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The functions in this starting collection form the “gene pool” from which future
generations of programs will be constructed. One then allows the evolutionary
process to run for many generations, hoping that by producing each generation
from the best performers in the previous generation, a solution to the target
problem will evolve.

Finally, we should recognize a phenomenon that is closely related to learn-
ing: discovery. The distinction is that learning is “target based” whereas discov-
ery is not. The term discovery has a connotation of the unexpected that is not
present in learning. We might set out to learn a foreign language or how to drive
a car, but we might discover that those tasks are more difficult than we expected.
An explorer might discover a large lake, whereas the goal was merely to learn
what was there.

Developing agents with the ability to discover efficiently requires that the
agent be able to identify potentially fruitful “trains of thought.” Here, discovery
relies heavily on the ability to reason and the use of heuristics. Moreover, many
potential applications of discovery require that an agent be able to distinguish
meaningful results from insignificant ones. A data mining agent, for example,
should not report every trivial relationship it finds.

Examples of success in computer discovery systems include Bacon, named
after the philosopher Sir Francis Bacon, that has discovered (or maybe we should
say “rediscovered”) Ohm’s law of electricity, Kepler's third law of planetary motion,
and the conservation of momentum. Perhaps more persuasive is the system AUTO-
CLASS that, using infrared spectral data, has discovered new classes of stars that
were previously unknown in astronomy—a true scientific discovery by a computer.
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11.5 Artificial Neural Networks

With all the progress that has been made in artificial intelligence, many prob-
lems in the field continue to tax the abilities of computers based on the von
Neumann architecture. Central processing units that execute sequences of instruc-
tions do not seem capable of perceiving and reasoning at levels comparable to
those of the human mind. For this reason, many researchers are turning to
machines with other architectures. One of these is the artificial neural network.

Basic Properties

As introduced in Chapter 2, artificial neural networks are constructed from _many
individual processors, Whlch we will cavllrprocess1ng units (or just units for short),
in a manner that models networks of neurons in living b1olog1ca1 systems. A bio-

Flgure 11.15 Aneuron in a living biological system
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reflect whether the cell is in an in@ij:_gd or excited state. This state is determined

by the combination of signals received by the cell’s dendrites. These dendrites pick
up(gi)gn_alws from the axons of other cells across small gaps known as synapses. Re-

search suggests that the conductivity across a single synapse is g_@trolled»by the

chemical composition of the synapse. That is, whether the particular input signal
will have an exciting or inhibiting effect on the neuron is determined by the chem-
ical composition of the synapse. Thus it is believed that a biological neural net-
work learns by adjusting these chemical connections between neurons. -

A processing unit in an artificial neural network is a simple device that mim-
ics this basic understanding of a biological neuron. It produces an output of 1 or 0,
depending on whether its effective input exceeds a given value, which is called the
processing unit's threshold value. This effective input is a weighted sum of the ac-
tial inputs, as represented in Figure 11.16. In this figure, the outputs of three pro-
cessing units (denoted by vy, vz, and v3) are used as inputs to another unit. The
inputs to this fourth unit. are associated with values called weights (denoted by wy,
w,, and ws). The Teceiving unit multiplies each of its input values by the weight as-
sociated with that particular input position and then adds these products to form
the effective input (v1w) + VaWy + Uss). If this sum exceeds the processing unit’s
threshold value, the unit produces an output of 1 (simulating a neuron’s excited
state); otherwise the unit produces a 0 as its output (simulating an inhibited state).

Following the lead of Figure 11.16, we adopt the convention of representing pro-
cessing units as rectangles. At the input end of the unit, we place a smaller rectan-
gle for each input, and in this rectangle we write the weight associated with that
input. Finally, we write the unit's threshold value in the middle of the large rectan-
gle. As an example, Figure 11.17 represents a processing unit with three inputs and
a threshold value of 1.5. The first input is weighted by the value —2, the second is
weighted by 3, and the third is weighted by —1. Therefore if the unit receives the in-

puts 1, 1, and 0, its effective input is (1)(=2) + (M(3) + (0)(—1) = 1, and thus its

