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Neural Science
Artificial Neural Networks
Other ApplicationsGoals

Goals of the meeting:

Give an overview of applications of artificial neural network

Present in some detail a machine learning application

Discussion
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Neural Science
Artificial Neural Networks
Other ApplicationsOutline

1. Neural Science

2. Artificial Neural Networks
Feedforward Networks

Single-layer perceptrons
Multi-layer perceptrons

Recurrent Networks

3. Other Applications
Simulations
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What is the mind?

Neither scientists nor philosophers agree on a
universal definition or specification.

Colloquially, we understand the mind as a
collection of processes of sensation, perception,
action, emotion, and cognition.

The mind can integrate ambiguous information
from sight, hearing, touch, taste, and smell; it
can form spatio-temporal associations and
abstract concepts; it can make decisions and
initiate sophisticated coordinated actions.
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Neuroscience

is concerned with how the biological nervous systems of humans and
other animals are organized and how they function

the specificity of the synaptic connections established during
development underlie perception, action, emotion, and learning.
We must also understand both the innate (genetic) and environmental
determinants of behavior.

THE TASK OF NEURAL SCIENCE is to understand the mental
processes by which we perceive, act, learn, and remember.
How does the brain produce the remarkable individuality of human
action?
Are mental processes localized to specific regions of the brain, or do they
represent emergent properties of the brain as an organ?
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Descartes’ (1596-1650) dualism:

Mind Body

essence Thinking (consciousness)
(res cogitans)

physical extension
(having spatial dimensions)
(res extensa)

 Mind-Body problem:

how can there be causal relationship between two completely different
metaphysical realms?
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Strong artificial general intelligence AI (a branch of cognitive science)
system-level approach to synthesizing mind-like computers. (top-down,
reductionism)

Neuroscience takes a component-level approach to understanding how
the mind arises from the wetware of the brain (bottom-up).

Cognitive computing aims to develop a coherent, unified, universal
mechanism inspired by the mind’s capabilities.
Rather than assemble a collection of piecemeal solutions, whereby
different cognitive processes are each constructed via independent
solutions, we seek to implement a unified computational theory of the
mind.
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Cognitive computing: simulation from neuroscience data. Neurobiological
data provide essential constraints on computational theories
 narrowing the search space.

Goal: discover, demonstrate, and deliver the core algorithms of the brain and
gain a deep scientific understanding of how the mind perceives, thinks, and
acts.

Ultimately, this will lead to novel cognitive systems, computing architectures,
programming paradigms, practical applications, and intelligent business
machines.
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Observations of neuroscience

Neuroscientists: view them as a web of clues to the biological
mechanisms of cognition.

Engineers: The brain is an example solution to the problem of cognitive
computing
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The adaptation of a biological cell into a structure capable of: receiving and
integrating input, making a decision based on that input, and signaling other
cells depending on the outcome of that decision is a truly remarkable feat of
evolution.
three main structural components:

dendrites, tree-like structures that receive and integrate inputs;

a soma, where decisions based on these inputs are made;

and an axon, a long narrow structure that transmits signals to other
neurons near and far (can reach one meter length)
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Axon

Cell body or Soma

Nucleus

Dendrite

Synapses

Axonal arborization

Axon from another cell

Synapse

Signals are noisy “spike trains” of electrical potential
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In the brain: > 20 types of neurons with 1014 synapses

(compare with world population = 7× 109)
Additionally, brain is parallel and reorganizing while computers are serial and
static
Brain is fault tolerant: neurons can be destroyed.
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Signal integration and transmission within a neuron:

Fluctuations in the neuron’s membrane potential: voltage difference
across the membrane that separates the interior and exterior of a cell.

Fluctuations occur when ions cross the neuron’s membrane through
channels that can be opened and closed selectively.

If the membrane potential crosses a critical threshold, the neuron
generates a spike (its determination that it has received noteworthy
input), which is a reliable, stereotyped electrochemical signal sent along
its axon.

Spikes are the essential information couriers of the brain
e.g., used in the sensory signals the retina sends down the optic nerve in
response to light, in the control signals the motor cortex sends down the spinal
cord to actuate muscles, and in virtually every step in between.
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Synapses are tiny structures that bridge the axon of one neuron to the
dendrite of the next, transducing the electrical signal of a spike into a
chemical signal and back to electrical.

