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Cuttmg Plane Algorithms
h

Valid Inequalities ~ sede

v

IP: z=max{c"x:x € X},X ={x:Ax < b,x € Z }

» Proposition: conv(X) = {x : Ax < b,x > 0} is a polyhedron

v

LP: z = max{c x: Ax < E,x > 0} would be the best formulation

v

Key idea: try to approximate the best formulation.

Definition (Valid inequalities)
ax < b is a valid inequality for X CR" if ax < b¥Vx € X J

Which are useful inequalities? and how can we find them?
How can we use them?



Cutting Plane Algorithms
Branch and Boun

Example: Pre-processing

» X ={(x,y) : x<999y;0 < x <5,y € B}

x < 6y

> X ={x€Z7 :13x; + 20xx + 11x3 + 6x3 > 72}

2x1 4+ 2x2 + x3 + >13 —|-20 + +6 >72>6+6
X Xo+ X3+ X4 > —x1+ —X0 + X3+ —x4 > — —
treRT AT s T TS T M T
2X1—|—2X2—|—X3—|—X4Z7
» UFL:
ZX,'J' < beJ V_[ eN Xij < beJ
ieM
Zx;j:a,- VieM Xij < a;
JeN

Xij > O,yJ c B" Xij < max{a,-, bj}yj



Cutting Plane Algorithms

Chvatal-Gomory cuts Branch and Bound
> XePNZ,, P={xeR]:Ax<b}, AeR™n"

» ueRY, {a1,a2,...an} columns of A

CG procedure to construct valid inequalities

1) Z uajx; < ub valid: u >0
=1

n

2) ZLuaijj < ub valid: x > 0 and ZLuaijj < Z uajx;
j=1

n

3) ZLuajJXj < |ub|  valid for X since x € Z"

=1

Theorem

Every valid inequality for X can be obtained by applying the CG procedure a
finite number of times

However often the family of valid inequalities is large and makes the LP hard
7
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Cutting Plane Algorithms Branch and Bound

» X e PNZY
» a family of valid inequalities 7 : a”x < b, (a, b) € F for X

» we do not find them all a priori, only interested in those close to
optimum

Cutting Plane Algorithm
Init. t=0,P°=P
Iter. t: Solve zt = max{c'x : x € Pt}
let x* be an optimal solution
if xt € Z" stop, x' is opt to the IP
if xt ¢ 7" solve separation problem for x* and F
if (af, b") is found with a’x* > b* that cuts off x*

PHl = Pn{x:ax<bi=1,... 1t}

else stop (P" is in any case an improved formulation)



tting Plane Algorithms

Gomory's fractional cutting plane algorithim -2

Cutting plane algorithm + Chvatal-Gomory cuts
» max{c’x:Ax = b,x > 0,x € Z"}

> Solve LPR to optimality

| |
I 1 An=Ag*An 101 b _ ew
| | z=d+ ) Gx
I S T
gl on(<0) 111-d Jen

» If basic optimal solution to LPR is not integer then 3 some row u:
-AS
The Chvatal-Gomory cut applied to this row is:

x5, + 33 < i)

JEN

(B, is the index in the basis B corresponding to the row u) (cntd)



Cutting Plane Algorithms

» Eliminating xg, = b; — >_ 3,/ in the CG cut we obtain:
JjeN

> (3w — 13uj])x > bu — | bu]
JEN o<t
<f,;<1 0<fy<1

Z fuixj > fu

JEN
f, > 0 or else u would not be row of fractional solution. It implies that
x* in which xy = 0 is cut out!