Figure 11.16 The activities within a processing unit

Figure 11.17 Representation of a processing unit
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output is 0. But, if the unit receives 0, 1, and 1, its effective input is (0)(—2) + (1)(3)
+ (1)(—1) = 2, which exceeds the threshold value. The unit’s output will thus be 1
. The fact that a weight can be positive or negative means that the correspondin ;
1nput can have either an inhibiting or exciting effect on the receiving unit. (If thg
weight is negative, then a 1 at that input position reduces the weighted sﬁm and
thus tepds to hold the effective input below the threshold value. In contrast, a posi-
tive weight causes the associated input to have an increasing effect on the W'eighted
sum and thus increase the chances of that sum exceeding the threshold value.)
Morepver, the actual size of the weight controls the degree to which the corres oﬁ-
fimg input is allowed to inhibit or excite the receiving unit. Consequently, b pad—
justing the values of the weights throughout an artificial neural network, "V\ifan

program the network to respond to different inputs in a predetermined mariner.
As an example, the simple network presented in Figure 11.18a is programmed
to produce an output of 1 if its two inputs differ and an output of 0 otherwise. If

Figure 11.18 A neural network with two different programs
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however, we change the weights to those shown in Figure 11.18b, we obtain a net-
work that responds with a 1 if both of its inputs are 1s and with a 0 otherwise.

We should note that the network in Figure 11.18 is far more simplistic than
an actual biological network. A human brain contains approximately 10" neu-
rons with about 10* synapses per neuron. Indeed, the “dendrites of a biological
neuron are so numerous that they appear more like a fibrous mesh than the
individual tentacles represented in Figure 11.15.

Training Artificial Neural Networks

An important feature of artificial neural networks is that they are not pro-
grammed in the traditional sense but instead are trained. That is, a programmer
does not determine the values of the weights needed to solve a particular prob-
lem and then “plug” those values into the network. Instead, an artificial neural
network learns the proper Welght Values via supervised tralnlng (Sectlon 11.4)

network s performance approaches the desired behav1or ‘How the weights
should be adjusted is the subject of research. What is needed is a strategy for
modifying the weights so that each new adjustment leads toward the overall goal
rather than destroying the progress made in the previous steps.

To demonstrate the problem, consider the task of training the network in
Figure 11.19 (in Which all the Weights are set to the value 0) to produce an output

and 0, 1to produce the output 1 while the input patterns 0, 0 and 1, 1 produce the
output value 0. (We have already seen a solution to this problern in Figure 11.18a.)
Let us begin the training process by assigning both inputs the value 1. We observe
that the output is 0 (Figure 11.20a), which is the desired behavior, so we leave the
network as it is and continue the training process by trying the input pattern 1, 0
(Figure 11.20b). This produces the output 0, whereas we want the output to be 1.
Let us fix this by changing the upper weight of the second processing unit to 1
(Figure 11.20c). Now the network performs correctly for the input pattern 1, 0. At
this point, we go back and retry the input pattern 1, 1. To our dismay, the network

Figure 11.19 An artificial neural network
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Figure 11.20 Training an artificial neural network
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d. However, the network no longer performs correctly
for the input pattern 1, 1.

no longer processes that pattern correctly. Indeed, it now produces an output of 1
(Figure 11.20d). Let us fix this by changing the upper weight in the second pro-
cessing unit back to 0. Alas, we are back where we started, and continuing this
process will merely lead us through an endless training cycle as each correction
we make counteracts the previous correction.
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Fortunately, significant progress has been made in the development of suc-
cessful training strategies, as testified by the ALVINN project cited in the previous
section. Indeed, ALVINN was an artificial neural network whose composition was
surprisingly simple (Figure 11.21). Its input was obtained from a 30 by 32 array of
sensors, each of which observed a unique portion of the video image of the road
ahead and reported its findings to each of four processing units. (Thus, each of

these four units had 960 inputs.) The outpiit of each of these four units was con-
nected to each of 30 output units, whose outputs indicated the direction to steer.

Excited processing units at one end of the 30 unit row indicated a sharp turn to
the left, while excited units at the other end indicated a sharp turn to the right.
ALVINN was trained by “watching” a human drive while it made its own

steering decisions, comparing its decisions to those of the human, and making

Figure 11.21 The structure of ALVINN (Autonomous Land Vehicle in a Neural Net)
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slight modifications to its weights to bring its decisions closer to those of the
human. There was, however, an interesting side issue. Although ALVINN
learned to steer following this simple technique, ALVINN did not learn how to
recover from mistakes. Thus, the data collected from the human was artificially
enriched to include Tecovery situations as well. (One approach to this recovery
training that was initially considered was to have the human swerve the vehicle
so that ALVINN could watch the human recover and thus learn how to recover
on its own. But unless ALVINN was disabled while the human performed the ini-
tial swerve procedure, ALVINN learned to swerve as well as to recover—an obvi-
ously undesirable trait.)

