for tracking nonlinear systems, esp. in vision Also used for simultaneous localization and mapping in mobile robots 10^5 -dimensional state space

Summary

- Temporal models use state and sensor variables replicated over time
- Markov assumptions and stationarity assumption, so we need
 - transition model $\Pr(\mathbf{X}_t | \mathbf{X}_{t-1})$
 - sensor model $\Pr(\mathbf{E}_t | \mathbf{X}_t)$
- Tasks are filtering, prediction, smoothing, most likely sequence; all done recursively with constant cost per time step
- Hidden Markov models have a single discrete state variable; used for speech recognition
- Kalman filters allow *n* state variables, linear Gaussian, $O(n^3)$ update
- Dynamic Bayes nets subsume HMMs, Kalman filters; exact update intractable