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Preprocessing
Modeling with IP, BIP, MIPPreprocessing rules

Consider S = {x : a0x0 +
∑n

j=1 ajxj ≤ b, lj ≤ xj ≤ uj , j = 0..n}

I Bounds on variables.
If a0 > 0 then:

x0 ≤

b −
∑

j :aj>0

aj lj −
∑

j :aj<0

ajuj

 /a0

and if a0 < 0 then

x0 ≥

b −
∑

j :aj>0

aj lj −
∑

j :aj<0

ajuj

 /a0

I Redundancy. The constraint
∑n

j=0 ajxj ≤ b is redundant if∑
j :aj>0

ajuj +
∑

j :aj<0

aj lj ≤ b
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Preprocessing
Modeling with IP, BIP, MIP

I Infeasibility: S = ∅ if∑
j :aj>0

ajuj +
∑

j :aj<0

aj lj > b

I Variable fixing. For a max problem in the form

max{cT x : Ax ≤ b, l ≤ x ≤ u}

if ∀i = 1..maij ≥ 0, cj < 0 then fix xj = lj
if ∀i = 1..maij < 0, cj > 0 then fix xj = uj

I Integer variables:

dlje ≤ xj ≤ bujc

I Binary variables. Probing: add a constraint, eg, x2 = 0 and check what
happens
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Preprocessing
Modeling with IP, BIP, MIPExample

max 2x1 + x2 − x3
I 5x1 − 2x2 + 8x3 ≤ 15
II 8x1 + 3x2 − x3 ≥ 9
III x1 + x2 + x3 ≤ 6

0 ≤ x1 ≤ 3
0 ≤ x2 ≤ 1

x3 ≥ 1

I :5x1 ≤ 15 + 2x2 − 8x3 ≤ 15 + 2 ·
u2︷︸︸︷
1 −8 ·

l3︷︸︸︷
1 = 9  x1 ≤ 9/5

8x3 ≤ 15 + 2x2 − 5x1 ≤ 15 + 2 · 1 − 5 · 0 = 17  x3 ≤ 17/8

2x2 ≥ 5x1 + 8x3 − 15 ≥ 5 · 0 + 8 · 1 = −7  x2 ≥ −7/2, x2 ≥ 0

II :8x1 ≥ 9 − 3x2 + x3 ≥ 9 − 3+ = 7  x1 ≥ 7/8

I :8x3 ≥ 15 + 2x2 − 5x1 ≤ 15 + 2 − 5 · 7/8 = 101/8  x3 ≤ 101/64

x1 + x2 + x3 ≤ 9/5 + 1 + 101/64 < 6 Hence III is redundant

6



Preprocessing
Modeling with IP, BIP, MIPExample

max 2x1 + x2 − x3
I 5x1 − 2x2 + 8x3 ≤ 15
II 8x1 + 3x2 − x3 ≥ 9
7/8 ≤ x1 ≤ 9/5

0 ≤ x2 ≤ 1
1 ≤ x3 ≤ 101/64

Increasing x2 makes constraints satisfied  x2 = 1
Decreasing x3 makes constraints satisfied  x3 = 1

We are left with:

max{2x1 : 7/8 ≤ x1 ≤ 9/5}
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Preprocessing
Modeling with IP, BIP, MIPPreprocessing for Set Covering/Partitioning

1. if eT
i A = 0 then the ith row can never be satisfied

[
0 0 . . . 1 . . . 0

]


 =



0
0
0
...
0
0



2. if eT
i A = ek then xk = 1 in every feasible solution

[
0 0 . . . 1 . . . 0

]
 1

 =



0
...
1
...
0
0


In SPP can remove all
rows t with atk = 1
and set xj = 0 (and
then remove cols) for
all cols that cover t
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3. if eT
t A ≥ eT

p A then we can remove row t, row p dominates row t (by
covering p we cover t)

1 1 1

1 1


In SPP we can remove
all cols j :
atj = 1, apj = 0

4. if
∑

j∈S Aej = Aek and
∑

j∈S cj ≤ ck then we can cover the rows by Aek
more cheaply with S and set xk = 0
(Note, we cannot remove S if

∑
j∈S cj ≥ ck)

1 1
1 1

1 1
0 0 0 0
1 1
0 0 0 0


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Try on exercise 11 of Sheet 5
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Modeling with IP, BIP, MIPModeling with IP, BIP, MIP

