DM545
 Linear and Integer Programming

Lecture 2
 The Simplex Method

Marco Chiarandini

Department of Mathematics \& Computer Science
University of Southern Denmark

Outline

1. Definitions and Basics
2. Fundamental Theorem of LP
3. Gaussian Elimination
4. Simplex Method

Standard Form
Basic Feasible Solutions
Algorithm
Tableaux and Dictionaries

Outline

1. Definitions and Basics
2. Fundamental Theorem of LP
3. Gaussian Elimination
4. Simplex Method

Standard Form
Basic Feasible Solutions Algorithm
Tableaux and Dictionaries

Linear Programming

Abstract mathematical model:
Decision Variables

Criterion

Constraints

$$
\begin{array}{rrll}
\text { objective func. } & \max / \min c^{T} \cdot x & & \\
\text { constraints } & A \cdot x & \geqq b & A \in \mathbb{R}^{n} \\
& x & \geq 0 & x \in \mathbb{R}^{m \times n}, 0 \in \mathbb{R}^{n}
\end{array}
$$

- Any vector $x \in \mathbb{R}^{n}$ satisfying all constraints is a feasible solution.
- Each $x^{*} \in \mathbb{R}^{n}$ that gives the best possible value for $c^{\top} x$ among all feasible x is an optimal solution or optimum
- The value $c^{T} x^{*}$ is the optimum value

In Matrix Form

$$
\begin{aligned}
& \max c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}+\ldots+c_{n} x_{n}=z \\
& \text { set. } a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\ldots+a_{1 n} x_{n} \leq b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\ldots+a_{2 n} x_{n} \leq b_{2} \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m 3} x_{3}+\ldots+a_{m n} x_{n} \leq b_{m} \\
& x_{1}, x_{2}, \ldots, x_{n} \geq 0 \\
& c^{T}=\left[\begin{array}{llll}
c_{1} & c_{2} & \ldots & c_{n}
\end{array}\right] \\
& \max z=c^{T} x \\
& A x=b \\
& x \geq 0 \\
& A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & & & \\
a_{31} & a_{32} & \ldots & a_{m n}
\end{array}\right], x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right], b=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]
\end{aligned}
$$

Definitions

- \mathbb{N} natural numbers, \mathbb{Z} integer numbers, \mathbb{Q} rational numbers, \mathbb{R} real numbers
- column vector and matrices scalar product: $y^{\top} x=\sum_{i=1}^{n} y_{i} x_{i}$
- linear combination

$$
\begin{array}{r}
x \in \mathbb{R}^{n} \\
x_{1}, \ldots, x_{k} \in \mathbb{R} \\
\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)^{T} \in \mathbb{R}^{k}
\end{array} \quad x=\sum_{i=1}^{k} \lambda_{i} x_{i} .
$$

moreover:

$$
\begin{array}{rr}
& \lambda \geq 0 \\
\lambda^{T} 1=1 \quad\left(\sum_{i=1}^{k} \lambda_{i}=1\right) \\
\lambda \geq 0 \text { and } \lambda^{T} 1=1
\end{array}
$$

conic combination
affine combination
convex combination

- set S is linear independent if no element of it can be expressed as combination of the others
Eg: $S \subseteq \mathbb{R} \Longrightarrow$ max n lin. indep.
- rank of a matrix for columns (= for rows) if (m, n)-matrix has rank $=\min \{m, n\}$ then the matrix is full rank if (n, n)-matrix is full rank is regular and admits an inverse
- $G \subseteq \mathbb{R}^{n}$ is an hyperplane if $\exists a \in \mathbb{R}^{n} \backslash\{0\}$ and $\alpha \in \mathbb{R}$:

$$
G=\left\{x \in \mathbb{R}^{n} \mid a^{T} x=\alpha\right\}
$$

- $H \subseteq \mathbb{R}^{n}$ is an halfspace if $\exists a \in \mathbb{R}^{n} \backslash\{0\}$ and $\alpha \in \mathbb{R}$:

$$
H=\left\{x \in \mathbb{R}^{n} \mid a^{T} x \leq \alpha\right\}
$$

$\left(a^{T} x=\alpha\right.$ is a supporting hyperplane of $\left.H\right)$

Definitions

- a set $S \subseteq \in \mathbb{R}$ is a polyhedron if $\exists m \in \mathbb{Z}^{+}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$:

$$
P=\{x \in \mathbb{R} \mid A x \leq b\}=\cap_{i=1}^{m}\left\{x \in \mathbb{R}^{n} \mid A_{i . x} \leq b_{i}\right\}
$$

