DM545 Linear and Integer Programming

Lecture 1 Introduction

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Outline

Course Introduction Introduction Diet Problem Resource Allocation Definitions and Basics

- 1. Course Introduction
- 2. Introduction
- 3. Diet Problem
- 4. Resource Allocation
- 5. Definitions and Basics

Outline

Course Introduction Introduction Diet Problem Resource Allocation Definitions and Basics

- 1. Course Introduction
- 2. Introduction
- 3 Diet Problem
- 4. Resource Allocation
- 5. Definitions and Basics

Context

Course Introduction Introduction Diet Problem Resource Allocation Definitions and Basics

Students:

- Computer Science (3rd year)
- Applied Mathematics (3rd year)
- ► Math-economy (3rd year)

Prerequisites

- Calculus (MM501, MM502)
- ► Linear Algebra (MM505)

Course Introduction

Introduction
Diet Problem
Resource Allocation
Definitions and Basics

Practical Information

Teacher: Marco Chiarandini (marco@imada.sdu.dk)

Instructor: Sushmita Gupta (sushmita.gupta@gmail.com)

Schedule (\approx 24 lecture hours + \approx 20 exercise hours):

Week	15	16	17	18	19	20	21
Tir, 14-16	Forelæsning (U20)	Forelæsning (U20)	Forelæsning (U20)	Forelæsning (U20)	Forelæsning (U20)	Forelæsning (U20)	
Ons, 08-10		Eksaminatorie (U140)	Eksaminatorie (U140)	Eksaminatorie (U140)	Eksaminatorie (U140)	Eksaminatorie (U140)	Eksaminatorie (U140)
Tor, 14-16	Forelæsning (U20)	Forelæsning (U20)	Forelæsning (U155)	Forelæsning (U20)	Forelæsning (U20)		
Fre, 12-14		Eksaminatorie (U20)	Eksaminatorie (U20)		Eksaminatorie (U20)	Eksaminatorie (U20)	

Practical Information

- Communication tools
 - ► Course Public Webpage (WWW)

 ⇔ BlackBoard (BB)
 (link from http://www.imada.sdu.dk/~marco/DM545/)
 - ► Announcements in BlackBoard
 - Personal email
- Main reading material:
 - B1 R. Vanderbei. Linear Programming: Foundations and Extensions. Springer US, 2008 or [B3] J. Matousek and B. Gartner. Understanding and Using Linear Programming. Springer Berlin Heidelberg, 2007
 - B2 L.A. Wolsey. Integer programming. John Wiley & Sons, New York, USA, 1998
 - A1 Robert Fourer, David M. Gay and Brian W. Kernighan, "A Modeling Language for Mathematical Programming." Management Science 36 (1990) 519-554.
 - Slides

Course Introduction Introduction

Diet Problem Resource Allocation Definitions and Basics

Other references:

▶ many!

B12 Frederick S Hillier and Gerald J Lieberman, Introduction to Operations Research, 9th edition, 2010

Course Introduction Introduction

Diet Problem
Resource Allocation
Definitions and Basics

Contents

Linear Programming

1	apr9	Introduction - Linear Programming, Notation
2	apr11	Linear Programming, Simplex Method
3	apr16	Exception Handling
4	apr18	Duality Theory
5	apr23	Sensitivity
6	apr25	Revised Simplex Method

Integer Linear Programming

7	apr30	Modeling Examples, Good Formulations, Relaxations
8	may2	Well Solved Problems, Cutting Planes
9	may7	Branch and Bound

Network Optimization Models

10	may9	Maximum Flov
11	may14	Min Cost Flow
12	may23	Matching

Evaluation

- ▶ 5 ECTS
- course language: English and Danish

- obligatory Assignments, pass/fail, evaluation by teacher (2 hand ins) practical part modeling + programming in AMPL
- 4 hour written exam, 7-grade scale, external censor theory part similar to exercises in class on June 18th

Obligatory Assignments

- Small projects (in groups of 2) must be passed to attend the written exam
- ► They require the use of the AMPL system + CPLEX or Gurobi Software available for all systems from the WWW page:
 - ightarrow Software and Data ightarrow AMPL (Get the password)

Exercises

Course Introduction Introduction Diet Problem Resource Allocation Definitions and Basics

- ▶ Prepare them beforehand
- ▶ Best carried out in small groups (form the groups today)

Outline

Course Introduction Introduction Diet Problem Resource Allocation Definitions and Basics

- 1. Course Introduction
- 2. Introduction
- 3 Diet Problem
- 4. Resource Allocation
- 5. Definitions and Basics

What is OR?

