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I You will receive an anonymous report per email.
The report will be chosen among those being present in class today.

I Comment the report without giving grades. Be picky and polite!

I Bring the report in class the next time.

I In class you will gather in pairs in a tournament-like fashion and compare
the two reports

I The reports ranking last will be reviewed by the instructor and risk a no
pass.
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ILP can be solved in Excel!
Let’s solve the min cost flow problem below:

A

50

B

40

D

−30

E

−60

C

0

0//10, 2

0//∞, 9

0//∞, 4

0//80, 1
0//∞, 3

0//∞, 20//∞, 3

See file mincost.xlsx
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Is the simplex algorithm polynomial or exponential in the worst case?
Is an LP problem polynomially solvable or NP-hard?
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Definition

Given a graph G = (V ,E )

I a forest is a subgraph G ′ = (V ,E ′) containing no cycles
I a tree is a subgraph G ′ = (V ,E ′) that is a forest and is connected (∃ a

(uv)-path ∀u, v ∈ V )

Proposition

A graph G = (V ,E ) is a tree iff
I it is a forest containing exactly n − 1 edges
I it is an edge minimal connected graph spanning V
I it contains a unique path between every pair of nodes of V
I the addition of an edge not in E creates a unique cycle.

Solvable via greedy algorithm (Kruskall)
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max
∑
e∈E

cexe (1)∑
e∈E(S)

xe ≤ |S | − 1 for 2 ≤ |S | ≤ n (2)

xe ≥ 0 for e ∈ E (3)

x ∈ Z|E | (4)

Theorem
The convex hull of the incidence vectors of the forests in a graph is given by
the constraints (2)-(3)
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I Improved version of the simplex method for network flows (still not
polynomial but performs well in practice)

I it goes through same basic steps at each iteration:
finding basic variable + determining leaving variable + solving for the
new basis

I executes these steps exploiting network structure without needing a
simplex tableau

I Key idea: network representation of basic feasible solutions
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I in min cost flow formulation one of the node constraints is redundant
(summing all these constraints yields zero on both sides -

∑
i bi = 0)

I with n − 1 non redundant node constraints, we have just n − 1 basic
variables for a basic solution
each basic variable xij represents the flow though arc ij : basic arcs

I basic arcs never form undirected cycles...

I hence they form a spanning tree
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Multi-commodity flow problem ship several commodities using the same
network, different origin destination pairs separate mass
balance constraints, share capacity constraints, min overall
flow

min
∑

k c
kxk

Nxk ≥ bk ∀k∑
k x

k
ij ≥ uij ∀ij ∈ A
0 ≤ xk

ij ≤ uk
ij

How does the structure of the matrix looks like? Is it still
TUM?
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Residual Network N(x):
replace arc ij ∈ N with arcs:

ij : cij , rij = uij − xij
ji : −cij , rji = xij
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Optimality Condition

I Ford Fulkerson augmenting path algorithm O(m|x∗|)

I Edmonds-Karp algorithm (augment by shortest path) in O(nm2)

I Dinic algorithm in layered networks O(n2m)

I Karzanov’s push relabel O(n2m)

13



More on Network Flows
Cutting Plane AlgorithmsMin Cost Flow Algorithms

Optimality conditions: Let x be feasible flow in N(V ,A, l , u, b) then x is min
cost flow in N iff N(x) contains no directed cycle of negative cost.

I Cycle canceling algorithm with Bellman Ford Moore for negative cycles
O(nm2UC )

I Build up algorithms O(n2mM)
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Matching: M ⊆ E of pairwise non adjacent edges

I bipartite graphs
I arbitrary graphs

I cardinality (max or perfect)
I weighted

Assignment problem ≡ min weighted perfect bipartite matching ≡ special
case of min cost flow
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bipartite cardinality

Theorem
The cardinality of a max matching in a bipartite graph equals the value of a
maximum (s, t)-flow in Nst .

 Dinic O(
√
nm)

Theorem (Optimality condition (Berge))

A matching M in a graph G is a maximum matching iff G contains no
M-augmenting path.

 augmenting path O(min(|U|, |V |),m)

bipartite weighted
build up algorithm O(n3)
bipartite weighted: Hungarian method O(n3)

minimum weight perfect matching
Edmonds O(n3)
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Theorem (Hall’s (marriage) theorem)

A bipartite graph B = (X ,Y ,E ) has a matching covering X iff:

|N(U)| ≥ |U| ∀U ⊆ X

Theorem (König, Egeavary theorem)

Let B = (X ,Y ,E ) be a bipartite graph. Let M∗ be the maximum matching
and V ∗ the minimum vertex cover:

|M∗| = |V ∗|
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I IP: z = max{cT x : x ∈ X},X = {x : Ax ≤ b, x ∈ Zn
+}

I Proposition: conv(X ) = {x : Ãx ≤ b̃, x ≥ 0} is a polyhedron

I LP: z = max{cT x : Ãx ≤ b̃, x ≥ 0} would be the best formulation

I Key idea: try to approximate the best formulation.

Definition (Valid inequalities)

ax ≤ b is a valid inequality for X ⊆ Rn if ax ≤ b ∀x ∈ X

Which are useful inequalities? and how can we find them?
How can we use them?
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I X = {(x , y) : x ≤ 999y ; 0 ≤ x ≤ 5, y ∈ B1}

x ≤ 6y

I X = {x ∈ Zn
+ : 13x1 + 20x2 + 11x3 + 6x4 ≥ 72}

2x1 + 2x2 + x3 + x4 ≥
13
11

x1 +
20
11

x2 + x3 +
6
11

x4 ≥
72
11
≥ 6+

6
11

2x1 + 2x2 + x3 + x4 ≥ 7

I UFL:∑
i∈M

xij ≤ bjyj ∀j ∈ N xij ≤ bjyj∑
j∈N

xij = ai ∀i ∈ M xij ≤ ai

xij ≥ 0, yj ∈ Bn xij ≤ max{ai , bj}yj
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To be continued next lecture
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