The spiking neuron, called the presynaptic neuron, releases chemicals
called neurotransmitters at the synapse that rapidly travel to the other
neuron, called the postsynaptic neuron.

The neurotransmitters trigger ion-channel openings on the surface of the
post-synaptic cell, subsequently modifying the membrane potential of
the receiving dendrite.

These changes can be either excitatory, meaning they make target
neurons more likely to fire, or inhibitory, making their targets less likely
to fire.

Both the input spike pattern received and the neuron type determine the
final spiking pattern of the receiving neuron.
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Thus:

essentially digital electrical signal of the spike sent down one neuron

is converted first into a chemical signal that can travel between neurons

then into an analog electrical signal that can be integrated by the
receiving neuron.
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The magnitude of this analog post-synaptic activation, called synaptic
strength, is not fixed over an organism’s lifetime.

Widely believed among brain researchers that changes in synaptic strength
underlie learning and memory, and hence that understanding synaptic
plasticity could provide crucial insight into cognitive function.

Donald O. Hebb’s famous conjecture for synaptic plasticity is "neurons that
fire together, wire together,", i.e., that if neuron A and B commonly fire
spikes at around the same time, they will increase the synaptic strength
between them.

How much details of such a spiking message passing, like time dynamics of
dendritic compartments, ion concentrations, and protein conformations, are
relevant to the fundamental principles of cognition?
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At the surface of the brains of all mammals is a sheet of tissue a few
millimeters thick called the cerebral cortex
Neurons are connected locally through gray-matter connections, as well as
through long-range white-matter connections

diffusion-weighted magnetic resonance imaging (Dw-Mri)
functional magnetic resonance imaging (fMRI)
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Structure within cortex: six distinct horizontal
layers spanning the thickness of the cortical
sheet. interlaminar activity propagation

Cortical columns organize into cortical areas
that are often several millimeters across and
appear to be responsible for specific functions,
including motor control, vision, and planning.

Scientists have focused on understanding the
role each cortical area plays in brain function
and how anatomy and connectivity of the area
serve that function.
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Structural plasticity For example, it has been demonstrated that an area
normally specialized for audition can function as one specialized for vision,
and vice versa, by rewiring the visual pathways in the white matter to
auditory cortex and the auditory pathways to visual cortex

The existence of a canonical algorithm is a prominent hypothesis

At the coarsest scale of neuronal system organization, multiple cortical areas
form networks to address complex functionality.
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From neuroscience observations to artificial neurons

The brain’s neuronal network is a sparse, directed graph organized at
multiple scales.

Local, short-range connections can be described through statistical
variations on a repeating canonical subcircuit,

Global, long-range connections can be described through a specific,
low-complexity blueprint.

Repeating structure within an individual brain and a great deal of
homology across species.
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Thesis: computational building blocks of the brain (neurons and synapses)
can be described by relatively compact, functional, phenomenological
mathematical models, and their communication can be summarized in binary,
asynchronous messages (spikes).

Key idea: behavior of the brain apparently emerges via non-random,
correlated interactions between individual functional units, a key
characteristic of organized complexity.

Such complex systems are often more amenable to computer modeling and
simulation than to closed-form analysis and often resist piecemeal
decomposition.
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2. Artificial Neural Networks
Feedforward Networks
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Multi-layer perceptrons

Recurrent Networks

3. Other Applications
Simulations
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How to teach computers to carry out difficult tasks?
Get inspired from Biology and let computers learn themselves like children.
[A.M. Turing. Computing Machinery and Intelligence. Mind, Oxford University
Press on behalf of the Mind Association, 1950, 59(236), 433-460]

Learning:

Supervised Training (Imitation)
Reinforcement
Unsupervised
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 “The neural network” does not exist. There are different paradigms for
neural networks, how they are trained and where they are used.

Artificial Neuron

Each input is multiplied by a weighting factor.

Output is 1 if sum of weighted inputs exceeds the threshold value; 0
otherwise.