Iterate:
1. def. variables
2. use variables to express objective function
3. use variables to express constraints

a. problems with discrete input/output (knapsack, factory planning)

b. problems with logical conditions

c. combinatorial problems (sequencing, allocation, transport, assignment,
partitioning)

d. network problems
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Preprocessing
Modeling with IP, BIP, MIP

Variables
discrete quantities ∈ Zn

decision variables ∈ Bn

indicator/auxiliary variables (for logical conditions) ∈ Bn

special ordered sets ∈ Bn

incidence vector of S ∈ Bn

In the next slides:

x binary
y integer
z continuous
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Preprocessing
Modeling with IP, BIP, MIPLogical Conditions

Linking constraints x = 0 if z = 0, x = 1 if z > 0
z > 0 =⇒ x = 1 =⇒ z −Mx ≤ 0
x = 1 =⇒ z > m =⇒ z −mx ≤ 0

Logical conditions and 0− 1 variables :

X1 ∨ X2 ⇐⇒ x1 + x2 ≥ 1
X1 ∧ X2 ⇐⇒ x1 = 1, x2 = 1
¬X1 ⇐⇒ x1 = 0(1− x1 = 1)
X1 → X2 ⇐⇒ x1 − x2 ≤ 0
X1 ↔ X2 ⇐⇒ x1 − x2 = 0
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Preprocessing
Modeling with IP, BIP, MIPExamples

I (XA ∨ XB)→ (XC ∨ XD ∨ XE )

xA + xB ≥ 1 xC + xD + xE ≥ 1
xA + xB ≥ 1 =⇒ x = 1 x = 1 =⇒ xC + xD + xE ≥ 1
xA + xB − 2x ≤ 0 xC + xD + xE ≥ x

I Disjunctive constraints (encountered earlier)

I Constraint: x1x2 = 0

1) replace x1x2 by x3
2) x3 = 1 ⇐⇒ x1 = 1, x2 = 1

−x1 + x3 ≤ 0
− x2 + x3 ≤ 0

x1 + x2 − x3 ≤ 1
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Preprocessing
Modeling with IP, BIP, MIP

I Special ordered sets of type 1/2 (for continuous or integer vars):
SOS1: set of vars within which exactly one must be non-zero
SOS2: set of vars within which at most two can be non-zero. The two
variables must be adjacent in the ordering

I separable programming and piecewise linear functions (next 5 slides)

I z · x

1) replace zx by z1
2) impose:

x = 0 ⇐⇒ z1 = 0
x = 1 ⇐⇒ z1 = z

z1 −Mx ≤ 0
−z + z1 ≤ 0
z − z1 + Mx ≤ M
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Preprocessing
Modeling with IP, BIP, MIPSeparable Programming

I Separable functions: sum of functions of single variables:

x2
1 + 2x2 + ex3

YES

x1x2 +
x2

x1 + 1
+ x3 NO

(actually, some non-separable can also be made separable:
1. x1x2 by y
2. relate y to x1 and x2 by:

log y = log x1 + log x2

needs care if x1 and x2 close to zero.)

I non-linear separable functions can be approximated by piecewise linear
functions
(valid for both constraints and objective functions)

17



Preprocessing
Modeling with IP, BIP, MIPConvex Non-linear Functions

I We can model convex non-linear functions by piece-wise linear functions
and LP

min x2
1 − 4x1 − 2x2

x1 + x2 ≤ 4
2x1 + x2 ≤ 5
−x1 + 4x2 ≥ 2

x1, x2 ≥ 0

x2
1

a1 a2a3
x1

x2

I LP Formulation
x = λ0a0 + λ1a1 + λ2a2 + λ3a3
y = λ0f (a0) + λ1f (a1) + λ2f (a2) + λ3f (a3)∑3

i=0 λi = 1
λi ≥ 0 i = 0, . . . , 3
at most two adjacent λi can be non zero (*)
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Preprocessing
Modeling with IP, BIP, MIP

I To model (*) which are SOS2 we would need binary indicator variables
and hence BIP as in next slide.

I However since the problem is convex, an optimal solution lies on the
borders of the functions and hence we can skip introducing the binary
variables and relax (*)
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Preprocessing
Modeling with IP, BIP, MIPNon-convex Functions

Piece-wise Linear Functions

I non-convex functions require indicator variables and IP formulation

g(x) =
∑

j

gj(x) gj non linear

I approximated by f (x) piecewise linear in the disjoint intervals [ai , bi ]

I convex hull formulation (convex combination of points)

⋃
i∈I

 x = λai + µbi
y = λf (ai ) + µf (bi )
λ+ µ = 1 λ, µ ≥ 0

 Remember how we modeled
disjunctive polyhedra...