- a polyhedron P is a polytope if it is bounded: $\exists B \in \mathbb{R}, B>0$:

$$
p \subseteq\left\{x \in \mathbb{R}^{n} \mid\|x\| \leq B\right\}
$$

- Theorem: every polyhedron $P \neq \mathbb{R}^{n}$ is determined by finitely many halfspaces

Definitions

- General optimization problem: $\max \{\varphi(x) \mid x \in F\}, \quad F$ is feasible region for x
- If A and b are rational numbers, $P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}$ is a rational polyhedron
- convex set: if $x, y \in P$ and $0 \leq \lambda \leq 1$ then $\lambda x+(1-\lambda) y \in P$
- convex function if its epigraph $\left\{(x, y) \in \mathbb{R}^{2}: y \geq f(x)\right\}$ is a convex set or $f: X \rightarrow \mathbb{R}$, if $\forall x, y \in X, \lambda \in[0,1]$ it holds that $f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)$

$$
[<+->]
$$

nonconvex

convex

- Given a set of points $X \subseteq \mathbb{R}^{n}$ the convex hull $\operatorname{conv}(X)$ is the convex linear combination of the points

the convex hull of X

Definitions

- A face of P is either P itself or the intersection of P with a supporting hyperplane
- A point x for which $\{x\}$ is a face is called a vertex of P and also a basic solution of $A x \leq b$
- A facet is a maximal face distinct from P $c x \leq d$ is facet defining if $c x=d$ is a supporting hyperplane of P

Linear Programming Problem

Input: a matrix $A \in \mathbb{R}^{m \times n}$ and column vectors $b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}$

Task:

1. decide that $\left\{x \in \mathbb{R}^{n} ; A x \leq b\right\}$ is empty (prob. infeasible), or
2. find a column vector $x \in \mathbb{R}^{n}$ such that $A x \leq b$ and $c^{T} x$ is max, or
3. decide that for all $\alpha \in \mathbb{R}$ there is an $x \in \mathbb{R}^{n}$ with $A x \leq b$ and $c^{T} x>\alpha$ (prob. unbounded)
4. $F=\emptyset$
5. $F \neq \emptyset$ and \exists solution
6. one solution
7. infinite solution
8. $F \neq \emptyset$ and \nexists solution

Linear Programming and Linear Algebra

- Linear algebra: linear equations (Gaussian elimination)
- Integer linear algebra: linear diophantine equations
- Linear programming: linear inequalities (simplex method)
- Integer linear programming: linear diophantine inequalities

Outline

2. Fundamental Theorem of LP
3. Gaussian Elimination
4. Simplex Method

Standard Form
Basic Feasible Solutions Algorithm
Tableaux and Dictionaries

Fundamental Theorem of LP

Theorem (Fundamental Theorem of Linear Programming)
Given:

$$
\min \left\{c^{T} x \mid x \in P\right\} \text { where } P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}
$$

If P is a bounded polyhedron and not empty (ie, a polytope) and x^{*} is an optimal solution to the problem, then:

- x^{*} is an extreme point (vertex) of P, or
- x^{*} lies on a face $F \subset P$ of optimal solution

Proof:

- assume x^{*} not a vertex of P then \exists a ball around it still in P. Show that a point in the ball has better cost
- if x^{*} is not a vertex then it is a convex combination of vertices. Show that all points are also optimal.