» Moreover: when x is integer, since all coefficient in the CG cut are
integer the slack variable of the cut is also integer:

s=—fut Y fux

JEN

(theoretically it terminates after a finite number of iterations, but in practice

not successful.)
10



Cutting Plane Algorithms
Branch and Bound

Example

18
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Cutting Plane Algorithms

Branch and Boun

We take the first row:
I | ol 11 1/6 | -1/6 | 0O | 15/6 |

CG cut ZjGN fuJXj > fu ~ %Xg, + gX4 > %

Let's see that it leaves out x*: from the CG proof:
1/6 (x1 + 6x2 < 18)
5/6 (X1 S 3)
x1 + x2 <3+5/2=55

since x1, xp are integer x; + x» < b

Let’s see how it looks in the space of the original variables: from the first
tableau:

X3 = 18—6X2—X1

X4 = 3 — X1

1 5
6(1876X27X1)+6(3*X1)2 ~ X1+ x <5b

N -

12



» Graphically:

Cutting Plane Algorithms

o o

Xp =03
o o

OX]O+ 6X2 = ].8

xp+x2 =5

> Let's continue:

| x1 | x2 | %3 | x4 | x5
S [ tomee

| ol ol -1/6 | -5/6 | 1

| ol 111/6 | -1/6 | ©

I 11 o1lo0 |1 | 0
S . F Fap—

| ol o1l -2/31-1/3 1 0

— X1
l\‘ x1 +4x2 =2

We need to apply dual-simplex

l -2 J'r b : (will always be the case, why?)
ol -1/2 | _

I ol5/2 | ratio rule: min |-Z|

I o1l3 I ij

E S, |

| 11 -13 |
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> After the dual simplex iteration:

| x1 | x2 | %3 | x4 | x5 | -z | b |
. [ S S, Fom e |
| ol ol1/5 | 1] -6/61 013/6 |
| ol 1115 | o1l -1/51 01 13/5 |
| | ol -1/51 o1l 6/5 | 01 12/5 |
I S, [ S, oo |
Il ol 01 -3/51 01-2/51 11| -64/5 |

» In the space of the original variables:

4(187X176X2)+(5*X17X2)22
X1+5X2§15

Cutting Plane Algorithms

We can choose any of the three
rows.

Let's take the third: CG cut:
SRSy

14



Cutting Plane Algorithms

O Utl i ne Branch and Bound

2. Branch and Bound
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Cutting Plane Algorithms

Branch and Bound e s

» Consider the problem z = max{c’x : x € S}

» Divide and conquer: let S = S; U... U S, be a decomposition of S into
smaller sets, and let z* = max{c”x:x € S;} for k =1,..., K. Then

z = maxy z¥

For instance if S C {0,1}° the enumeration tree is:

16



Cutting Plane Algorithms

BO un d i ng Branch and Bound

» Let z° be an upper bound on z*

> Let z* be an lower bound on z¥

> (2F < 2K < 75)
- —k -
» Z = maxy z* is an upper bound on z

k

> z = max, z* is a lower bound on z

17



Cutting Plane Algorithms

Branch and Bound

Example

X2

max x; + 2x»

X1 +4X2§8
Ix1 + xo <8

P
(V]
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]
e
=
=
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Qo
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<

8

4x1 4+ x2

» Solve LP

o1l 8

0
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4|
11
2 |

1
ol

Sy .
(O]

6
2

(O]
(O]

11 -1/4 |
01l 1/4
0l -1/4 |

| x3 | x4

| 15/4 |
| 174

01 7/4

0
1

| x1 | x2
e

|
S
|

I-11°
=1/411
=III-II’

I1°
I11°
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Cutting Plane Algorithms
Branch and Boun

> continuing

x»=1+3/5=16

| | | | | |
| ot m e U e, | X1 = 8/5
| 1>=4/151 | ol 114/15 | -1/15 | o | 24/15 | The optimal solution
| II°=II-1/41° | 11 o1l -1/15 | 4/15 | 0 | 24/15 | .
oo T o T i will not be more than
| II11°=III-7/41> | o | O | -7/156 1 -3/5 | 1 | -2-14/5 | 2 | 14/5 =48

» Both variables are fractional, we pick one of the two:

X1+4X2:8
X1

ox1 +2x2 =1
4dx1 +x0 = 8

19



Branch and Bound

> Let's consider first the left branch:
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Cutting Plane Algorithms
Branch and Boun

» Let's branch again

X2

\\~ X1+4X2:8

> X1

o \u,(1+2X2:1
dx; + x0 = 8

We have three open problems. Which one we choose next?
Let's take A.