- "Operations Research (or, often, Management Science, Analytics) means a scientific approach to decision making, which seeks to determine how best to design and operate a system, usually under conditions requiring the allocation of scarce resources."
- or short: quantitative methods for planning and analysis
- ► Components in Classical OR:
 - ► Real-Life Problem: e.g. Crew Rostering
 - ▶ Mathematical Model: Decision variables, constraints, objective function
 - ► Solution Methods (algorithms + software; general purpose, tailored)

Some Examples ...

- Production Planning and Inventory Control
- Budget Investment
- Blending and Refining
- ► Manpower Planning
 - Crew Rostering (airline crew, rail crew, nurses)
- ▶ Packing Problems
 - Knapsack Problem
- Cutting Problems
 - Cutting Stock Problem
- Routing
 - Vehicle Routing Problem (trucks, planes, trains ...)
- Locational Decisions
 - Facility Location
- Scheduling/Timetabling
 - ► Examination timetabling/ train timetabling
- ▶ + many more

Common Characteristics

- Planning decisions must be made
- ▶ The problems relate to quantitative issues
 - ► Fewest number of people
 - Shortest route
- ▶ Not all plans are feasible there are constraining rules
 - Limited amount of available resources
- It can be extremely difficult to figure out what to do

Basic Idea

Build a mathematical model describing exactly what one wants, and what the "rules of the game" are. However, what is a mathematical model and how?

OR - The Process?

Course Introduction Introduction Diet Problem Resource Allocation Definitions and Basics

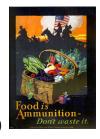
- 1. Observe the System
- 2. Formulate the Problem
- 3. Formulate Mathematical Model
- 4. Verify Model
- Select Alternative
- 6. Show Results to Company
- 7. Implementation

Outline

- 1. Course Introduction
- 2 Introduction
- 3. Diet Problem
- 4. Resource Allocation
- 5. Definitions and Basics

The Diet Problem (Blending Problems)

- Select a set of foods that will satisfy a set of daily nutritional requirement at minimum cost.
- Motivated in the 1930s and 1940s by US army.
- Formulated as a linear programming problem by George Stigler
- ► First linear program
- (programming intended as planning not computer code)



min cost/weight
subject to nutrition requirements:
 eat enough but not too much of Vitamin A
 eat enough but not too much of Sodium
 eat enough but not too much of Calories

. .

The Diet Problem

Suppose there are:

- ▶ 3 foods available, corn, milk, and bread, and
- ▶ there are restrictions on the number of calories (between 2000 and 2250) and the amount of Vitamin A (between 5000 and 50,000)

Food	Cost per serving	Vitamin A	Calories
Corn	\$0.18	107	72
2% Milk	\$0.23	500	121
Wheat Bread	\$0.05	0	65

The Mathematical Model

Parameters (given data)

```
F = set of foodsN = set of nutrients
```

```
a_{ij} = \text{amount of nutrient } j \text{ in food } i, \forall i \in F, \forall j \in N
```

```
c_i = cost per serving of food i, \forall i \in F
```

 F_{mini} = minimum number of required servings of food $i, \forall i \in F$

 F_{maxi} = maximum allowable number of servings of food $i, \forall i \in F$

 N_{minj} = minimum required level of nutrient $j, \forall j \in N$ N_{maxi} = maximum allowable level of nutrient $j, \forall j \in N$

Decision Variables

 x_i = number of servings of food i to purchase/consume, $\forall i \in F$

The Mathematical Model

Objective Function: Minimize the total cost of the food

$$Minimize \sum_{i \in F} c_i x_i$$

Constraint Set 1: For each nutrient $j \in N$, at least meet the minimum required level

$$\sum_{i \in F} a_{ij} x_i \ge N_{minj}, \forall j \in N$$

Constraint Set 2: For each nutrient $j \in N$, do not exceed the maximum allowable level.

$$\sum_{i \in F} a_{ij} x_i \le N_{maxj}, \forall j \in N$$

Constraint Set 3: For each food $i \in F$, select at least the minimum required number of servings

$$x_i \geq F_{mini}, \forall i \in F$$

Constraint Set 4: For each food $i \in F$, do not exceed the maximum allowable number of servings.