Implications:

- the optimal solution is at the intersection of hyperplanes supporting halfspaces.
- hence finitely many possibilities
- Solution method: write all inequalities as equalities and solve all $\binom{n}{m}$ systems of linear equalities
- for each point we need then to check if feasible and if best in cost.
- each system is solved by Gaussian elimination

Simplex Method

1. find a solution that is at the intersection of some n hyperplanes
2. try systematically to produce the other points by exchanging one hyperplane with another
3. check optimality, proof provided by duality theory

Outline

Gaussian Elimination

Simplex Method

1. Definitions and Basics
2. Fundamental Theorem of LP
3. Gaussian Elimination
4. Simplex Method

Standard Form
Basic Feasible Solutions Algorithm
Tableaux and Dictionaries

Gaussian Elimination

1. Forward elimination
reduces the system to triangular (row echelon) form (or degenerate) elementary row operations (or LU decomposition)
2. back substitution

Example:

$$
\begin{array}{rrrr}
2 x+y-z & =8 \\
-3 x-y+2 z & = & (I 1 \\
-2 x+y+2 z & = & -3
\end{array}
$$

Polynomial time $O\left(n^{2} m\right)$ but needs to guarantee that all the numbers during the run can be represented by polynomially bounded bits

Outline

1. Definitions and Basics
2. Fundamental Theorem of LP
3. Gaussian Elimination
4. Simplex Method

Standard Form
Basic Feasible Solutions
Algorithm
Tableaux and Dictionaries

A Numerical Example

$$
\begin{aligned}
\max \quad & \sum_{j=1}^{n} c_{j} x_{j} \\
\sum_{j=1}^{n} a_{i j} x_{j} & \leq b_{i}, \quad i=1, \ldots, m \\
x_{j} & \geq 0, \quad j=1, \ldots, n
\end{aligned}
$$

$$
\begin{array}{rlll}
\max & 6 x_{1}+8 x_{2} \\
5 x_{1} & +10 x_{2} & \leq 60 \\
& 4 x_{1}+4 x_{2} & \leq & 40 \\
x_{1}, x_{2} & \geq & 0
\end{array}
$$

$$
\max \left[\begin{array}{ll}
6 & 8
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

$$
\left[\begin{array}{cc}
5 & 10 \\
4 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \leq\left[\begin{array}{l}
60 \\
40
\end{array}\right]
$$

$$
x \in \mathbb{R}^{n}, c \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}
$$

$$
x_{1}, x_{2} \geq 0
$$

Outline

1. Definitions and Basics
2. Fundamental Theorem of LP
3. Gaussian Elimination
4. Simplex Method

Standard Form

Basic Feasible Solutions Algorithm
Tableaux and Dictionaries

Standard Form

Each linear program can be converted in the form:

$$
\begin{aligned}
& \max c^{T} x \\
& A x \leq b \\
& x \in \mathbb{R}^{n} \\
& c \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}
\end{aligned}
$$

- if equations, then put two constraints, $a x \leq b$ and $a x \geq b$
- if $a x \geq b$ then $-a x \leq-b$
- if $\min c^{\top} x$ then $\max \left(-c^{\top} x\right)$
and then be put in standard (or equational) form

$$
\begin{gathered}
\max c^{c^{T} x} \\
A x=b \\
x \geq 0 \\
x \in \mathbb{R}^{n}, c \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}
\end{gathered}
$$

1. " =" constraints
2. $x \geq 0$ nonnegativity constraints
3. $(b \geq 0)$
4. \max

Transformation into Std Form

Every LP can be transformed in std. form

1. introduce slack variables (or surplus)

$$
\begin{aligned}
& 5 x_{1}+10 x_{2}+x_{3}=60 \\
& 4 x_{1}+4 x_{2}+x_{4}=40
\end{aligned}
$$

2. if $x_{1} \gtreqless 0$ then $\begin{aligned} & x_{1}=x_{1}^{\prime} \\ & x_{1}^{\prime} \geq 0 \\ & \\ & x_{1}^{\prime \prime} \geq 0\end{aligned}$
3. $(b \geq 0)$
4. $\min c^{\top} x \equiv \max \left(-c^{\top} x\right)$

LP in $m \times m$ converted into LP with at most $(m+2 n)$ variables and m equations

Geometry

- $A x=b$ is a system of equations that we can solve by Gaussian elimination
- Elementary row operations of $[A$
b] do not affect set of feasible solutions
- multiplying all entries in some row of $\left[\begin{array}{lll}A & \mid & b\end{array}\right]$ by a nonzero real number λ
- replacing the ith row of $\left[\begin{array}{lll}A & \mid & b\end{array}\right]$ by the sum of the i th row and j th row for some $i \neq j$
- We assume $\operatorname{rank}\left(\left[\begin{array}{lll}A & \mid & b\end{array}\right]\right)=\operatorname{rank}(A)=m$, ie, rows of A are linearly independent
otherwise, remove linear dependent rows