(cntd)
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Preprocessing
Modeling with IP, BIP, MIP

I using indicator variables δs we obtain the BIP formulation:

x =
∑

i∈I (λiai + µibi )
y =

∑
i∈I (λi f (ai ) + µi f (bi ))

λi + µi = δi ∀i ∈ I∑
i∈I δi = 1

λi , µi ≥ 0 ∀i ∈ I
δi ∈ {0, 1} ∀i ∈ I

the δs are SOS1.

21



Preprocessing
Modeling with IP, BIP, MIPGood/Bad Models

I Number of variables: sometimes it may be advantages increasing if they
are used in search tree.

0− 1 var have specialized algorithms for preprocessing and for branch
and bound. Hence a large number solved efficiently. Good using.

Binary expansion:

0 ≤ y ≤ u
y = x0 + 2x1 + 4x2 + 8x3 + . . .+ 2rxr r = log2 u

I Making explicit good variables for branching:∑
j

ajyj ≤ b

∑
j

ajxj + u = b

u may be a good variable to branch (u is relaxed in LP but must be
integer as well)
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Preprocessing
Modeling with IP, BIP, MIP

I Symmetry breaking: Eg machine maintenance (see sol of Assignment 1,
Task 4) yj ∈ Z vs xj ∈ B

I Difficulty of LP models depends on number of constraints:

min
∑

t

|atzt − bt | max
∑

t

z ′t

z ′t ≥ atzt − b1

z ′t ≥ bt − atzt

max
∑

t

z+
t − z−t

z+
t − z−t = atzt − bt

more variables but less
constraints

I With IP it might be instead better increasing the number of constraints.

I Make M as small as possible in IP (reduces feasible region possibly
fitting it to convex hull.
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Preprocessing
Modeling with IP, BIP, MIPPractical Tips

I Units of measure: check them!
all data should be scaled to stay in 0.1− 10
some software do this automatically

I Write few line of text describing what the equations express and which
are the variables, give examples on the problem modeled.

I Try the model on small simple example that can be checked by hand.

I Be diffident of infeasibility and unboundedness, double check.

I Estimate the potential size.
If IP problem large and no structure then it might be hard.
If TUM then solvable with very large size
If other structure, eg, packing, covering also solvable with large size

I Check the output of the solver and understand what is happening

I If all fail resort to heuristics
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Preprocessing
Modeling with IP, BIP, MIPInteriori-Point Approach to LP

I Karmakar in 1984, design and polinomiality proof

I Today most powerful software packages include at least an interior point
algorithm

I It is an itertative algorithm that gets started by identifying a feasible
trial solution. Moves from this towards an optimal solution.

I Main difference from simplex: it moves through interiori points, not
boundaries.

I Also called barrier method (constraints are treated as barriers)
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Modeling with IP, BIP, MIP

I The average computation time per iteration is higher than the simplex

I For small problems simplex works therefore best.

I For large problems with many cosntraints (eg, 10.000) the simplex
requires many iteraitons (20.000) while iterior-point algorithms less
(100) and are therefore prefereable.

I Simplex is well suited for post-optimality analysis, while this is not the
case for interior-point algorithms

I Hence complementary roles:
up to 10.000 constraints or 100.000 constraints and unlimited variables:
use simplex
convert solutions from interior-point to simplex.
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Preprocessing
Modeling with IP, BIP, MIPConclusion

I I hope this course has changed your way of thinking when you hear the
word “optimization”

I I hope to have transmitted part of my enthusiasm for this subject.
Look also at the videos and blog linked from the web page.

I Where from here:
DM811: Heuristics for Combinatorial Optimization
DM204: Scheduling Timetabling and Routing
DM208/DM209: Combinatorial Optimization I/II
DM817: Network Programming: Theory and Applications

I Thesis and ISA
Applications are really welcome!
Timetabling at the Faculty of Science, Crew Scheduling and Air Craft
Routing with Air Support, Routing with CargoMatch, Fairness issues,
Advanced techniques for GCP and sum coloring, Curricula generation, ...
or come with your own problem!
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