Associative Memory

The human mind has the amazing ability to retrieve information that is associ-
ated with a current topic of consideration. When we experience certain smells,
we might readily recall memories of our childhood. The sound of a friend’s voice
might conjure an image of the person or perhaps memories of good times. Cer-
tain music might generate thoughts of particular holiday seasons. These are ex-
amples of associative memory—the retrieval of information that is associated
with, or related to, the information at hand.

To construct machines with associative memory has been a goal of re-
search for many years. One approach is to apply techniques of artificial neural
networks. For instance, consider a network consisting of many processing
units that are interconnected to form a web with no inputs or outputs. (In séme
designs, called Hopfield networks, the output of each processing unit is con-
nected as inputs to each of the other units; in other cases the output of a unit
may be connected only to its immediate neighbors.) In such a system, the ex-
cited units will tend to_excite other units, whereas the inhibited units will tend
to_inhibit others. In turn, the entire system may be in a constant state of
change, or it may be that the system will find its way to a Vs“trgjk;jlglcio‘gf‘igufgt"ign
where the excifed units remain excitéd and the inhibited units remain inhib-
ited. If we start the network in a nonstable configuration that is close to a sta-
ble one, we would expect it to wander to that stable configuration. In a serisé,
when given a part of a stable configuration, the network might be able to com-
plete the configuration.

Now suppose that we represent an excited state by 1 and an inhibited state
by 0 so that the condition of the entire network at any time can be envisioned as
a configuration of Os and 1s. Then, if we set the network to a bit pattern that is
close to a stable pattern, we could expect the network to shift to the stable pat-
tern. In other words, the network might find the stable bit pattern that is close to
the pattern it was given. Thus if some of the bits are used to encode smells and
others are used to encode childhood memories, then initializing the smell bits
according to a certain stable configuration could cause the remaining bits to find
their way to the associated childhood memory.
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Now consider the artificial neural network shown in Figure 11.22. FEach cir-
cle in the figure represents a processing unit whose threshold value is recorded
inside the circle. The lines connecting circles represent two-way connections be-
tween the corresponding units. That is, a line connecting two units indicates that
the output of each unit is connected as an input to the other. Thus the output of
the center unit is connected as an input to each of the units around the perime-
ter, and the output of each of the units around the perimeter is connected as an
input to the center unit as well as an input to each of its immediate neighbors on
the perimeter. Two connected units associate the same weight with each other’s
output. This common weight is recorded next to the line connecting the units.
Thus the unit at the top of the diagram associates a weight of —1 with the input
it receives from the center unit and a weight of 1 with the inputs it receives from
its two neighbors on the perimeter. Likewise, the center unit associates a weight
of —1 with each of the values it receives from the units around the perimeter.

The network operates in discrete steps in which all processing units respond

to their inputs in a synchronized manner. To determine the next configuration of
the network from its current configuration, we determine the effective inputs of
each unit throughout the network and then allow all the units to respond to their
inputs at the same time. The effect is that the entire network follows a coordi-
nated sequence of compute effective inputs, respond to inputs, compute effec-
tive inputs, respond to inputs, etc.

Consider the sequence of events that would occur if we initialized the network
with its two rightmost units inhibited and the other units excited (Figure 11.23a).
The two leftmost units would have effective inputs of 1, so they would remain
excited. But, their neighbors on the perimeter would have effective inputs of 0, so
they would become inhibited. Likewise, the center unit would have an effective
input of —4, so it would become inhibited. Thus the entire network would shift to

Figure 11.22 An artificial neural network implementing an associative memory
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Figure 11.23 The steps leading to a stable configuration
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the'oonﬁguration shown in Figure 11.23b in which only the two leftmost units are
excited. Since the center unit would now be inhibited, the excited conditions of
the leftmost units would cause the top and bottom units to become excited again
Mear}whﬂe, the center unit would remain inhibited since it would have an effec;
tive input of —2. Thus the network would shift to the configuration in Figure
11_.’230, which would then lead to the configuration in Figure 11.23d. (You might
Wlsh to confirm that a blinking phenomenon would occur if the network were ini-
tlal_ized With only the upper four units excited. The top unit would remain excited
while its two neighbors on the perimeter and the center unit would alternate be-
tween being excited and inhibited.)