Network is programmed by adjusting weights using feedback from
examples.
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Output is a function of weighted inputs:

ai = σ(ini ) = σ

∑
j

Wj,iaj



Output

Σ
Input

Links

Activation

Function

Input

Function

Output

Links

a0 = −1 ai = g(ini)

ai

g
iniWj,i

W0,i

Bias Weight

aj

A gross oversimplification of real neurons, but its purpose is
to develop understanding of what networks of simple units can do
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Non linear activation functions

(a)
 (b)


+1 +1

iniini

g(ini)g(ini)

(a) is a step function or threshold function
(mostly used in theoretical studies)

(b) is a continuous activation function, e.g., sigmoid function 1/(1 + e−x)
(mostly used in practical applications)

Changing the bias weight W0,i moves the threshold location
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AND

W0 = 1.5

W1 = 1

W2 = 1

OR

W2 = 1

W1 = 1

W0 =  0.5

NOT

W1 = –1

W0 = – 0.5

McCulloch and Pitts: every Boolean function can be implemented
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Architecture: definition of number of nodes and interconnection structures
and activation functions σ but not weights.

Feed-forward networks:
no cycles in the connection graph

single-layer perceptrons (no hidden layer)

multi-layer perceptrons (one or more hidden layer)

Feed-forward networks implement functions, have no internal state

Recurrent networks:
– Hopfield networks have symmetric weights (Wi,j = Wj,i )

σ(x) = sign(x), ai = {1, 0}; associative memory
– recurrent neural nets have directed cycles with delays

=⇒ have internal state (like flip-flops), can oscillate etc.
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Neural Networks are used in classification and regression

Boolean classification:
- value over 0.5 one class
- value below 0.5 other class

k-way classification
- divide single output into k portions
- k separate output unit

continuous output
- identity activation function in output unit
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Multi-layer perceptrons
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Input
Units Units

Output
Wj,i

-4 -2 0 2 4x1
-4

-2
0

2
4

x2

0
0.2
0.4
0.6
0.8

1
Perceptron output

Output units all operate separately—no shared weights
Adjusting weights moves the location, orientation, and steepness of cliff
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Consider a perceptron with σ = step function (Rosenblatt, 1957, 1960)
The output is 1 when: ∑

j

Wjxj > 0 or W · x > 0

Hence, it represents a linear separator in input space:
- hyperplane in multidimensional space
- line in 2 dimensions

Minsky & Papert (1969) pricked the neural network balloon

35



Neural Science
Artificial Neural Networks
Other ApplicationsPerceptron learning

Learn by adjusting weights to reduce error on training set
The squared error for an example with input x and true output y is

E =
1
2
Err2 ≡ 1

2
(y − hW(x))2 ,

Find local optima for the minimization of the function E (W) in the vector of
variables W by gradient methods.

Note, the function E depends on constant values x that are the inputs to the
perceptron.

The function E depends on h which is non-convex, hence the optimization
problem cannot be solved just by solving ∇E (W) = 0
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Gradient methods are iterative approaches:

find a descent direction with respect to the objective function E
move W in that direction by a step size

The descent direction can be computed by various methods, such as gradient
descent, Newton-Raphson method and others. The step size can be
computed either exactly or loosely by solving a line search problem.

Example: gradient descent

1. Set iteration counter t = 0, and make an initial guess W0 for the
minimum

2. Repeat:
3. Compute a descent direction pt = ∇(E (Wt))
4. Choose αt to minimize f (α) = E (Wt − αpt) over α ∈ R+

5. Update Wt+1 = Wt − αtpt , and t = t + 1
6. Until ‖∇f (Wk)‖ < tolerance

Step 3 can be solved ’loosely’ by taking a fixed small enough value α > 0
37
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In the specific case of the perceptron, the descent direction is computed by
the gradient:

∂E
∂Wj

= Err · ∂Err
∂Wj

= Err · ∂

∂Wj

y − σ(
n∑

j = 0

Wjxj)


= −Err · σ′(in) · xj

and the weight update rule (perceptron learning rule) in step 5 becomes:

W t+1
j = W t

j + α · Err · σ′(in) · xj

For threshold perceptron, σ′(in) is undefined: Original perceptron learning
rule (Rosenblatt, 1957) simply omits σ′(in)
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function Perceptron-Learning(examples,network) returns perceptron
weights
inputs: examples, a set of examples, each with input
x = x1, x2, . . . , xn and output y

inputs: network, a perceptron with weights Wj , j = 0, . . . , n and
activation function g

repeat
for each e in examples do

in←
∑n

j=0 Wjxj [e]
Err← y [e]− g(in)
Wj←Wj + α · Err · g ′(in) · xj [e]

end
until all examples correctly predicted or stopping criterion is reached
return network