$$x_i \leq F_{maxi}, \forall i \in F$$

The Mathematical Model

system of equalities and inequalities

$$\begin{aligned} & \min \quad \sum_{i \in F} c_i x_i \\ & \sum_{i \in F} a_{ij} x_i \geq N_{minj}, \qquad \forall j \in N \\ & \sum_{i \in F} a_{ij} x_i \leq N_{maxj}, \qquad \forall j \in N \\ & x_i \geq F_{mini}, \qquad \forall i \in F \\ & x_i \leq F_{maxi}, \qquad \forall i \in F \end{aligned}$$

- ▶ The linear program consisted of 9 equations in 77 unknowns
- ▶ Stigler, guessed an optimal solution using a heuristic method
- In 1947, the National Bureau of Standards used the newly developed simplex method to solve Stigler's model.
 It took 9 clerks using hand-operated desk calculators 120 man days to solve for the optimal solution
- ► The original instance:

http://www.gams.com/modlib/libhtml/diet.htm

AMPL Model

```
\# diet.mod
set NUTR:
set FOOD;
param cost {FOOD} > 0;
param f_min \{FOOD\} >= 0;
param f_max { i in FOOD} >= f_min[i];
param n_min { NUTR } >= 0;
param n_max {j in NUTR } >= n_min[j];
param amt {NUTR,FOOD} >= 0:
var Buy { i in FOOD} >= f_min[i], <= f_max[i]</pre>
#
minimize total_cost: sum { i in FOOD } cost [i] * Buy[i];
subject to diet { j in NUTR }:
      n_min[j] <= sum {i in FOOD} amt[i,j] * Buy[i] <= n_max[i];</pre>
```

AMPL Model

```
# diet.dat
data:
set NUTR := A B1 B2 C :
set FOOD := BEEF CHK FISH HAM MCH MTL SPG
     TUR;
param: cost f min f max :=
 BEEF 3.19 0 100
 CHK 2.59 0 100
 FISH 2.29 0 100
 HAM 2.89 0 100
 MCH 1.89 0 100
 MTL 1.99 0 100
 SPG 1.99 0 100
 TUR 2.49 0 100 :
param: n_min n_max :=
  A 700 10000
  C 700 10000
  B1 700 10000
  B2 700 10000 ;
# %
```

```
param amt (tr):

A C B1 B2 :=
BEEF 60 20 10 15
CHK 8 0 20 20
FISH 8 10 15 10
HAM 40 40 35 10
MCH 15 35 15 15
MTL 70 30 15 15
SPG 25 50 25 15
TUR 60 20 15 10 ;
```

History of Optimization

- Origins date back to Newton, Leibnitz, Lagrange, etc.
- ▶ In 1827 Fourier described a variable elimination method for linear inequalities, today often called Fourier-Moutzkin elimination (Motzkin, 1936). It can be turned into an LP solver
- ► In 1939, Kantorovich (1912-1986): Foundations of linear programming (Nobel prize with Koopmans on LP, 1975)
- ▶ In 1947, Dantzig (1914-2005) invented the (primal) simplex algorithm
- ▶ In 1954, Lemke: dual simplex algorithm, In 1954, Dantzig and Orchard Hays: revised simplex algorithm
- ▶ In 1970, Victor Klee and George Minty created an example that showed that the classical simplex algorithm has exponential worst-case behaviour.
- ▶ In 1979, L. Khachain found a new efficient algorithm for linear programming. It was terribly slow. (Ellipsoid method)

History of Optimization

- ▶ In 1984, Narendra Karmarkar discovered yet another new efficient algorithm for linear programming. It proved to be a strong competitor for the simplex method. (Interior point method)
- In 1951, Nonlinear Programming began with the Karush-Kuhn-Tucker Conditions
- ▶ In 1952, Commercial Applications and Software began
- In 1950s, Network Flow Theory began with the work of Ford and Fulkerson.
- ▶ In 1955, Stochastic Programming began
- In 1958, Integer Programming began by R. E. Gomory.
- ▶ In 1962, Complementary Pivot Theory

Outline

Course Introduction Introduction Diet Problem Resource Allocation Definitions and Basics