Finally, observe that the network has two stable configurations: one in which
’_che center unit is excited and the others are inhibited, and another configuration
in which the center unit is inhibited and the others are excited. If we initialize
the network with the center unit excited and no more than two of the other units
excited, the network will wander to the former stable configuration. If we initialize
the network with at least four adjacent units on the perimeter in their excited
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states, the network will wander to the latter configuration. Thus we could say
that the network associates the former stable configuration with initial patterns
in which its center unit and fewer than three of its perimeter units are excited,
and associates the latter stable configuration with initial patterns in which four
or more of its perimeter units are excited. In short, the network represents an
elementary associative memory.

1. What is the output of the followmg processmg unit when both its 1nputs;
are 1s? What about the input patterns 0,0; 0 1;and 1, 07
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2. Adjust the weights and threshold value of the followmg processmg un

so that its output 1s 1if and only if at least tWO of its inputs are 1s...

«3 Identify a problem that rn1ght occur in tra1n1ng an artificial neural network.

4. To which stable configuration will the network in Flgure 11.22 wanc
1t is Jnltlahzed w1th all 1ts processmg unlts 1nh1b1ted7 .

11.6 Robotics

Robotics is the study of physical, autonomous agents that behave intelligently.
As with all agents, robots must be able to perce1ve reason, and act in their envi-
ronment. Research in robotics thereby encompasses all areas of artificial intelli-
gence as well as drawing heavily from mechanical and electrical engineering.

To interact with the world, robots need mechanisms to manipulate objects and
to move about. In the early days of robotics, the field was closely allied with the de-
velopment of manipulators, most often mechanical arms with elbows, wrists, and
hands or tools. Research dealt not only with how such devices could be maneu-
vered but also with how knowledge of their location and orientation could be main-
tained and applied. (You are able to close your eyes and still touch your nose with
your finger because your brain maintains a record of where your nose and finger
are.) Over time robots arms have become more dexterous to where, with a sense of
touch based on force feedback, they can handle eggs and paper cups successfully.

Recently, the development of faster, lighter weight computers has lead to
greater research in mobile robots that can move about. Achieving this mobility
has led to an abundance of creative designs. Researchers in robot locomotion
have developed robots that swim like fish, fly like dragonflies, hop like grasshop-
pers, and crawl like snakes.

Wheeled robots are very popular since they are relatively easy to design and
build, but they are limited in the type of terrain they can traverse. Overcoming
this restriction, using combinations of wheels or tracks to climb stairs or roll over
rocks, is the goal of current research. As an example, the NASA Mars TOVers used
specially designed wheels to move on rocky soil. N

Legged robots offer greater mobility but are significantly more complex. For

instance, two-legged robots, designed to walk as humans, must constantly moni-
tor and adjust their stance or they will fall. However, such difficulties can be
overcome, as exemplified by the two-legged humanoid robot named Asimo, de-
veloped by Honda, that can walk up stairs and even run.

Despite great advances in manipulators and locomotion, most robots are
still not very autonomous. Industrial robot arms are typically_rigidly pro-
grammed for each task and Work_W1thout sensors, assuming parts will be given
to them 1m§1tlons Other mobile robots such as the NASA Mars rovers
and military Unmanned Aerial Vehicles (UAVs) rely on human operators for
their intelligence.

Overcoming this dependency on humans is a major goal of current research.
One question deals with an autonomous robot needs to know about its en-
v1ronment and to What degree it needs to plan its actions in advance One ap-

containing an inventory of ObJGCtS and their locatlons ‘with which they develop
precise plans of action. Research in this direction depends heavily on progress in
knowledge representation and storage as Well as 1mproved reasonlng and plan-
development techniques.

An alternative approach is to develop reactive_robots that, rather than
maintaining cornpleX records and eXpendlng great efforts in constructing de-
tailed plans of action, merely apply smlple rules for interacting with the world
to guide their behavior moment by moment. Proponents of reactive robotics
argue that when planning a long trip by car, humans do not make all-encom-
passing, detailed plans in advance. Instead, they merely select the major roads,
leaving such details as where to eat, what exits to take, and how to handle de-
tours for later consideration. Likewise, a reactive robot that needs to navigate a
crowded hallway or to go from one building to another does not develop a
highly detailed plan in advance, but instead applies simple rules to avoid each
obstacle as it is encountered. This is the approach taken by the best-selling
robot in history, the iRobot Roomba vacuum cleaner, which moves about a
floor in a reactive mode without bothenng to remember the details of furniture
and other obstacles. After all, the family pet will probably not be in the same
place next time. '
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