Perceptron learning rule converges to a consistent function
for any linearly separable data set
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The (Fisher’s or Anderson’s) iris data set gives the measurements in
centimeters of the variables petal length and width, respectively, for 50 flowers
from each of 2 species of iris. The species are “Iris setosa”, and “versicolor”.
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> head(iris.data)

Sepal.Length Sepal.Width Species id
6 5.4 3.9 setosa -1
4 4.6 3.1 setosa -1
84 6.0 2.7 versicolor 1
31 4.8 3.1 setosa -1
77 6.8 2.8 versicolor 1
15 5.8 4.0 setosa -1
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> sigma <- function(w, point) {
+ x <- c(point, 1)
+ sign(w %*% x)
+ }
> w.0 <- c(runif(1), runif(1), runif(1))
> w.t <- w.0
> for (j in 1:1000) {
+ i <- (j - 1)%%50 + 1
+ diff <- iris.data[i, 4] - sigma(w.t, c(iris.data[i, 1], iris.data[i, 2]))
+ w.t <- w.t + 0.2 * diff * c(iris.data[i, 1], iris.data[i, 2], 1)
+ }
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Using Linear algebra to build the Perceptron
> with(linalg):
> x1 := vector([0.3,0.7, −1]);
> y := 1;
> w0 := vector([−0.6,0.8, 0.6]);
> i1 := dotprod(a1,w0);
> g := signum(i1);
> diff := y−1
> w1 := w0 + 0.2 ∗ diff ∗ x1
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W1,3

1,4W

2,3W

2,4W

W3,5

4,5W

1

2

3

4

5

Feed-forward network = a parametrized family of nonlinear functions:

a5 = σ(W3,5 · a3 + W4,5 · a4)

= σ(W3,5 · σ(W1,3 · a1 + W2,3 · a2) + W4,5 · σ(W1,4 · a1 + W2,4 · a2))

Adjusting weights changes the function: do learning this way!
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Basic Example

Exercise: set the weights in such a way that the network represents the XOR
logical operator.
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logical operator.
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Basic Example

Exercise: set the weights in such a way that the network represents the XOR
logical operator.
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Basic Example

Exercise: set the weights in such a way that the network represents the XOR
logical operator.

...how should we continue?
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All continuous functions with 2 layers, all functions with 3 layers
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Combine two opposite-facing threshold functions to make a ridge
Combine two perpendicular ridges to make a bump
Add bumps of various sizes and locations to fit any surface
Proof requires exponentially many hidden units
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Supervised learning method to train multilayer feedforward NNs with
diffrerentiable transfer functions.

Adjust weights along the negative of the gradient of performance
function.

Forward-Backward pass.

Sequential or batch mode

Convergence time vary exponentially with number of inputs

Avoid local minima by simulated annealing and other metaheuristics
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Layers are usually fully connected;
numbers of hidden units typically chosen by hand

Input units

Hidden units

Output units ai

Wj,i

aj

Wk,j

ak
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Output layer: same as for single-layer perceptron,

Wj,i ←Wj,i + α× aj ×∆i

where ∆i = Err i × g ′(ini )

Hidden layer: back-propagate the error from the output layer:

∆j = g ′(inj)
∑

i

Wj,i∆i .

Update rule for weights in hidden layer:

Wk,j ←Wk,j + α× ak ×∆j .

(Most neuroscientists deny that back-propagation occurs in the brain)
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The squared error on a single example is defined as

E =
1
2

∑
i

(yi − ai )
2 ,

where the sum is over the nodes in the output layer.

∂E
∂Wj,i

= −(yi − ai )
∂ai

∂Wj,i
= −(yi − ai )

∂g(ini )

∂Wj,i

= −(yi − ai )g ′(ini )
∂ini

∂Wj,i
= −(yi − ai )g ′(ini )

∂

∂Wj,i

∑
j

Wj,iaj


= −(yi − ai )g ′(ini )aj = −aj∆i
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For the hidden layer:

∂E
∂Wk,j

= −
∑

i

(yi − ai )
∂ai

∂Wk,j
= −

∑
i

(yi − ai )
∂g(ini )