- 1. Course Introduction
- 2. Introduction
- 3 Diet Problem
- 4. Resource Allocation
- 5. Definitions and Basics

Resource Allocation

```
Managing a production facility 1,2,\dots,n \qquad \text{products} \\ 1,2,\dots,m \qquad \text{materials} \\ b_i \qquad \text{units of raw material at disposal} \\ a_{ij} \qquad \text{units of raw material } i \text{ to produce one unit of product } j \\ c_j = \sigma_j - \sum_{i=1}^n \rho_i a_{ij} \qquad \text{profit per unit of product } j \\ \sigma_j \qquad \text{market price of unit of } j \text{th product} \\ \rho_i \qquad \text{prevailing market value for material } i \\ x_j \qquad \text{amount of product} \ j \text{ to produce}
```

Duality

Resource Valuation problem: Determine the value of the raw materials on hand such that: The company must be willing to sell the raw materials should an outside firm offer to buy them at a price consistent with the market

```
w_i value of a unit of raw material i
\sum_{i=1}^{m} b_i w_i opportunity cost (cost of having instead of selling)
```

 ρ_i prevailing unit market value of material i

 σ_j prevailing unit product price

Goal is to minimize the lost opportunity cost

$$\min \sum_{i=1}^{m} b_i w_i \tag{1}$$

$$w_i \ge \rho_i, \quad i = 1 \dots m$$
 (2)

$$\sum_{i=1}^{m} w_i a_{ij} \ge \sigma_j, \quad j = 1 \dots n \tag{3}$$

(1) and (2) otherwise contradicting market

Let

$$y_i = w_i - \rho_i$$

markup that the company would make by reselling the raw material instead of producing.

$$\min \sum_{i=1}^{m} y_i b_i + \sum_{i} \rho_i b_i$$

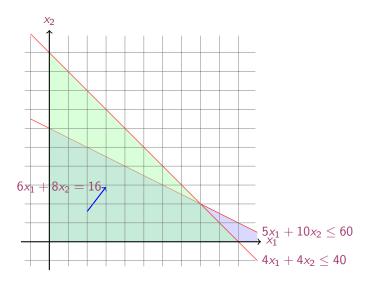
$$\sum_{i=1}^{m} y_i a_{ij} \ge c_j, \quad j = 1 \dots n$$

$$y_i \ge 0, \quad i = 1 \dots m$$

A Numerical Example

Machines A and B products 1 and 2

Graphical Representation



Outline

Course Introduction Introduction Diet Problem Resource Allocation Definitions and Basics

- 1. Course Introduction
- 2. Introduction
- 3. Diet Problem
- 4. Resource Allocation
- 5. Definitions and Basics

In Matrix Form

$$c^{T} = \begin{bmatrix} c_{1} & c_{2} & \dots & c_{n} \end{bmatrix} \qquad \max \quad z = c^{T}x \\ Ax & = b \\ x & \geq 0 \end{bmatrix}$$

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & \vdots \\ a_{31} & a_{32} & \dots & a_{mn} \end{bmatrix}, x = \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix}, b = \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{m} \end{bmatrix}$$

Linear Programming

Abstract mathematical model:

Decision Variables (quantity) eg. x_1 units of 1, x_2 units of 2 Criterion (discriminate among solutions) eg. max profit: $6x_1 + 8x_2$ Constraints (limitations on resources) eg. $5x_1 + 10x_2 = 60$; $4x_1 + 4x_2 = 40$; $x_1 \ge 0$; $x_2 \ge 0$

Essential features of a Linear program:

- 1. continuity (later, integrality)
- 2. linearity → proportionality + additivity
- 3. certainty of parameters

Fourier Motzkin elimination method

Has $Ax \leq b$ a solution? (Assumption: $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^n$) Idea:

- 1. transform the system into another by eliminating some variables such that the two systems have the same solutions over the remaining variables.
- 2. reduce to a system of constant inequalities that can be easily decided