Outline

1. Definitions and Basics
2. Fundamental Theorem of LP
3. Gaussian Elimination
4. Simplex Method

Standard Form
Basic Feasible Solutions
Algorithm
Tableaux and Dictionaries

Basic Feasible Solutions

Basic feasible solutions are the vertices of the feasible region:

More formally:
Let $B=\{1 \ldots m\}, N=\{m+1 \ldots n+m\}$ be subsets of columns
A_{B} is columns of A indexed by B :
Definition
$x \in \mathbb{R}^{n}$ is a basic feasible solution of the linear program $\max \left\{c^{\top} x \mid A x=b, x \geq 0\right\}$ for an index set B if:

- $x_{j}=0 \forall j \notin B$
- the square matrix A_{B} is nonsingular, ie, all columns indexed by B are lin. indep.
- $x_{B}=A_{B}^{-1} b$ is nonnegative, ie, $x_{B} \geq 0$ (feasibility)

We call $x_{j}, j \in B$ basic variables and remaining variables nonbasic variables.
Theorem
A basic feasible solution is uniquely determined by the set B.
Proof:

$$
\begin{aligned}
A x= & A_{B} x_{B}+A_{N} x_{N}=b \\
& x_{B}+A_{B}^{-1} A_{N} x_{N}=A_{B}^{-1} b \\
& x_{B}=A_{B}^{-1} b
\end{aligned}
$$

A_{B} is singular hence one solution

Note: we call B a (feasible) basis

Extreme points and basic feasible solutions are geometric and algebraic manifestations of the same concept:

Theorem
Let P be a (convex) polyhedron from LP in std. form. For a point $v \in P$ the following are equivalent:
(i) v is an extreme point (vertex) of P
(ii) v is a basic feasible solution of $L P$

Proof: by recognizing that vertices of P are linear independent and such are the columns in A_{B}

Theorem
Let $L P=\max \left\{c^{\top} x \mid A x=b, x \geq 0\right\}$ be feasible and bounded, then the optimal solution is a basic feasible solution.

Proof. consequence of previous theorem and fundamental theorem of linear programming

Idea for solution method: examine all basic solutions.
There are finitely many: $\binom{m+n}{m}$.
However, if $n=m$ then $\binom{2 m}{m} \approx 4^{m}$.

Outline

1. Definitions and Basics
2. Fundamental Theorem of LP
3. Gaussian Elimination
4. Simplex Method

Standard Form
Basic Feasible Solutions
Algorithm
Tableaux and Dictionaries

Simplex Method

$$
\begin{aligned}
& \max \quad z=\left[\begin{array}{ll}
6 & 8
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
& {\left[\begin{array}{cccc}
5 & 10 & 1 & 0 \\
4 & 4 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] }=\left[\begin{array}{l}
60 \\
40
\end{array}\right] \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{aligned}
$$

Canonical std. form: one decision variable is isolated in each constraint and does not appear in the other constraints or in the obj. func.

It gives immediately a feasible solution:

$$
x_{1}=0, x_{2}=0, x_{3}=60, x_{4}=40
$$

Is it optimal? Look at signs in $z \rightsquigarrow$ if positive then an increase would improve.

Let's try to increase a promising variable, ie, x_{1}, one with positive coefficient in z (is the best choice?)

$$
\begin{aligned}
& 5 x_{1}+x_{3}=60 \\
& x_{1}=\frac{60}{5}-\frac{x_{3}}{5} \\
& x_{3}=60-5 x_{1} \geq 0
\end{aligned}
$$

If $x_{1}>12$ then $x_{3}<0$

$$
\begin{aligned}
& 4 x_{1}+x_{4}=40 \\
& x_{1}=\frac{40}{4}-\frac{x_{4}}{4} \\
& x_{4}=40-4 x_{1} \geq 0
\end{aligned}
$$

If $x_{1}>10$ then $x_{4}<0$

we can take the minimum of the two $\rightsquigarrow x_{1}$ increased to 10
x_{4} exits the basis and x_{1} enters