∂Wk,j

= −
∑

i

(yi − ai )g ′(ini )
∂ini

∂Wk,j
= −

∑
i

∆i
∂

∂Wk,j

∑
j

Wj,iaj


= −

∑
i

∆iWj,i
∂aj

∂Wk,j
= −

∑
i

∆iWj,i
∂g(inj)

∂Wk,j

= −
∑

i

∆iWj,ig ′(inj)
∂inj

∂Wk,j

= −
∑

i

∆iWj,ig ′(inj)
∂

∂Wk,j

(∑
k

Wk,jak

)
= −

∑
i

∆iWj,ig ′(inj)ak = −ak∆j
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The (Fisher’s or Anderson’s) iris data set gives the measurements in
centimeters of the variables petal length and width, respectively, for 50 flowers
from each of 2 species of iris. The species are “Iris setosa”, and “versicolor”.
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> samp <- c(sample(1:50, 25), sample(51:100, 25), sample(101:150, 25))
> Target <- class.ind(iris$Species)
> ir.nn <- nnet(Target ~ Sepal.Length * Petal.Length * Petal.Width, data = iris, subset = samp,
+ size = 2, rang = 0.1, decay = 5e-04, maxit = 200, trace = FALSE)
> test.cl <- function(true, pred) {
+ true <- max.col(true)
+ cres <- max.col(pred)
+ table(true, cres)
+ }
> test.cl(Target[-samp, ], predict(ir.nn, iris[-samp, c(1, 3, 4)]))

cres
true 1 2 3

1 25 0 0
2 0 22 3
3 0 2 23
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Use different data for different tasks:

Training and Test data: holdout cross validation

If little data: k-fold cross validation

Avoid peeking:

Weights learned on training data.

Parameters such as learning rate α and net topology compared on
validation data

Final assessment on test data

55



Neural Science
Artificial Neural Networks
Other ApplicationsHandwritten digit recognition

400–300–10 unit MLP = 1.6% error

LeNet: 768–192–30–10 unit MLP = 0.9% error
http://yann.lecun.com/exdb/lenet/

Current best (kernel machines, vision algorithms) ≈ 0.6% error

Humans are at 0.2% – 2.5 % error
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Representational capability assuming unlimited number of neurons
(no training)

Numerical analysis or approximation theoretic: how many hidden units
are necessary to achieve a certain approximation error? (no training)
Results for single hidden layer and multiple hidden layers

Sample complexity: how many samples are needed to characterize a
certain unknown mapping.

Efficient learning: backpropagation has the curse of dimensionality
problem
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NNs with 2 hidden layers and arbitrarily many nodes can approximate any
real-valued function up to any desired accuracy, using continuous activation
functions

E.g.: required number of hidden units grows exponentially with
number of inputs.
2n/n hidden units needed to encode all Boolean functions of n
inputs

However profs are not constructive.

More interest in efficiency issues: NNs with small size and depth

Size-depth trade off: more layers  more costly to simulate
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Backpropagation through time solve temporal differentiable optimization
problems with continuous variables
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Associative Memory

Associative memory: The retrieval of information relevant to the
information at hand

One direction of research seeks to build associative memory using neural
networks that when given a partial pattern, transition themselves to a
completed pattern.
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An artificial neural network implementing an associative memory
– symmetric weights (Wi,j = Wj,i );

– σ(x) = sign(x), ai = {1, 0};
– operates in synchronized discrete steps
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The steps leading to a stable configuration
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Supervised learning

Perceptron learning rule: an algorithm for learning weights in single
layered networks.

Perceptrons: linear separators, insufficiently expressive

Multi-layer networks are sufficiently expressive

Many applications: speech, driving, handwriting, fraud detection, etc.

Recurrent networks give rise to associative memory
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1. Neural Science

2. Artificial Neural Networks
Feedforward Networks

Single-layer perceptrons
Multi-layer perceptrons

Recurrent Networks

3. Other Applications
Simulations
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supervised learning: regression and classification

associative memory

optimization:
R. Durbin and D. Willshaw. An analogue approach to the traveling
salesman problem using and elastic net method. Nature,
326:689–691, 1987

J.J. Hopfield and D.W. Tank. Neural computation of decisions in
optimization problems. Biological Cybernetics. 52: 141–152,1985

T. Kohonen. Self-Organizing and Associative Memory. Springer.
Berlin 1988.

(position of units incrementally adjusted – like weights in NNs – until
sufficiently close to vertices.)

grammatical induction, (aka, grammatical inference)
e.g. in natural language processing

noise filtering

simulation of biological brains
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Operationalize neuroscience data
Bottom-up approach
Cognitive computing
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Appropriate level of abstraction and resolution: the only solution is to
experiment and explore as a community.