Let x_r be the variable to eliminate Let $M=\{1\dots m\}$ index the constraints For a variable j let partition the rows of the matrix in

$$\begin{array}{lcl} N & = & \{i \in M \mid a_{ij} < 0\} \\ Z & = & \{i \in M \mid a_{ij} = 0\} \\ P & = & \{i \in M \mid a_{ij} > 0\} \end{array}$$

$$\left\{ \begin{array}{l} x_r \geq b_{ir} - \sum_{k=1}^{r-1} a_{ik} x_k \\ x_r \leq b_{ir} - \sum_{k=1}^{r-1} a_{ik} x_k \\ \text{all other constraints} (i \in Z) \end{array} \right. \left\{ \begin{array}{l} x_r \geq A_i(x_1, \dots, x_{r-1}), \quad i \in N \\ x_r \leq B_i(x_1, \dots, x_{r-1}), \quad i \in P \\ \text{all other constraints} (i \in Z) \end{array} \right.$$

Hence the original system is equivalent to

$$\begin{cases} \max\{A_i(x_1,\ldots,x_{r-1}), i \in N\} \leq x_r \leq \min\{B_i(x_1,\ldots,x_{r-1}), i \in P\} \\ \text{all other constraints}(i \in Z) \end{cases}$$

which is equivalent to

$$\begin{cases} A_i(x_1,\ldots,x_{r-1}) \leq B_j(x_1,\ldots,x_{r-1}) & i \in \mathbb{N}, j \in \mathbb{P} \\ \text{all other constraints}(i \in \mathbb{Z}) \end{cases}$$

we eliminated x_r but:

$$\begin{cases} |N| \cdot |P| \text{ inequalities} \\ |Z| \text{ inequalities} \end{cases}$$

after *d* iterations if |P| = |N| = n exponential growth: $(n/2)^{2^d}$

Example

x_2 variable to eliminate $N = \{2, 5, 6\}, Z = \{3\}, P = \{1, 4\}$

 $|Z \cup (N \times P)| = 7$ constraints

Notation

- \blacktriangleright N natural numbers, $\mathbb Z$ integer numbers, $\mathbb Q$ rational numbers, $\mathbb R$ real numbers
- ► column vector and matrices scalar product: $y^T x = \sum_{i=1}^n y_i x_i$
- ▶ linear combination

$$x \in \mathbb{R}^k$$
 $x_1, \dots, x_k \in \mathbb{R}$
 $\lambda = (\lambda_1, \dots, \lambda_k)^T \in \mathbb{R}^k$
 $x \in \mathbb{R}^k$

moreover:

$$\lambda \ge 0$$

$$\lambda^T 1 = 1 \quad (\sum_{i=1}^k \lambda_i = 1)$$

$$\lambda \ge 0 \text{ and } \lambda^T 1 = 1$$

conic combination affine combination convex combination

Notation

- set S is linear independent if no element of it can be expressed as combination of the others
 Eg: S ⊂ R ⇒ max n lin. indep.
- ▶ rank of a matrix for columns (= for rows) if (m, n)-matrix has rank = $\min\{m, n\}$ then the matrix is full rank if (n, n)-matrix is full rank is regular and admits an inverse
- ▶ $G \subseteq \mathbb{R}^n$ is an hyperplane if $\exists a \in \mathbb{R}^n \setminus \{0\}$ and $\alpha \in \mathbb{R}$:

$$G = \{ x \in \mathbb{R}^n \mid a^T x = \alpha \}$$

▶ $H \subseteq \mathbb{R}^n$ is an halfspace if $\exists a \in \mathbb{R}^n \setminus \{0\}$ and $\alpha \in \mathbb{R}$:

$$H = \{x \in \mathbb{R}^n \mid a^T x \le \alpha\}$$

$$(a^T x = \alpha \text{ is a supporting hyperplane of } H)$$

Notation

▶ a set $S \subset \mathbb{R}$ is a polyhedron if $\exists m \in \mathbb{Z}^+, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$:

$$P = \{x \in \mathbb{R} \mid Ax \le b\} = \bigcap_{i=1}^{m} \{x \in \mathbb{R}^n \mid A_i \cdot x \le b_i\}$$

▶ a polyhedron P is a polytope if it is bounded: $\exists B \in \mathbb{R}, B > 0$:

$$p \subseteq \{x \in \mathbb{R}^n \mid \parallel x \parallel \leq B\}$$

• every polyhedron $P \neq \mathbb{R}^n$ is determined by finitely many halfspaces

Summary

Course Introduction Introduction Diet Problem Resource Allocation Definitions and Basics

- 1. Course Introduction
- 2. Introduction
- 3. Diet Problem
- 4. Resource Allocation
- 5. Definitions and Basics