21



Branch and Bound
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Cutting Plane Algorithms
Branch and Boun

The final tree:

The optimal solution is 4.

23



Cutting Plane Algorithms

P run i n g Branch and Bound

Pruning:
1. by optimality: zX = max{c”x: x € Sk}

2. by bound 7K <z
Example:

3. by infeasibility S* = ()

24



B&B Components rants tnd Bound

Bounding:
1. LP relaxation
2. Lagrangian relaxation
3. Combinatorial relaxation
4. Duality

Branching:

Si=Snix:x < |%))
ngSﬁ{x:sz [)_g]}
thus the current optimum is not feasible either in S; or in S5.

Which variable to choose?
Eg: Most fractional variable arg max;jcc min{f;,1 — f;}

Choosing Node: Examination: nodes to be examined, active (or open):

» Depth First Search (a good primal sol. is good for pruning + easier to
reoptimize by just adding a new constraint)

» Best Bound First: (eg. largest upper: z° = max, z¥)

» Mixed strategies



Branch and Bound

Reoptimizing: dual simplex
Updating the Incumbent: when new best feasible solution is found:

z = max{z, 4}

Store the active nodes: bounds + optimal basis (remember the revised
simplex!)

26



Cutting Plane Algorithms

Enhancements Branch and Boun

> Preprocessor: constraint/problem /structure specific
tightening bounds
redundant constraints
variable fixing: eg: max{ch CAx < bl < x < u}
fix Va; > 0,¢ <0,x; = /j;a,j <0,¢>0,x =y

> Priorities: establish the next variable to branch

> Special ordered sets SOS (or generalized upper bound GUB)

k
dox=1  xe{0,1}
j=1

instead of: So = SN{x:x; =0} and 51 =SN{x:x =1}
{x :x; = 0} leaves k — 1 possibilities
{x :x; = 1} leaves only 1 possibility
hence tree unbalanced
here: Sy =SN{x:x; =0,i=1..r} and
S =SN{x:x;=0,i=r+1,. k}, r=min{t: > x>1}

Ji
27



Branch and Bound

» Cutoff value: a user-defined primal bound to pass to the system.

» Simplex strategies: simplex is good for reoptimizing but for large models
interior points methods may work best.

» Strong branching: extra work to decide more accurately on which
variable to branch:

1.
2.
3.

choose a set C of fractional variables
reoptimize for each them (in case for limited iterations)
z7.z; (UB of down and up branch)

J* = argmin max{sz, zJ-U}
jec

ie, choose variable with largest decrease of dual bound, UB

28



Branch and Bound

» If not finished after a certain time:
» no feasible solution is found
> the gap best feasible-dual bound is large

|Primal bound — Dual Bound|

AP =
G Primal bound + ¢

- 100

> runs out of memory
> heuristics for finding feasible solutions (generally NP-complete problem)

» find better lower bounds if they are weak: addition of cuts, stronger
formulation, branch and cut

» Branch and cut: a B&B algorithm with cut generation at all nodes of the
tree. (instead of reoptimizing, do as much work as possible to tighten)

Cut pool: stores all cuts centrally
Store for active node: bounds, basis, pointers to constraints in the cut
pool that apply at the node

29



Cutting Plane Algorithms

Advanced Techniques Branch and Bound

We did not treat:

» LP: Dantzig Wolfe decomposition
» LP: Column generation

» LP: Delayed column generation

» |IP: Branch and Price

» LP: Benders decompositions

» LP: Lagrangian relaxation

30
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S umma I'y Branch and Bound

1. Cutting Plane Algorithms

2. Branch and Bound
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