Simplex Tableau

First simplex tableau:

$$
\begin{array}{c:ccccc}
& x_{1} & x_{2} & x_{3} & x_{4} & -z \\
\hdashline x_{3} & 5 & b & 1 & 1 & 0 \\
0 & 60 \\
x_{4} & 4 & 4 & 0 & 1 & 0 \\
\hdashline & \frac{4}{6} & \frac{40}{8} & 0 & 1 & 0
\end{array}
$$

we want to reach this new tableau

Pivot operation:

1. Choose pivot:
column: one with positive coefficient in obj. func. (to discuss later)
row: ratio between coefficient b and pivot column: choose the one with smallest ratio:

$$
\theta=\min _{i}\left\{\frac{b_{i}}{a_{i s}}: a_{i s}>0\right\}, \quad \theta \text { increase value of entering var. }
$$

2. elementary row operations to update the tableau

- x_{4} leaves the basis, x_{1} enters the basis
- Divide row pivot by pivot
- Send to zero the coefficient in the pivot column of the first row
- Send to zero the coefficient of the pivot column in the third (cost) row

From the last row we read: $2 x_{2}-3 / 2 x_{4}-z=-60$, that is:
$z=60+2 x_{2}-3 / 2 x_{4}$.
Since x_{2} and x_{4} are nonbasic we have $z=60$ and $x_{1}=10, x_{2}=0, x_{3}=10, x_{4}=0$.

- Done? No! Let x_{2} enter the basis

Optimality:
The basic solution is optimal when the coefficient of the nonbasic variables (reduced costs) in the corresponding simplex tableau are nonpositive, ie, such that:

$$
\bar{c}_{N} \leq 0
$$

Graphical Representation

Outline

1. Definitions and Basics
2. Fundamental Theorem of LP
3. Gaussian Elimination
4. Simplex Method

Standard Form
Basic Feasible Solutions
Algorithm
Tableaux and Dictionaries

Tableaux and Dictionaries

$$
\begin{array}{rll}
\max \quad \sum_{j=1}^{n} c_{j} x_{j} & & x_{n+i}=b_{i}-\sum_{j=1}^{n} a_{i j} x_{j}, \quad i=1, \ldots, m \\
\sum_{j=1}^{n} a_{i j} x_{j} & \leq b_{i}, \quad i=1, \ldots, m \quad z=\sum_{j=1}^{n} c_{j} x_{j} &
\end{array}
$$

Tableau

\bar{c}_{N} reduced costs

Dictionary

$$
\begin{aligned}
& x_{r}=\bar{b}_{r}-\sum_{s \notin B} \bar{a}_{r s} x_{s}, \quad r \in B \\
& z=\bar{d}+\sum_{s \notin B} \bar{c}_{s} x_{s}
\end{aligned}
$$

pivot op.:
choose col with r.c. >0
choose row with negative sign update: express entering variable and substitute in other rows

Example

$$
\begin{aligned}
& \max 6 x_{1}+8 x_{2} \\
& \begin{aligned}
5 x_{1}+10 x_{2} & \leq 60 \\
4 x_{1}+4 x_{2} & \leq 40 \\
x_{1}, x_{2} & \geq 0
\end{aligned} \\
& \left.\begin{array}{c:ccccc}
& x_{1} & x_{2} & x_{3} & x_{4} & -z \\
\hdashline x_{3} & 5 & 10 & 1 & 0 & 0 \\
x_{4} & 4 & 4 & 0 & 1 & 0 \\
\hdashline-2 & 6 & \frac{8}{8} & 0 & 0 & 1
\end{array}\right] \\
& \begin{array}{c}
x_{3}=60-5 x_{1}-10 x_{2} \\
x_{4}=40-4 x_{1}-4 x_{2} \\
z=-6 x_{1}+-8 x_{2}
\end{array}
\end{aligned}
$$

Summary

1. Definitions and Basics
2. Fundamental Theorem of LP
3. Gaussian Elimination
4. Simplex Method

Standard Form
Basic Feasible Solutions
Algorithm
Tableaux and Dictionaries

Exception Handling

1. Unboundedness
2. More than one solution
3. Degeneracies

- benign
- cycling

4. Infeasible starting