AI: high levels of abstraction: cognitive science, visual information
processing, connectionism, computational learning theory, and Bayesian
belief networks

Others: reductionist biological detail, exhaustive, biophysically accurate
simulation.

71



Neural Science
Artificial Neural Networks
Other ApplicationsMammalian-scale brain simulator

Neuroanatomy and neurophysiology, together, have produced a rich set of
constraints on the structure and the dynamics of the brain.
Ingredients:

phenomenological model neurons exhibiting spiking communication,
dynamic synaptic channels, plastic synapses, structural plasticity,

multi-scale network architecture, including layers, minicolumns,
hypercolumns, cortical areas, and multi-area networks,

Simultaneously achieving scale, speed, and detail in one simulation platform
presents a formidable challenge with respect to the three primary resources of
computing systems: memory, computation, and communication.
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Cortical simulation algorithms capable to
simulate cat-scale cortex on Lawrence Livermore
national Laboratory’s Dawn Blue Gene/P
supercomputer with 147,456 CPus and 144TB of
main memory.

roughly equivalent to 4.5% of human scale

The networks demonstrated self-organization of
neurons into reproducible, time-locked, though
not synchronous, groups.

In a visual stimulation-like paradigm, the
simulated network exhibited population-specific
response latencies matching those observed in
mammalian cortex.

Figure outlines this activity, traveling from the
thalamus to cortical layers four and six, then to
layers two, three, and five, while simultaneously
traveling laterally within each layer.
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The realistic expectation:

not that cognitive function will spontaneously emerge from these
neurobiologically inspired simulations.

rather, the simulator supplies a substrate, consistent with the brain,
within which we can formulate and articulate theories of neural
computation (mathematical theory of how the mind arises from the
brain)

it is a tool not the answer (a key integrative workbench for discovering
algorithms of the brain)

goal: building intelligent business machines.

Good news: human-scale cortical simulations are not only within reach but
appear inevitable within a decade.
Bad news: the power and space requirements of such simulations may be
many orders of magnitude greater than those of the biological brain.
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Rodney Brooks (1989), "A Robot that Walks; Emergent
Behaviors from a Carefully Evolved Network", Neural
Computation 1 (2): 253-262,
doi: 10. 1162/ neco. 1989. 1. 2. 253 , http: // people.
csail. mit. edu/ brooks/ papers/ AIM-1091. pdf

Asimo, 2006 http://www.youtube.com/watch?v=VTlV0Y5yAww

Asimo, 2011 http://www.youtube.com/watch?v=eU93VmFyZbg

Relevant applications in proteases

75

doi:10.1162/neco.1989.1.2.253
http://people.csail.mit.edu/brooks/papers/AIM-1091.pdf
http://people.csail.mit.edu/brooks/papers/AIM-1091.pdf
http://www.youtube.com/watch?v=VTlV0Y5yAww
http://www.youtube.com/watch?v=eU93VmFyZbg


Neural Science
Artificial Neural Networks
Other ApplicationsReferences

Brookshear J.G. (2009). Computer Science - An Overview. Pearson, 10th ed.

Kandel E.R., Schwartz J., and Jessell T. (eds.) (2000). Principles of Neural
Science. McGraw-Hill, New York, US, 4th ed. 5th ed. expected for 2012 (ISBN
0-07-139011-1).

Luger G.F. (2009). Artificial Intelligence: Structures and Strategies for Complex
Problem Solving. Addison-Wesley, Boston, MA, 6th ed.

Modha D.S., Ananthanarayanan R., Esser S.K., Ndirango A., Sherbondy A.J., and
Singh R. (2011). Cognitive computing. Communication of the ACM, 54, pp.
62–71.

Russell S. and Norvig P. (2010). Artificial Intelligence: A Modern Approach.
Prentice Hall, New Jersey, USA, third ed.

Searle J.R. (2004). Mind: A Brief Introduction. Oxford University Press.

Wikipedia (2011). Gradient descent.

76


	Neural Science
	Artificial Neural Networks
	Feedforward Networks
	Recurrent Networks

	Other Applications
	Simulations


